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Abstract. In this paper, we propose hierarchical absorbing interface conditions to

solve the problem of wave propagation in domains with a non-uniform space dis-

cretization or grid size inhomogeneity using Padé Via Lanczos (PVL) method. The
proposed interface conditions add an auxiliary variable in the wave system to elim-

inate the spurious reflection at the interface between regions with different mesh
sizes. The auxiliary variable with proper boundary condition can suppress the spu-

rious reflection by cancelling the boundary source term produced by the space in-

homogeneity in variational perspective. The new hierarchical interface conditions
with the help of PVL implementation can effectively reduce the degree of freedom

in solving the wave propagation problem.
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1. Introduction

Numerical methods such as finite element method (FEM) and finite difference

method (FDM) are widely used for simulating various physical phenomenon such as

structural response of materials, evolution of phase transformation and wave propaga-

tion in medium. Many scientific discoveries and industry advances rely on the devel-

opment of modern numerical techniques. In most numerical methods, there is an im-

∗Corresponding author. Email addresses: shuyang dai@whu.edu.cn (S. Dai), sun zhiyuan@iapcm.ac.cn

(Z. Sun), wangfr@whu.edu.cn (F. Wang), zjyang.math@whu.edu.cn (J. Z. Yang), yuancheng@whu.edu.cn

(C. Yuan)

http://www.global-sci.org/nmtma 251 ©2022 Global-Science Press



252 S. Dai et al.

portant question on how to determine the numerical spatial resolution or discretization

mesh size in the actual implementation of simulations. Although if increasing the nu-

merical spatial resolution or equivalently decreasing the discretization mesh size could

provide more information and solve the problems with a higher precision, however,

the computational cost due to the unified high spatial resolution in the whole domain

of calculation is consuming. Since in most realistic simulations, the information we

are interested in is only bounded in a small region, and the whole computational do-

main is relatively large, it is important to develop an unified numerical framework that

could couple different models with various spatial resolution or discretization mesh

size [8, 9, 18, 19]. This numerical framework could increase the grid resolution locally

where it is required physically relevant shorter length scale of problem under consider-

ation and adopt coarse mesh size where it is the rest of computational domain, which

means that grid inhomogeneity is an essential ingredient in modern large scale numer-

ical simulations.

However, in the problem of wave propagation, the main challenge to use grid in-

homogeneity in numerical simulations is the spurious reflection, which is a nonphysi-

cal reflection wave occurring when a wave passes through the interface between two

regions with grid size inhomogeneity. When wave packet propagating through the nu-

merical interface between domain with different grid sizes, the waves will split into

transmitted and reflected components due to the artificial nonphysical interface. Actu-

ally, wave propagation in discrete system has been studied since the 17th century and

has been described by Brillouin in Ref. [6]. A one-dimensional lattice of a point mass

connected by springs has been considered as a model for wave propagation in crys-

tals. Bazănt in [2, 3, 7] found that when elastic wave pass through the different scale

meshes, the spurious reflection may appear at the interface, and the effect of consistent

and lumped mass models. The finite element approximations of nonlinear elastic waves

were studied in Ref. [21]. In Ref [16], Jiang et al. studied the spurious wave reflection

at the interface of different physical properties in finite element wave solution. The op-

timal reduction for wave propagation problems in the numerical dispersion relationship

using two-dimensional elements is discussed in Ref. [13]. Kulkarni et al. [14, 15] has

talked about this topic in the theory of peridynamic, including the wave propagation in

a peridynamic bar with nonuniform discretization and the spurious wave reflection at

the interface between peridynamics and finite element regions.

One related work in the multi-scale modeling and computation is the coupling

of the molecular dynamics model and the continuum model. An important work in

this region is the heterogeneous multiscale method (HMM) developed by E et al. in

Ref. [9, 17, 20, 27], which is based on the widely used domain decomposition method

in finite elements and the Cauchy-Born rule. Another interesting method is the bridging

scale method (BSM) developed by Liu et al., they developed the mathematical frame-

work of the bridging scale method and use a projection process to couple atomistic

and continuum simulations using a bridging scale decomposition [26, 28]. Another

approach to deal with the interface in PDEs is local time stepping method, when the

space is discretized by adaptive mesh. Osher and Sanders studied the 1-D case of nu-
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merical approximations to nonlinear conservation laws with locally varying time and

space grids in Ref. [22]. Berger and Oliger [4] investigated an adaptive refined mesh

method for hyperbolic partial differential equation. Tan et al. [25] developed an in-

terpolation and flux correction technique to the interface condition of moving mesh

method for hyperbolic system.

In this work, we focus on the development of numerical technique to eliminate the

spurious wave reflection at the interface between domains with grid inhomogeneity by

the introduction of hierarchical interface conditions (HICs). The source of the spurious

reflection could be studied in variational perspective, and then the newly proposed

interface condition is introduced with the help of a new auxiliary variable in order to

eliminate the source term at the interface produced by the grid inhomogeneity of the

approximation in space.

The dynamic of the auxiliary variable in simulation could be studied by using the

Padé Via Lanczos (PVL) method. Thus an efficient and applicable interface condition

for wave equation has been built. The PVL method is an algorithm for computing the

Padé approximation of Laplace-domain transfer functions of large linear networks via

a Lanczos process. The PVL algorithm has significantly superior numerical stability,

while retaining the same efficiency as algorithms that compute the Padé approximation

directly through moment matching such as the asymptotic waveform evaluation (AWE)

technique and its derivatives. The study of the theoretical connection between Padé

approximation and Lanczos process can be traced back to 1974 [12] in which a matrix

interpretation and applications of the continued fraction algorithm is investigated. It

has been applied in [10, 11] instead of the AWE method [23] to provide an efficient

circuit simulation methods due to its excellent numerical stability. The PVL method is

also used to study the electromagnetic radiation problems to solve FEM equations with

a reduction in total computation time [24]. A comprehensive overview of the Lanczos-

based Padé approximation, also known as the PVL method is presented in Ref. [5].

The remaining part of this paper is organized as follows. In Section 2, we introduce

our view of the spurious reflection with an auxiliary variable. In Section 3, the PVL

method is applied to solve the equation and a convergent theorem is given. Then in

Section 4, an implementation of our method on the basic wave equation is given, while

we end up our article in Section 5 by conclusion.

