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LOW REGULARITY PRIMAL-DUAL WEAK GALERKIN FINITE

ELEMENT METHODS FOR ILL-POSED ELLIPTIC CAUCHY

PROBLEMS

CHUNMEI WANG

Abstract. A new primal-dual weak Galerkin (PDWG) finite element method is introduced and

analyzed for the ill-posed elliptic Cauchy problems with ultra-low regularity assumptions on the
exact solution. The Euler-Lagrange formulation resulting from the PDWG scheme yields a system
of equations involving both the primal equation and the adjoint (dual) equation. The optimal
order error estimate for the primal variable in a low regularity assumption is established. A series

of numerical experiments are illustrated to validate effectiveness of the developed theory.
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1. Introduction

In this paper we consider the ill-posed elliptic Cauchy model problem: Find an
unknown function u satisfying

−∇ · (a∇u) =f, in Ω,

u =g1, on ΓD,

a∇u · n =g2, on ΓN ,

(1)

where Ω ⊂ Rd(d = 2, 3) is an open bounded and connected domain with Lipschitz
continuous boundary ∂Ω, ΓD and ΓN are two segments of the domain boundary, f ∈
L2(Ω), the Cauchy data g1 ∈ H

1
2 (ΓD) and g2 ∈ (H

1
2
00(ΓN ))′, the coefficient tensor

a(x) is symmetric, bounded, and uniformly positive definite in the domain Ω, and
n is the unit outward normal vector to ΓN . The elliptic Cauchy problem is to solve
partial differential equations (PDEs) in a domain where over-specified boundary
conditions are given on parts of the domain boundary. The elliptic Cauchy problem
is also to solve a data completion problem with missing boundary data on the
remaining parts of the domain boundary.

The elliptic Cauchy problem arises in science and engineering, e.g., vibration,
wave propagation, cardiology, electromagnetic scattering, geophysics, nondestruc-
tive testing and steady-state inverse heat conduction. In particular, the Cauchy
problem for second order elliptic equations plays an important role in the in-
verse boundary value problems modeled by elliptic PDEs. Readers are referred
to [4, 28, 33, 40, 1, 9, 10, 16, 17, 46, 19, 53, 7, 20, 21] and the references cited
therein for details of the elliptic Cauchy problems.

There has been a long history tracing back to Hadamard [25, 43, 27, 26, 24] for
the study of the elliptic Cauchy problem (1). When it comes to the case of ΓD = ΓN ,
Hadamard demonstrated the ill-posedness of the problem (1) by constructing an
example where the solution does not depend continuously on the Cauchy data.
Hadamard and others [2, 29, 30] found that a small perturbation in the data might
result in an enormous error in the numerical solution for elliptic Cauchy problem.
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The Schwartz reflection principle [23] indicates that in most cases the existence of
solutions for the model problem (1) can not be guaranteed for any given Cauchy
data g1 and g2. However, [3] showed that the elliptic Cauchy problem (1) has a
solution for any given Cauchy data g1 × g2 ∈ M where M is a dense subset of

H
1
2 (ΓD) × [H

1
2
00(ΓN )]′. It is well-known that the solution of the elliptic Cauchy

problem (1) (if it exists) must be unique, provided that ΓD ∩ ΓN is a nontrivial
portion of the domain boundary. The Cauchy data is thus assumed to be compatible
such that the solution exists. Throughout this paper, we assume that ΓD ∩ΓN is a
nontrivial portion of the domain boundary so that the solution (if it exists) of the
elliptic Cauchy problem (1) is unique.

In the literature, there are two main numerical strategies developed for the el-
liptic Cauchy problem: (1) Tikhonov regularization is applied to the problem with
missing boundary data to determine the solution; (2) A sequence of well-posed
problems in the same equation is iteratively employed to approximate the ill-posed
problem. [34] developed the numerical method for the elliptic Cauchy problem
based on the tools of boundary integral equations, single-layer potential function
and jump relations. [22] introduced an optimization approach based on least squares
and Tikhonov regularization techniques. The finite element method based on an
optimal control characterization of the Cauchy problem was analyzed in [14]. The
stabilized finite element method [12, 11] based on a general framework involving
both the original equation and its adjoint equation is applicable to a wide class
of ill-posed problems where only weak continuity is necessary. More numerical
methods were proposed and analyzed for the elliptic Cauchy problem including
the conjugate gradient boundary element method, the boundary knot method, the
alternating iterative boundary element method, the moment method, the bound-
ary particle method, the method of level set type, and the method of fundamental
solutions [35, 40, 54, 15, 41, 31, 32, 42, 53]. Other theoretical and applied work
have also been developed such as regularization methods [45, 18], Steklov-Poincaré
theory [6, 44, 5], minimal error methods [38, 39] and quasi-reversibility methods
[8].