2. The source of spurious reflection and hierarchical interface conditions

In this section, we first derive the source of spurious reflection due to the inho-

mogeneity or nonuniform discretization in numerical calculation from variational per-

spective. An extended Lagrangian functional is developed with the help of an auxiliary

variable w in order to eliminate the effects of spurious reflection.

We start our derivation by considering a simple connected region Ω in Rn, which is

contained in the configuration manifold of our interested scalar wave equation system.

A function space X is defined on Ω × T where T = {t|t ∈ [0, T ]}, which is used to

describe some physical quantities of the wave equation system. As we have stated in
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previous section, the whole computational domain Ω is decomposed into two subdo-

mains Ω1 and Ω2, where Ω = Ω1 ∪ Ω2. We discretize domain Ω1, which is the region

we need more information, with very fine mesh and domain Ω2 with relatively coarse

mesh in order to simulate the grid size inhomogeneity in wave propagation problem.

The boundary of Ω1 and Ω2 is ∂Ω1 and ∂Ω2, respectively, and therefore the interface

between Ω1 and Ω2 is denoted as Γ = ∂Ω1 ∩ Ω2.

2.1. Spurious reflection

In general wave system, the kinetic energy density functional can be written as

T [u, v] = 〈∂tu, ∂tv〉 /2, and we also can define a potential energy functional V [u, v] =
〈Du,Dv〉 /2, where u, v are functions defined on X, 〈·, ·〉 is the inner product, D is

a gradient operator in corresponding space. Therefore, the positive kinetic and poten-

tial energy density in wave system can be directly written as

T (u) = T [u, u] =
(∂u/∂t)2

2
, V (u) = V [u, u] =

〈Du,Du〉
2

=
‖Du‖2

2
,

respectively. Therefore, the total kinetic energy and potential energy in Ω is

T =
1

2

∫

Ω
‖ut‖2dx, V =

1

2

∫

Ω
‖∇u‖2dx.

Let us denote an elliptic operator L : X → X∗ such that L = −∆ where X∗ is the dual

space of X. The Lagrangian functional L of the wave equation associated with all these

definitions can be written as

L[u(x, t)] = T (u)− V (u) =
1

2
〈ut, ut〉 −

1

2
〈Du,Du〉. (2.1)

If there is an additional generalized external force distribution f ∈ X∗ is applied to

the wave system and suppose that f is compactly supported in the finely discretized

subdomain Ω1 ⊆ Ω. Ω1 is the region we are more interested, in which the phenomenon

related to source, sink and/or other obstacles are occurred, and therefore more in-

formation need to be calculated in this domain with finely discretized mesh. We can

rewrite the Lagrangian functional L in forced system as

L[u(x, t)] = T (u)− V (u)−W (u) =
1

2
〈ut, ut〉 −

1

2
〈Du,Du〉 − 〈f, u〉 . (2.2)

The stationary action principle, also known as the principle of least action, says that

the dynamical process of the wave system should be the minimizer of action functional

S, i.e., the integral of Lagrangian over Ω× T

u(x, t) = argmin
ũ(x,t)∈X

S = argmin
ũ(x,t)∈X

∫

Ω×T
L[ũ(x, t)]dy, (2.3)
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where y ∈ Ω× T . Taking the variation of action functional with respect to u, the weak

form of famous Euler-Lagrange (E-L) equation for the wave system, which describe the

geodesic flow of the field u as a function of time can be written as

δS =
d

dε

∫

Ω×T
L
[

u(x, t) + εv(x, t)
]

dy, (2.4)

where v is a function defined on X. Since the system is in stationary state at any time,

and therefore the weak form of variation of the action functional can be obtained with

the help of integration as following:
∫

Ω
〈utt + Lu, v〉 dx+

∫

∂Ω
〈Bu, Tv〉 dx =

∫

Ω1

〈f, v〉 dx, (2.5)

where T is the trace operator and B maps from X to T (X)∗. For instance, in general

Euclidean space, the gradient operator is D = ∇, and therefore it can be derived that

L = −∆ and Bu = ∇nu.

In numerical simulation of the wave system, due to the reason that all the solution

need to be obtained in discrete system, we need to replace Lagrangian L[u] by L[Pu],
where P is the projector whose range is the space we concern, and usually is a closed

invariant space of L. However, since we have the grid size inhomogeneity in wave

system, i.e., the grid size is larger in Ω2 than that in Ω1, so the project operator P is

different in those two domains. In Ω1, the projector could be written as P1, where P1

projects the function onto a finite dimensional finely discretized finite element space,

and in Ω2, the projector could be written as P · P1, where P is a relative projector

mapping an element in finely discretized space onto a coarsely discretized space. In

the following part of the paper, we denote the discretized solution in domain Ω1 as

u instead of P1u, i.e., omit the operator P1 for simplicity. Therefore, the discretized

solution in domain Ω2 as Pu instead of P · P1u.

The Lagrangian in different domains could be written as

L[u(x, t)] = 1

2
〈ut, ut〉 −

1

2
〈Du,Du〉 − 〈f, u〉 in Ω1

and

L[u(x, t)] = 1

2
〈Put, Put〉 −

1

2
〈DPu,DPu〉 − 〈f, Pu〉 in Ω2.

Hence the new total action functional in numerical sense is

S∗[u;P ] =
1

2

∫

Ω1×T

(

u2t − 〈Du,Du〉 − 〈f, u〉
)

dy

+
1

2

∫

Ω2×T

(

(Put)
2 − 〈DPu,DPu〉

)

dy, (2.6)

the weak form of Euler-Lagrange equation of the action functional S∗ can be obtained
∫

Ω1

〈utt + Lu, v〉 dx+

∫

Ω2

〈

(Pu)tt + LPu, v
〉

dx
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+

∫

∂Ω1

〈Bu, Tv〉 dx+

∫

∂Ω2

〈BPu, Tv〉 dx =

∫

Ω1

〈f, v〉 dx. (2.7)

It is worth to note that Eq. (2.7) is the very equation that we solved in numerical simu-

lations. We could also quickly get the corresponding expression under the assumption

that the whole domain Ω is finely discretized using the same uniform mesh as those

used in Ω1 that
∫

Ω
〈utt + Lu, v〉 dx+

∫

∂Ω
〈Bu, Tv〉 dx =

∫

Ω1

〈f, v〉 dx. (2.8)

This is the equation we would like to try our best to approximate using numerical

method. Noticing that Γ takes different orientation in ∂Ω1 and ∂Ω2, then we could

obtain the error of two equations due to the grid size inhomogeneity in Ω1 and Ω2 by

subtracting Eq. (2.7) from Eq. (2.8)
∫

Ω2

〈

(I − P )utt + L(I − P )u, v
〉

dx+

∫

∂Ω2/Γ

〈

B(I − P )u, Tv
〉

dx

=

∫

Γ

〈

B(I − P )u, TΓv
〉

dx, (2.9)

where TΓ is the trace operator mapping the function on region Ω2 to its boundary Γ.

Eq. (2.9) indicates the terms needed to be decreased as possible as we can. It can

be found that the first term and the second term is the approximation error, which is

unavoidable in model reduction. We denote them with err(P, u) and we will not try

to eliminate this error. The third term in Eq. (2.9) comes from the artificial interface

Γ between Ω1 and Ω2, therefore that contribution is the main source of the spurious

reflection.

2.2. Hierarchical interface conditions

In this subsection, we try to eliminate the spurious reflection by proposing hierar-

chical interface conditions to account the effect of artificial interface between domains

with grid inhomogeneity.

From previous subsection, we already found that the third term in Eq. (2.9) is the

main source of spurious reflection, so if we could add that term back to our numerical

simulation scheme (i.e., Eq. (2.7)), then the main contribution of spurious reflection

could be suppressed, and the weak form of Euler-Lagrange equation for actual numer-

ical simulations.

Since
∫

Γ〈B(P − I)u, TΓv〉dx is the term acts as a boundary traction force on Ω1, so

we propose a new numerical method by adding this traction force to the wave system as

an interface condition, i.e., the so-called hierarchical interface condition (HIC) method.

In this method, we are solving a surrogate system
∫

Ω
〈utt + Lu, v〉 dx+

∫

∂Ω
〈Bu, Tv〉 dx
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=

∫

Ω
〈f, v〉+

∫

Γ

〈

B(P − I)u, TΓv
〉

dx. (2.10)

The right-hand side, which play a role of external force, could also be written as
∫

Ω
〈f, v〉+

∫

Γ

〈

B(P − I)u, TΓv
〉

dx

=

∫

Ω

〈

f + T T
Γ B(P − I)u, v

〉

=

∫

Ω
〈fm, v〉 dx, (2.11)

where fm is the modified external force. In these hierarchical interface conditions,

the additional boundary traction force could also generate error in coarsely discretized

domain Ω2. In order to eliminate this error, a new auxiliary variable w is introduced in

coarsely discretized domain Ω2 and the extended action functional Se could be written

as

Se[u,w] = S∗[u] +
1

2

∫

Ω2

(

w2
t dx− 〈Dw,Dw〉

)

dx, (2.12)

while the boundary condition for variable w on Γ is Dirichlet boundary condition

w|Γ = (P − I)u, (2.13)

and w takes the absorbing boundary condition on ∂Ω2/Γ

Bw|∂Ω2/Γ = 0. (2.14)

The weak form of the Euler-Lagrange equation for this newly proposed extended

action function Se can be derived in the same way as what we have done, it can be

easily found that the effects of artificial interface, i.e., the spurious wave reflection

could be canceled with the help of new variable w. Therefore, the new HIC method for

wave equation system could be proposed by solving two variable: u for the solution in

both Ω1 and Ω2, and w for the auxiliary variable in Ω2. The corresponding evolution

equation for w is










wtt + Lw = 0,

w|Γ = (P − I)u,

Bw|∂Ω2/Γ = 0.

(2.15)

Therefore, the modified external force could also be written as

f = fm − T T
Γ Bw, (2.16)

which means that the correction can be obtained by extracting the T T
Γ Bw term in

Eq. (2.16). The wave equation for u can be written as

utt + Lu = fm. (2.17)

Finally, the new HIC method, which could suppress the spurious reflection, is per-

formed by numerically solving Eqs. (2.10), (2.11), (2.15), and (2.16). It is worthy to
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note that this method could also be generated to the case that the medium with wave

speed inhomogeneity by changing the form of Eq. (2.7) and deriving the similar HIC

method with new variable as shown in Eq. (2.15). Since the spurious reflection occurs

due to the interface between inhomogeneous grids, the key problem now is how to effi-

ciently simulate the additional dynamical process of auxiliary variable w in domain Ω2.

3. PVL method for auxiliary variable w

In this section, the PVL method is applied to solve the dynamic evolution of auxiliary

variable w. We denote a series of finite dimension subspace as Xn ⊆ X, then the space

discretization of w in Xn is determined as wn, which is a function in Xn s.t.

∫

Ω2

〈

∂2wn

∂t2
, vn

〉

+ 〈Lwn, vn〉+
〈

T T
Γ B(P − I)u, vn

〉

dx = 0 (3.1)

for all vn ∈ Xn. The key point of the discretization, which depends on the choice

of Xn, is to balance the accuracy and the degree of freedom of this finite dimension

subspaces. Here the boundary condition on Ω2/Γ is omitted. In practice, the perfectly

matched layer method (PML) or the damping method could be applied in numerical

simulations to eliminate the far field of w.

To analyse Eq. (3.1), we can equivalently represent the system in the frequency

domain instead of the time domain via a Laplace transform

ŵn(x, s) :=

∫ ∞

0
wn(x, t)e

−st dt, s ∈ C, (3.2)

which leads to

s2 〈Gŵn, v̂n〉 − 〈Lŵn, v̂n〉 =
〈

−T T
Γ B(P − I)û, v̂n

〉

, (3.3)

where G : X → X∗ is the operator associated with the Laplace transformation. The

Eq. (3.3) solves

ŵn =
(

L− s2G
)−1

QnT
T
Γ B(P − I)û, (3.4)

where Qn is the projector to L(Xn)
∗.