This paper is devoted to the development of a new primal-dual weak Galerkin
finite element method for the elliptic Cauchy model problem (1). The PDWG
framework provides mechanisms to enhance the stability of a numerical scheme by
combining solutions of the primal and the dual (adjoint) equation. PDWG methods
have been successfully applied to solve the second order elliptic equation in non-
divergence form [48], the elliptic Cauchy problem [47, 49], the Fokker-Planck type
equation [50], the convection diffusion equation [13, 55], and the transport equation
[51, 36]. The PDWG method has the following advantages over other existing
schemes: (1) it offers a symmetric and well-posed problem for the ill-posed elliptic
Cauchy problem; (2) it is consistent in the sense that the system is satisfied by the
exact solution (if it exists); (3) it is applicable to a wide class of PDE problems for
which no traditional variational formulation is available; and (4) it admits general
finite element partitions consisting of arbitrary polygons or polyhedra. The main
contribution of this paper lies in two aspects: (1) the development of a new PDWG
scheme that admits boundary data with low regularity due to noise or uncertainties;
and (2) the establishment of a mathematical convergence theory with optimal order
error estimates under low regularity assumptions for the exact solution.

Throughout the paper, we use the standard notations for Sobolev spaces and
norms. For any open bounded domain D ⊂ Rd with Lipschitz continuous boundary,
denote by ∥ · ∥s,D, | · |s,D and (·, ·)s,D the norm, seminorm and the inner product
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in the Sobolev space Hs(D) for s ≥ 0, respectively. The norms in Hs(D) (s < 0)
are defined by duality with the norms in H |s|(D). The space H0(D) coincides with
L2(D), where the norm and the inner product are denoted by ∥ · ∥D and (·, ·)D,
respectively. When D = Ω, or when the domain of integration is clear from the
context, the subscript D is dropped in the norm and the inner product notation.
For convenience, we use “.” to denote “less than or equal to” up to a generic
constant which is independent of important parameters such as the mesh size and
physical parameters.

The paper is organized as follows. In Section 2, the weak formulation of the
elliptic Cauchy model problem is proposed and the discrete weak differential oper-
ator is briefly reviewed. In Section 3, the PDWG algorithm for the elliptic Cauchy
model problem is introduced. Section 4 demonstrates the solution existence and
uniqueness of the proposed PDWG scheme. The error equations for the PDWG
scheme are derived in Section 5. In Section 6, the optimal order error estimates
are established for the PDWG method in some discrete Sobolev norms. In Section
7, a series of numerical results are reported to demonstrate the effectiveness of the
PDWG method developed in the previous sections.

2. Weak Formulations and Discrete Weak Differential Operators

This section will introduce the weak formulation of the elliptic Cauchy model
problem (1) and briefly review the discrete weak differential operator [52].

Denote by Γc
N = ∂Ω \ ΓN and Γc

D = ∂Ω \ ΓD. The weak formulation of the
elliptic Cauchy model problem (1) seeks u ∈ L2(Ω) satisfying

(2) (u,∇ · (a∇σ)) = −(f, σ)− ⟨g2, σ⟩ΓN
+ ⟨g1, a∇σ · n⟩ΓD

, ∀σ ∈W,

where W = {σ ∈ H1(Ω), a∇σ ∈ H(div; Ω), σ|Γc
N
= 0, a∇σ · n|Γc

D
= 0}.

Let Th be a partition of the domain Ω into polygons in 2D or polyhedra in 3D
which is shape regular in the sense of [52]. Denote by Eh the set of all edges or flat
faces in Th and E0

h = Eh \∂Ω the set of all interior edges or flat faces. Denote by hT
the meshsize of T ∈ Th and h = maxT∈Th

hT the meshsize for the partition Th. For
the convenience of analysis and without loss of generality, in what follows of this
paper, we assume that the coefficient tensor a is piecewise constants with respect
to the partition Th. The analysis could be easily generalized to the case that the
coefficient tensor a is piecewise smooth functions with respect to the partition Th.