Next, a fixed point s0 should be picked according to the P in Section 2 to expand

Eq. (3.4). The choice of the point s0 should follow three principles: Firstly, s−2
0 L − G

has to be a invertible operator. Then, the frequency of the vector in Range(I − P )
should concentrate on the neighbourhood of s0, a quantitative description of which is

given in Theorem 3.1 below. It will directly decide the quality of the HIC. And finally,

the practical implementation requires that s−2
0 L−G should be easily computed. Under

such consideration, s0 = 0 and s0 = +∞ are two most frequently choices, and it serves

for most application scenarios. For example, if L = −∆ and P is the low frequency
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filter, then s0 should be ∞ since w represents the high frequency wave in Ω2. Denote

R = (s−2
0 L−G)−1 and A = (s−2

0 L−G)−1L, the expression of ŵn could be written as

ŵn =
(

L− s2G
)−1

QnT
T
Γ B(P − I)û

= s−2
[(

s−2
0 L−G

)

+
(

s−2 − s−2
0

)

L
]−1

QnT
T
Γ B(P − I)û

= s−2
[

I −
(

s−2
0 − s−2

)

A
]−1

RQnT
T
Γ B(P − I)û

= s−2Kn(s, s0)T
T
Γ B(P − I)û. (3.5)

3.1. The Padé approximation

It can be apparently observed that to what degreeKn(s, s0) is a good approximation

of K(s, s0) = (s−2L−G)−1 numerically is depending on the space discretization. Since

the fact that Kn could be written as a rational function of s, it is natural to consider by

using Padé approximation to obtain Kn numerically, i.e., we would like to get the Padé

approximation of K(s) of order n

Kn(s) =
an−1s

n−1 + · · · + a1s+ a0
bnsn + bn−1sn−1 + · · ·+ b1s+ 1

. (3.6)

Now we need to find a proper metric to measure our approximation. Noticing that

in Eqs. (2.16), (3.5), the trace operator TΓ is multiplied on the both side of K(s),
then we are aware of that Range(QnT

T
Γ ) should be a relative small linear space, i.e.,

l := dim(Range(QnT
T
Γ )) ∼ O(1). For example, in the linear finite element space, l is

less than the number of the nodes that are directly connected with Γ. Therefore, we

define Kn being the rational function satisfying the following asymptotic condition:

qT1 B
[

Kn(s, s0)−K(s, s0)
]

q2 ≤ CPade

(

1

s0
− 1

s

)2n

(3.7)

for any normalized q1, q2 ∈ Range(QnT
T
Γ ). Then we can obtain the convergence theo-

rem of Padé approximation.

Theorem 3.1 (Convergence of u using Padé approximation). If we denote un being the

solution of Eq. (2.17) with the space discretization Kn and the following conditions are

satisfied:

• For any q ∈ Range(T T
Γ ), we have

‖Qnq − q‖ < Cproj
‖q‖
nα1

. (3.8)

This is the condition could be called approximation of the projector.

• The frequency of (P − I)u concentrates on the neighbourhood of s0

∥

∥(L− s2G)−1T T
Γ B(P − I)û(s)

∥

∥ ≤ Cfreq
‖û(s)‖

|s− s0|1/2+α2

, (3.9)

when |s− s0| > M . This condition could be called as frequency concentration.
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Then we have

‖un − u‖2L2(Ω)(t)

≤ C

{

n−2α1

∫ t

0
(t− τ) exp(t− τ)‖u‖2(τ)dτ

+

[

1√
n

(

M

2β2

)2n+1

+M−α

]2
∫ ∞

0
‖u‖2(τ) exp

[

2β(t− τ)
]

dτ

}

, (3.10)

where C only depends on {L,G,Cfreq, Cproj}.

Proof. In region Ω, the following two important conclusions which will be used

repeatedly later can be easily obtained:

∂‖v‖2L2(Ω)

∂t
= 2

∫

Ω
〈v, vt〉 dx ≤ ‖v‖2L2(Ω) + ‖vt‖2L2(Ω), (3.11)

‖v‖2L2(Ω)(t) ≤ exp(t)‖v‖2L2(Ω)(0) +

∫ t

0
exp(t− τ)‖vt‖2L2(Ω)(τ)dτ. (3.12)

By using Eq. (2.16), we get that un satisfies

∫

Ω

(

untt − Lun + T TBun
)

dx

=

∫

Ω

(

f + T T
Γ B [wn − (P − I)un]

)

dx+ err(P, un). (3.13)

Therefore, we get the evolution equation of the approximation error that

∫

Ω

(

entt − Len + T TBen + T T
Γ B(P − I)en

)

dx

=

∫

Ω
T T
Γ B(w − wn)dx+ err(P, en), (3.14)

where en = u− un. If we denote δf = T T
Γ B(w − wn), by Eq. (3.5) we have

Qnδ̂f = QnT
T
Γ B(ŵ − ŵn)

= s−2QnT
T
Γ B
[

(K −Kn)Qn +K(I −Qn)
]

T T
Γ B(P − I)û

− s−2QnT
T
Γ BKnQnT

T
Γ B(P − I)ên. (3.15)

Thus according to the inverse Laplace transformation we can acquire that

Qnδf = L−1
{

Qnδ̂f
}

=
1

2πi

∫ β+i∞

β−i∞
s−2QnT

T
Γ B (K −Kn)QnT

T
Γ B(P − I)û · exp(st)ds
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+
1

2πi

∫ β+i∞

β−i∞
s−2QnT

T
Γ BK(I −Qn)T

T
Γ B(P − I)û · exp(st)ds

− 1

2πi

∫ β+i∞

β−i∞
s−2QnT

T
Γ BKnQnT

T
Γ B(P − I)ên · exp(st)ds

= r1 + r2 − r3, (3.16)

where β = Re(s0), r1, r2 and r3 are the three sequential components in the above

equation. In the following derivation, we consider these three terms individually.

For the first term r1, we can separate the integral into two parts

1

2πi

∫ β+i∞

β−i∞

1

s2
QnT

T
Γ B (K −Kn)QnT

T
Γ B(P − I)û · exp(st)ds

=
1

2πi

∫ s0+iM

s0−iM

1

s2
QnT

T
Γ B (K −Kn)QnT

T
Γ B(P − I)û · exp(st)ds

+

∫

|s−s0|>M

1

s2
QnT

T
Γ B (K −Kn)QnT

T
Γ B(P − I)û · exp(st)ds. (3.17)

The estimation of the first part in r1 can be obtained with the help of Padé approxima-

tion

∥

∥

∥

∥

1

2πi

∫ s0+iM

s0−iM
s−2QnT

T
Γ B (K −Kn)QnT

T
Γ B(P − I)û · exp(st)ds

∥

∥

∥

∥

≤ CPade

2π

∣

∣

∣

∣

∣

∫ s0+iM

s0−iM

(

1

s0
− 1

s

)2n ds

s2

∣

∣

∣

∣

∣

1

2
[
∫ s0+iM

s0−iM

∥

∥T T
Γ B(P − I)û

∥

∥

2
exp(st)ds

]

1

2

≤ CPade

2π

∣

∣

∣

∣

∣

∫ 1/(s0+iM)

1/(s0−iM)

(

1

s0
− w

)2n

dw

∣

∣

∣

∣

∣

1

2
[
∫

∥

∥T T
Γ B(P − I)û

∥

∥

2
exp(2βt)ds

]
1

2

≤ CPadeCtrace‖B‖√
2n + 1π

(

φ

2β

)n+ 1

2

[
∫ ∞

0
‖u‖2(τ) exp [2β(t− τ)] dτ

]
1

2

, (3.18)

where we use the relation

φ =
1

2

∣

∣

∣

∣

arg

(

s0 + iM

s0 − iM

)
∣

∣

∣

∣

≤ M

β

and therefore we can take M <
√
2β2 to ensure that

∣

∣

∣

φ
2β

∣

∣

∣
< 1.

The estimation of the second part in r1 can be made by using the condition of

frequency concentration as following:

∥

∥

∥

∥

∥

1

2πi

∫

|s−s0|>M
s−2QnT

T
Γ B (K −Kn)QnT

T
Γ B(P − I)û · exp(st)ds

∥

∥

∥

∥

∥



262 S. Dai et al.

≤ Cfreq

π

∫

|s−s0|>M

1

|s|2 |s− s0|
1

2
+α2

‖û‖(s) exp(st)ds

≤ Cfreq

π

(

∫

|s−s0|>M

1

|s|4|s− s0|1+2α2

)
1

2

(

∫

|s−s0|>M
‖û‖2(s) · exp (2st)ds

)
1

2

≤ Cfreq√
α2β2π

M−α2

[
∫ ∞

0
‖u‖2(τ) exp [2β(t− τ)]dτ

]
1

2

. (3.19)

For the second term r2, we first suppose r be the solution to the following equation:











rtt − Lr = −(I −Qn)T
T
Γ B(P − I)u in Ω2,

Br|∂Ω2
= 0,

r|t=0 = rt|t=0 = 0.

(3.20)

Then it can be obtained that r2 = QnT
T
Γ Br. We then define a new functional as follo-

wing:

H1(Ω2, r, rt, t) =
1

2

∫

Ω2

r2t + 〈Lr, r〉 dx. (3.21)

It can be acquired that

∂H1(Ω2, r, rt, t)

∂t
=

1

2

∫

Ω2

2 〈rtt, rt〉+ 〈Lrt, r〉+ 〈rt, Lr〉 dx

=

∫

Ω2

〈rtt + Lr, rt〉 dx−
∫

∂Ω2

〈Br, Trt〉 dx. (3.22)

By using the relation in (3.20), Eq. (3.22) can be written as

∂H1(Ω2, r, rt, t)

∂t
= −

∫

Ω2

〈

(I −Qn)T
T
Γ B(P − I)u, rt

〉

dx

≤
∥

∥(I −Qn)T
T
Γ B(P − I)u

∥

∥ · ‖rt‖

≤ 1

2

∥

∥(I −Qn)T
T
Γ B(P − I)u

∥

∥

2
+

1

2
‖rt‖2

≤
C2

projC
2
trace‖B‖2

2n2α1

‖u‖2 +H1(Ω2, r, rt, t). (3.23)

Therefore, we have

H1(Ω2, r, rt, t) ≤
C2

projC
2
trace‖B‖2

2n2α1

∫ t

0
exp(t− τ)‖u‖2(τ)dτ. (3.24)

From the initial conditions of r and rt, we can easily get H1(Ω2, r, rt, 0) = 0. By

Eq. (3.12)

‖r2‖(t) ≤
C2

projC
2
trace‖B‖2

2nα1

(
∫ t

0
(t− τ) exp(t− τ)‖u‖2(τ)dτ

)

1

2

. (3.25)
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For the third term r3, the method used to get the estimation is similar to those for

the second term. We suppose that y ∈ Xn is the solution of the following ordinary

differential equation:











ytt − Ly = −QnT
T
Γ B(P − I)en in Ω2,

By|∂Ω2
= 0,

y|t=0 = yt|t=0 = 0.

(3.26)

Then we have r3 = QnT
T
Γ By. The following estimation can be obtained that:

‖r3‖(t) ≤ C2
trace‖B‖2

(
∫ t

0
(t− τ) exp(t− τ)‖en‖2(τ)dτ

)

1

2

. (3.27)

In conclusion, we can get the estimation of ‖δf‖ based on the obtained estimations

of three components as following:

‖δf‖ ≤ Cproj
‖δf‖
nα1

+ C1

(
∫ t

0
(t− τ) exp(t− τ) ‖en‖2 (τ)dτ

)

1

2

+
C2

nα1

(
∫ t

0
(t− τ) exp(t− τ)‖u‖2(τ)dτ

)

1

2

+C3

[

1√
n

(

φ

2β

)2n+1

+M−α

]

[
∫ ∞

0
‖u‖2(τ) exp[2β(t− τ)]dτ

]
1

2

. (3.28)

Now we denote that

H2(Ω, e
n, ent , t) =

1

2

[
∫

Ω
(ent )

2 dx−
∫

Ω1

〈Len, en〉 dx−
∫

Ω2

〈LPen, P en〉 dx
]

(3.29)

and substitute that definition into Eq. (3.14)

∂H2

∂t
=

∫

Ω
〈δf, ent 〉 dx ≤ 1

2
‖δf‖2 + 1

2
‖ent ‖2L2(Ω)

≤ 1

2
‖δf‖2 + 1

2
H2(Ω, e

n, ent , t). (3.30)

Therefore, we have

H2(Ω, e
n, ent , t) ≤

1

2

∫ t

0
exp(t− τ)‖δf‖2(τ)dτ. (3.31)

Due to fact that en has a homogeneous initial value, then by using the relation of

Eq. (3.12), we get that

‖en‖2L2(Ω)(t) ≤
1

2

∫ t

0
(t− τ) exp(t− τ)‖δf‖2(τ)dτ
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≤ C2
1

∫ t

0
(t− τ) exp(t− τ) ‖en‖2 (τ)dτ +

C2
2

n2α1

∫ t

0
(t− τ) exp(t− τ)‖u‖2(τ)dτ

+ C2
3

[

1√
n

(

φ

2β

)2n+1

+M−α

]2
∫ ∞

0
‖u‖2(τ) exp[2β(t− τ)]dτ, (3.32)

where a constant 3nα1/(nα1 − Cproj) is omitted.