Let T ∈ Th be a polygonal or polyhedral region with boundary ∂T . For any
ϕ ∈ H1−θ(T ) (0 ≤ θ < 1) and any polynomial ψ, the following trace inequalities
hold true [52]

(3) ∥ϕ∥2∂T . h−1
T ∥ϕ∥2T + h1−2θ

T ∥ϕ∥21−θ,T , ∥ψ∥2∂T . h−1
T ∥ψ∥2T .

A weak function on T ∈ Th is denoted by a triplet σ = {σ0, σb, σn} such that
σ0 ∈ L2(T ), σb ∈ L2(∂T ) and σn ∈ L2(∂T ). The first and the second components,
namely σ0 and σb, represent the values of σ in the interior and on the boundary of
T respectively. The third component σn can be understood as the value of a∇σ ·n
on ∂T , where n is the unit outward normal vector on ∂T . Note that σb and σn
may not necessarily be the traces of σ0 and a∇σ0 · n on ∂T . Denote by W(T ) the
space of all weak functions on T ; i.e.,

(4) W(T ) = {σ = {σ0, σb, σn} : σ0 ∈ L2(T ), σb ∈ L2(∂T ), σn ∈ L2(∂T )}.
For simplicity, denote by L = ∇ · (a∇). The weak L operator of σ ∈ W(T ),

denoted by Lwσ, is defined as a linear functional such that

(Lwσ, ϕ)T := (σ0,Lϕ)T − ⟨σb, a∇ϕ · n⟩∂T + ⟨σn, ϕ⟩∂T ,
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for all ϕ satisfying ϕ ∈ H1(Ω) and a∇ϕ ∈ H(div;T ).
Denote by Pr(T ) the space of polynomials on the element T with degree no more

than r. A discrete version of Lwσ, denoted by Lw,r,Tσ, is defined as the unique
polynomial in Pr(T ) satisfying

(Lw,r,Tσ,w)T = (σ0,Lw)T − ⟨σb, a∇w · n⟩∂T + ⟨σn, w⟩∂T ,∀w ∈ Pr(T ),(5)

which, using the usual integration by parts, gives

(Lw,r,Tσ,w)T = (Lσ0, w)T + ⟨σ0 − σb, a∇w · n⟩∂T − ⟨a∇σ0 · n− σn, w⟩∂T .(6)

3. Primal-Dual Weak Galerkin Scheme

For any given integer k ≥ 2, letWk(T ) be the local discrete weak function space;
i.e.,

Wk(T ) = {{σ0, σb, σn} : σ0 ∈ Pk(T ), σb ∈ Pk(e), σn ∈ Pk−1(e), e ⊂ ∂T}.
Patching Wk(T ) over all the elements T ∈ Th through a common value σb on the
interior interface E0

h, we obtain a global weak finite element space Wh; i.e.,

Wh =
{
{σ0, σb, σn} : {σ0, σb, σn}|T ∈Wk(T ), ∀T ∈ Th

}
.

We further introduce the subspace ofWh with homogeneous Dirichlet and Neumann
boundary conditions, denoted by W 0

h ; i.e.,

W 0
h = {v ∈Wh : σb = 0 on Γc

N , σn = 0 on Γc
D}.

In addition, let Mh be the finite element space consisting of piecewise polynomials
of degree k − 2; i.e.,

Mh = {w : w|T ∈ Pk−2(T ), ∀T ∈ Th}.
For simplicity, for any σ = {σ0, σb, σn} ∈ Wh, denote by Lwσ the discrete weak

operator Lw,k−2,Tσ computed by using (5) on each element T ; i.e.,

(Lwσ)|T = Lw,k−2,T (σ|T ), ∀σ ∈Wh.

For any λ, σ ∈Wh, and u ∈Mh, we introduce the following bilinear forms

s(λ, σ) =
∑
T∈Th

sT (λ, σ),

b(u, σ) =
∑
T∈Th

(u,Lwσ)T ,

where

sT (λ, σ) =h
−1
T ⟨λ0 − λb, σ0 − σb⟩∂T + hT ⟨a∇λ0 · n− λn, a∇σ0 · n− σn⟩∂T .