This conclusion tells that the norm of error of un is bounded at finite time which

ensure the convergence of the solution by using Padé approximation.

3.2. Krylov subspaces and the Lanczos process

In order to get the approximation Kn(s, s0) as shown in Eq. (3.5), it still remains

a question that how to find the Qn efficiently when the Padé approximation is applied.

Here we use the PVL method. The basic idea follows the method proposed in Ref. [1].

In Lanczos process we build an orthogonal basis of the Krylov subspace of a linear

operator. The Krylov subspace is a subspace spanned by a sequence of vectors generated

by a given linear operator, the left vectors V and the right vectors W as follows:

K(A,W,n) = Span
{

r | r = Akw,w ∈W, 0 ≤ k ≤ n− 1
}

,

K(AT , V, n) = Span
{

r | r = vAk, v ∈ V, 0 ≤ k ≤ n− 1
}

.
(3.33)

Assuming that Tn is the tridiagonal matrix generated by the Lanczos process stopped

at the n step, and Wn and Vn is the orthogonal basis of K(A,W,n) and K(AT , V, n), we

have the following lemma.

Lemma 3.1. For any v ∈ V and w ∈W , we have

vTAkw = vTVnT
k
nW

T
n w (3.34)

for k ≤ 2n− l1 − l2, where l1 = dim(Range(V )), l2 = dim(Range(W )). Thus we have

vT
[

(I − λA)−1 −
(

I − λVnTnW
T
n

)−1
]

w = O(λ2n−l1−l2). (3.35)

Proof. Write the elements in T k
n explicitly

(

T k
n

)

ij
=
∑

(Tn)m0m1
(Tn)m1m2

· · · (Tn)mk−1mk
, (3.36)

where m runs through all index chain starts with i end with j. But since Tn is an

tridiagonal matrix, we know that m jumps less than 1 in every step. Therefore,

max
0≤p≤k

mp ≤
i+ j + k

2
, min

0≤p≤k
mp ≥

i+ j − k

2
.
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Since only the first l2 elements of vTVn and the first l1 elements of W T
n w are not

zero, the expansion of vTVnT
k
nW

T
n w only has the elements in the l+k

2 × l+k
2 leading

principal submatrix of Tn, which proofs the conclusion through

vT
[

(I − λA)−1 −
(

I − λVnTnW
T
n

)−1
]

w

=
∑

k>2n−l1−l2

λkvT
[

Ak − VnT
k
nW

T
n

]

w = O(λ2n−l1−l2). (3.37)

The proof is complete.

Hence, we could find the Padé approximation of K(s, s0) = [I − (s−2 − s−2
0 )A]−1R

through Lanczos process.

4. Numerical implementation and simulations

In this section, we presents some n will give the example of the numerical imple-

mentation of our method for the wave equation in non-uniform grids. Let us recall the

basic wave equation










utt = ∆u+ f in Ω,

u(x, 0) = ϕ(x) in Ω,

ut(x, 0) = ψ(x) in Ω

(4.1)

with Cauchy value ϕ and ψ and external source f .

Here we denote Ω = Ω1 ∪ Ω2 is a finite dimensional bounded region in which the

numerical solution needs to be calculated. Ω1 is the region where most interested

dynamic phenomenon occurs, of course Ω1 is the region which needs to be finely dis-

cretized in numerically scheme, and the support of external force f is in this finely

discretized domain, i.e. supp{f} ⊂ Ω1. Ω2 is the rest domain and do not need very

fine mesh to obtain numerical results. In our numerical simulations, we suppose a fine

uniform grid is generated with grid size h1 in Ω1, and a coarse grid is generated in Ω2

with grid size h2. The projector P in Section 2 is constructed based on the ratio of the

grid size between two regions, i.e., the inhomogeneity ratio r := h2/h1 > 1.

Let us define B = (ψ1(x), ψ2(x), · · · , ψn(x)) where ψi(x) is the i-th basis function

in finite element space, and Λ be an interpolation operator. Taking

u(x, k∆t) =
n
∑

i=1

~uki ψi(x) = B~uk, (4.2)

where ~uk ∈ Rn, with a simple application of the central differential scheme, Eq. (4.1)

becomes


















1

∆t2
(

~uk+1 + ~uk−1 − 2~uk
)

= Λ∆B~uk + Λf,

~u0 = Λϕ,
1

∆t

(

~u1 − ~u0
)

= Λψ.

(4.3)
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It leads to










~uk+1 =
(

∆t2Λ∆B + 2I
)

~uk − ~uk−1 +∆t2Λf,

~u1 = Λϕ+∆tΛψ,

~u0 = Λϕ,

(4.4)

which we call the Traditional Galerkin Method (TGM).

In the numerical implementation of HIC in wave equation, there is a parameter s0
need to be determined in Eq. (3.5). In practical, a coarse grid can be approximately

considered to be a high frequency filter

Pf =

∫

ω
1|ω|<Af̂(ω) exp(iωt)dω. (4.5)

Therefore, a nature choice of s0 is s0 = ∞, which leads to

K(s, s0) =

(

1

s2
L−G

)−1

= −
[

+∞
∑

l=0

1

s2l
(

G−1L
)l

]

G−1. (4.6)

For sake of simplification, we take the test function space the same as the finite element

space, i.e., Range(B) = Range(Λ), in this case L is symmetric and G = I. Therefore,

the Lanczos process proposed in Section 3.2 becomes an Arnoldi process.

Algorithm 4.1 Arnoldi algorithm.