The primal-dual weak Galerkin finite element scheme based on the weak formu-
lation (2) for the elliptic Cauchy model problem (1) is described as follows:

Algorithm 3.1 (PDWG Scheme). Find (uh;λh) ∈Mh ×W 0
h satisfying

s(λh, σ) + b(uh, σ) = −(f, σ0)− ⟨g2, σb⟩ΓN + ⟨g1, σn⟩ΓD , ∀σ ∈W 0
h ,(7)

b(v, λh) = 0, ∀v ∈Mh.(8)

On each element T , denote by Q0 the L
2 projection operator onto Pk(T ); on each

edge or face e ⊂ ∂T , denote by Qb and Qn the L2 projection operators onto Pk(e)
and Pk−1(e), respectively. For any w ∈ H1(Ω), denote by Qhw the L2 projection
onto the weak finite element space Wh such that on each element T ,

Qhw = {Q0w,Qbw,Qn(a∇w · n)}.
Denote by Qk−2

h the L2 projection operator onto the space Mh.
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Lemma 3.1. [55] The L2 projection operators Qh and Qk−2
h satisfy the following

commuting property:

(9) Lw(Qhw) = Qk−2
h (Lw), ∀w ∈ H1(T ), a∇w ∈ H(div;T ).

4. Existence and Uniqueness

In this section, we shall establish the solution existence and uniqueness of the
PDWG scheme (7)-(8).

In the finite element space Wh, we introduce a semi-norm induced from the
stabilizer; i.e.,

(10) |||σ||| = s(σ, σ)
1
2 , ∀σ ∈Wh.

We introduce a semi-norm for the finite element space Mh; i.e.,
(11)

|||v|||1 =
( ∑

T∈Th

h2T ∥Lv∥2T+
∑

e∈Eh\Γc
N

hT ∥[[a∇v·n]]∥2e+
∑

e∈Eh\Γc
D

h−1
T ∥[[v]]∥2e

) 1
2

, ∀v ∈Mh,

where [[v]] = v|∂T 1 − v|∂T 2 is the jump of v on the interior edge e = T1 ∩ T2 ∈ E0
h

and [[v]] = v on the boundary edge e ⊂ ∂Ω; the same definition applies to [[a∇v ·n]]
with n being the unit outward normal direction to ∂T .

Lemma 4.1. [52] Let k ≥ 2 and Th be a shape regular partition of the domain Ω
specified in [52]. For 0 ≤ t ≤ 2, the following estimates hold true:∑

T∈Th
h2tT ∥u−Q(k−2)

h u∥2t,T . h2m∥u∥2m, m ∈ [t, k − 1].(12)

Lemma 4.2. [37, 47, 49] Let Ω be an open bounded and connected domain in
Rd (d = 2, 3) with Lipschitz continuous domain boundary ∂Ω. Assume that ΓD∩ΓN

is a non-trivial portion of the domain boundary ∂Ω. The solution of the elliptic
Cauchy problem (1) (if it exists) is unique.

Lemma 4.3. The following inf-sup condition holds true. For any v ∈ Mh, there
exists ρv ∈W 0

h satisfying

b(v, ρv) = |||v|||21, |||ρv||| ≤ β|||v|||1,(13)

where β > 0 is a constant independent of the meshsize h.

Proof. For any v ∈ Mh, we choose ρ ∈ W 0
h such that on each element T , ρ =

{h2TLv,−he[[a∇v · n]], h−1
e [[v]]}, with boundary value properly adjusted to satisfy

the homogeneous boundary data. From the trace inequality (3), triangle inequality,
and (11), we have ∑

T∈Th

h−1
T ∥ρ0 − ρb∥2∂T

=
∑
T∈Th

h−1
T ∥h2TLv + he[[a∇v · n]]∥2∂T

.
∑
T∈Th

(
h3T ∥Lv∥2∂T + hT ∥[[a∇v · n]]∥2∂T

)
.

∑
T∈Th

(
h2T ∥Lv∥2T + hT ∥[[a∇v · n]]∥2∂T

)
. |||v|||21.

(14)
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Analogously, using the trace inequality (3), inverse inequality, triangle inequality,
and (11) gives ∑

T∈Th

hT ∥a∇ρ0 · n− [[v]]∥2∂T

=
∑
T∈Th

hT ∥a∇(h2TLv) · n− h−1
T [[v]]∥2∂T

.
∑
T∈Th

hT

(
h4T ∥a∇(Lv) · n∥2∂T + h−2

T ∥[[v]]∥2∂T
)

.
∑
T∈Th

(
h2T ∥Lv∥2T + h−1

T ∥[[v]]∥2∂T
)

. |||v|||21.

(15)

From (10)-(11), combining the estimates (14)-(15) yields

(16) |||ρ||| . |||v|||1.