Let W = ΛT T
Γ and take Q1 be a orthogonal basis of its column space by QR factor-

ization. Let M1 = QT
1 LQ1, R0 = 0, W = [].

for k = 1, . . . , l do

Ck = LQk −QkMk −Qk−1R
T
k−1;

Qk+1Rk = Ck (Take the QR factorization of Ck);

Mk+1 = QT
k+1LQk+1;

W = [W ;Qk+1];
end for

Adding up the auxiliary variable W~vk and its interpolation operator Υ, we have

u(x, k∆t) = B(x)~uk +W (x)~vk,

∆u(x, k∆t) = Λ∆B(x)~uk +Υ∆W (x)~vk.
(4.7)

To simulate the absorbing boundary condition ofW~vk, a simple PML with λ = λmax(
h
H )0

is added. Later in the numerical simulation it will be illustrated that the implementa-

tion of the absorbing boundary condition is robust. Therefore, the numerical scheme
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shown in Eq. (4.4) becomes










































~uk+1 =
(

∆t2Λ∆B + 2I
)

~uk + Λ∆W~vk − ~uk−1 +∆t2Λf,

~vk+1 =
(

∆t2Υ∆W + 2I
)

~vk +Υ∆B~uk − ~vk−1 −∆tλ
(

~vk − ~vk−1
)

,

~u1 = Λϕ+∆tΛψ,

~u0 = Λϕ,

~v1 = 0,

~v0 = 0.

(4.8)

That is the numerical implementation of HIC method in wave equation with the help

of new variable ~vk.

4.1. One dimensional example

First we consider the numerical implementation and results in 1-D example. The

computational domain Ω = [0, 10] is shown in Fig. 2. The finely discretized domain is

the left half of Ω, i.e., Ω1 = [0, 5] with ∆x = 0.01 and the coarsely discretized domain

is the right half of Ω, i.e., Ω2 = [5, 10] with ∆x = 0.16. The inhomogeneity ratio in this

1-D example is r = 16 and the Courant-Friedrichs-Lewy (CFL) ratio is 0.99. A simple

illustration of the FEM space with r = 3 are given in Fig. 1.

The initial value φ(x) and ψ(x) and the external force f(x) are given as following:










ϕ(x) = 0,

ψ(x) = 0,

f(x) =
[

sin(2t) + 0.3 sin(48t)
]

δ(x).

(4.9)

It can be found that in this example, the value of u and the gradient of u with respect to

time at t = 0 are 0 and all the waves are stimulated by external force, which is a point

Figure 1: The FEM space in one dimensional case with r = 3.
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Figure 2: Results of 1-D wave equation at various time. From the top to the bottom is the evolution of
time. The first column corresponds to the TGM while the second column to the HIC method. The red
halving line is the interface between Ω1 and Ω2.
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source at x = 0. The stimulated u consists two waves with different frequencies, one

is a low frequency wave with ω = 1/π and another is a high frequency wave with

ω = 24/π. Apparently, the high frequency component can not go through the interface

and the spurious reflection occurs.

The results of the numerical simulations for both methods, i.e. TGM and HIC, are

shown in the left panel and the right panel of Fig. 2, respectively. Since there are mesh

size inhomogeneity in numerical discretization, it can be clearly observed that the high

frequency wave can not go through the interface between two discretized region Ω1

and Ω2 as shown in the third and the fourth row in Figs. 2. Since there are no extra

process to deal with the interface effect in TGM, we can find that when TGM is applied

to solve this 1-D wave equation, there are obvious high frequency spurious reflections

as shown in the left panel in Fig. 2 when t is greater than 5. However, when the

method of HIC is applied in numerical simulations, the results in the right panel of

Fig. 2 clearly demonstrate that this newly proposed interface condition with the help of

auxiliary variable w could effectively reduce the magnitude of the spurious reflection.

In order to compare the results between two methods and to demonstrate the ef-

fectiveness of HIC, we also calculate a reference solution for this 1-D example. The

reference solution is obtained based on a finely uniform discretized mesh. The finely

discretized mesh is generated in the whole domain Ω instead of only in Ω1. We first

perform two different simulations to get the solutions stimulated solely by the low

frequency external point source and the high frequency external point source on the

fine mesh separately, and then the so-called reference solution could be constructed

based on previously obtained two solutions. On domain Ω1, the reference solution

Figure 3: The relative mean square errors at different time for TGM and HIC. The Reflection error is the
error calculated in Region with fine grid size, in order to demonstrate the error induced by spurious reflection.
The Transmission error is calculated in Region with coarse grid size, in order to demonstrate the error due
to the aliasing when high frequency component pass through the interface.
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is the summation of the two waves stimulated by both low frequency and high fre-

quency point source, and on domain Ω2, the reference solution is just equivalent to the

wave stimulated by low frequency point source, however, this stimulated wave need

to be projected to coarsely discretized mesh in order to compare the results with those

obtained in TGM and HIC in domain Ω2. In fact, this reference solution is obtained

based on the assumption that the interface between inhomogeneous mesh is a perfect

interface which can totally absorb the high frequency components.

The results of the relative mean square error (rMSE) of these two methods com-

paring with the reference solution is plotted in Fig. 3. The joggling line in the pictures

corresponds to the moment when the wave goes though the interface, which is ex-

actly when the error of the HIC method differs with TGM. We also demonstrated the

two component of rMSE in fine region Ω1 (TGM:Reflection and HIC:Reflection, respec-

tively) and coarse region Ω2 (TGM:Transmission and HIC:Transmission, respectively)

in order the shown the error due to the spurious reflection (in Ω1) and transmission

aliasing (in Ω2). The comparison of the rMSE in Fig. 3 clearly demonstrate that our

proposed HIC could effectively reduce the spurious reflection.

4.2. Two dimensional examples

In this subsection, we perform two different numerical simulations in 2-D with two

different external applied forces. In both simulations, the numerical results are obtain

in a rectangle region that Ω = [0, 10] × [0, 10], in which the finely discretized domain

is the left half of Ω, i.e., Ω1 = [0, 5] × [0, 10] with ∆x = 5e − 2 and the coarsely

discretized domain is the right half of Ω, i.e., Ω2 = [5, 10] × [0, 10] with ∆x = 5e − 1.

The inhomogeneity ratio between Ω1 and Ω2 is r = 10 and the Courant-Friedrichs-

Lewy(CFL) ratio is 0.1. The following two kinds of external force are applied to the

wave equation:















f1(x, y) =
[

3 cos(4t) + 2 cos(12t)
]

δ

(

x− 10

3
, y − 5

)

,

f2(x, y) = 3 cos(4t)δ

(

x− 40

9
, y − 6

)

+ 2cos(16t)δ

(

x− 40

9
, y − 4

)

.
(4.10)

In the first case with external force f1(x, y), both high frequency wave (ω = 6/π)
and low frequency wave (ω = 2/π) are stimulated at the same point source at (x =
10/3, y = 5). In the second case with external force f2(x, y), the high frequency wave

(ω = 8/π) and low frequency wave (ω = 2/π) is stimulated at the different point

sources with location (x = 40/9, y = 4) and (x = 40/9, y = 6), respectively. In both

case a homogeneous initial value for both u and ut are considered, i.e., u(x, t = 0) =
ut(x, t = 0) = 0. It is worthy to note that the reference solutions in 2-D examples are

constructed using the same way as shown in 1-D example, which is obtained based

on a global fine mesh, and in domain Ω2 only low frequency wave is included in the

reference solution.



Hierarchical Absorbing Interface Conditions for Wave Equation 271

The numerical results of the wave equation with external force f1 are illustrated

in Fig. 4, the results obtained from TGM and HIC are shown by the left and the right

panel of Fig. 4, respectively. Comparing the results shown in the left and the right

panel of Fig. 4 at the same time, we can clearly find that the spurious reflection due to

the mesh size inhomogeneity interface between Ω1 and Ω2 is significantly reduced by

using HIC method. More detailed information of this spurious reflection reduction can

be founded in Fig. 5. The figures in left panel of Fig. 5 demonstrate the spatial distri-

butions of difference between the TGM solution and the reference solution at various

time, and the difference between the HIC solution and the reference solution at various

time are shown in the right panel of Fig. 5. It can be more clearly observed that the

reflection due to the interface in domain Ω1 is almost be completely diminished while

there are still some wavy pattern in domain Ω2, which mainly comes from the approx-

imation error as shown in Eq. (2.9). The mean square error of these two methods are

plotted in Fig. 6. We could also find that HIC method can reduce the spurious reflection

comparing to TGM.

The numerical results of the wave equation with external force f2 are illustrated in

Fig. 8. Similar to the first 2-D example. The results obtained from TGM and HIC are

shown by the left and the right panel of Fig. 8, respectively. The spatial distributions of

difference between the TGM solution and the HIC solution with respect to the reference

solution at various time are shown in Fig. 9 and the total rMSE of both method are

shown in Fig. 7. The observation from these figures show the phenomenon occurs in

this example is almost the same as the previous example.

In general, comparing the corresponding results from Figs. 4 and 8, it can be seen

that there is an obvious non-physical reflection at the interface when TGM is applied.

The HIC method effectively reduce this phenomenon.

It is worthy to note that we can be found the spatial distributions of error in domain

Ω2 have the contribution from both the low frequency component as well as the high

frequency component in Figs. 5 and 9. We believe that this is because of the fact that

the interface between the fine and the coarse mesh grid can not be simply considered

as a perfect high frequency filter, i.e.,

Pf =

∫

ω
1|ω|<Af̂(ω) exp(iωt)dω, (4.11)

but should be treated as a more complicate operator P̃ which is hard to be implement in

numerical calculation. However, in the implementation of our proposed HIC, we only

need that projector to determinate s0, which suggests the robustness of this method,

that is, an exact formulation of P is not necessary be needed in practice. The rMSE

results in Figs. 6 and 7 also demonstrate the error component in Ω1 (Reflection) and

Ω2 (Transmission) separately. We could clearly find that the error due to reflection

is significantly reduced due to the introduce of HIC, which means the magnitude of

spurious reflection is obviously eliminated. The transmission error due to the aliasing

phenomenon is also reduced as shown in these figures.
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Figure 4: Results of 2-D example with external force f1. From the top to the bottom is the evolution of
time with t = 1, t = 2.25, t = 3.5. The first column corresponds to the TGM while the second column to
the HIC method.
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Figure 5: Spatial distribution between the numerical results obtained from TGM and HIC with respect to
reference solution. From the top to the bottom is the evolution of time with t = 1, t = 2.25, t = 3.5. The
first column corresponds to the TGM while the second column to the HIC method.
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Figure 6: The relative mean square errors at different time for TGM and HIC.

Another mentionable point is that in Figs. 6 and 7 the mean square errors of the HIC

method do not increase monotonously but with a periodical pattern. That comes from

the application of PML. The choice of parameter λ determines the absorbing ability of

the boundary, which ends up with a result of HIC. However this problem can be covered

on account of two reasons in practical: The λ is independent with both the Lanczos

process and the initial value, thus it can be searched out with a small calculation cost.

And in our numerical experiment, λ is not sensitive with the parameter used in HIC nor

the incident wave.

Figure 7: The relative mean square errors at different time for TGM and HIC.
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Figure 8: Results of 2-D example with external force f2. From the top to the bottom is the evolution of
time with t = 1, t = 2.25, t = 3.5. The first column corresponds to the TGM while the second column to
the HIC method.
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Figure 9: Spatial distribution between the numerical results obtained from TGM and HIC with respect to
reference solution. From the top to the bottom is the evolution of time with t = 1, t = 2.25, t = 3.5. The
first column corresponds to the TGM while the second column to the HIC method.
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5. Conclusion

Our article focuses on the elimination of spurious reflection caused by the inho-

mogeneity of the space discretization. When a series of wave propagates through the

interface between a domain with fine grid and a domain with coarse grid, the high fre-

quency wave will be nonphysically reflected. Using the PVL method, we develop a new

HIC method to eliminate this phenomenon. An auxiliary variable ω is introduced for

the cancellation of the boundary source term which cause the spurious reflection, and

one effective method based on Lanczos process are given to find this variable. The

convergence of the HIC method are also acquired in our article. The numerical imple-

mentations are performed on both 1-D and 2-D domain with various external applied

force. The results show in these examples clearly demonstrate the validity of our pro-

posed HIC method in spurious reflection elimination.
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