Next, using (5) yields

b(v, ρ) =
∑
T∈Th

(v,Lwρ)T

=
∑
T∈Th

(ρ0,Lv)T − ⟨ρb, a∇v · n⟩∂T + ⟨ρn, v⟩∂T

=
∑
T∈Th

(ρ0,Lv)T −
∑
e∈Eh

⟨ρb, [[a∇v · n]]⟩e +
∑
e∈Eh

⟨ρn, [[v]]⟩e

=
∑
T∈Th

(ρ0,Lv)T −
∑

e∈Eh\Γc
N

⟨ρb, [[a∇v · n]]⟩e +
∑

e∈Eh\Γc
D

⟨ρn, [[v]]⟩e

=
∑
T∈Th

h2T ∥Lv∥2T +
∑

e∈Eh\Γc
N

hT ∥[[a∇v · n]]∥2e +
∑

e∈Eh\Γc
D

h−1
T ∥[[v]]∥2e

= |||v|||21,

(17)

which, together with (16), completes the proof of the lemma. �

The following theorem is the main result on solution existence and uniqueness
for the PDWG scheme (7)-(8).

Theorem 4.4. Assume that ΓD ∩ ΓN contains a nontrivial portion of the domain
boundary ∂Ω and ΓD ∪ ΓN b ∂Ω is a proper closed subset. The PDWG finite
element algorithm (7)-(8) has one and only one solution.

Proof. It suffices to show that zero is the unique solution to the problem (7)-(8)
with homogeneous data f = 0, g1 = 0 and g2 = 0. To this end, assume f = 0,
g1 = 0 and g2 = 0 in (7)-(8). By letting v = uh and σ = λh, the difference of (8)
and (7) gives s(λh, λh) = 0, which implies λ0 = λb and a∇λ0 · n = λn on each
∂T . Therefore, together with the fact that λh ∈ W 0

h , we obtain λ0 = 0 on Γc
N and

a∇λ0 · n = 0 on Γc
D.
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It follows from (8), (6) and the usual integration by parts that for any v ∈Mh

0 =b(v, λh)

=
∑
T∈Th

(v,Lwλh)T

=
∑
T∈Th

(Lλ0, v)T + ⟨λ0 − λb, a∇v · n⟩∂T − ⟨a∇λ0 · n− λn, v⟩∂T

=
∑
T∈Th

(Lλ0, v)T ,

(18)

where we have used λ0 = λb and a∇λ0 · n = λn on each ∂T . This implies Lλ0 = 0
on each element T ∈ Th by taking v = Lλ0, which further yields Lλ0 = 0 in Ω.
Since ΓD ∪ ΓN b ∂Ω is a proper closed subset, Γc

D ∩ Γc
N = (ΓD ∪ ΓN )c contains a

nontrivial portion of ∂Ω. Since λ0 = 0 on Γc
N and a∇λ0 ·n = 0 on Γc

D, from Lemma
4.2, we get λ0 ≡ 0 in Ω. It follows that λh ≡ 0 in Ω, as λb = λ0 and λn = a∇λ0 · n
on each ∂T .

To demonstrate uh ≡ 0, we use λh ≡ 0 in Ω and the equation (7) to obtain

(19) b(uh, σ) = 0, ∀σ ∈W 0
h ,

which, together with Lemma 4.3, leads to |||uh|||1 = 0. This yields Luh = 0 on each
element T ∈ Th, [[a∇uh · n]] = 0 on each e ∈ E0

h and [[uh]] = 0 on each e ∈ E0
h, and

a∇uh · n = 0 on each e ⊂ ∂Ω \ Γc
N and uh = 0 on each e ⊂ ∂Ω \ Γc

D. Therefore, we
have Luh = 0 in Ω, a∇uh ·n = 0 on ∂Ω\Γc

N and uh = 0 on ∂Ω\Γc
D, for which there

exists a unique solution uh = 0 in Ω, provided that (∂Ω\Γc
N )∩(∂Ω\Γc

D) = ΓN ∩ΓD

is a nontrivial portion of the domain boundary ∂Ω.
This completes the proof of the theorem. �

5. Error Equations

This section is devoted to deriving the error equations for the PDWG scheme (7)-
(8) which will play a critical role in establishing the error estimates in the following
section.

Let u and (uh, λh) ∈Mh×W 0
h be the exact solution of the elliptic Cauchy model

problem (1) and PDWG solution of the numerical scheme (7)-(8), respectively. Note
that the Lagrange multiplier λh approximates the trivial solution λ = 0. The error
functions are defined as the difference between the numerical solution (uh, λh) and
the L2 projection of the exact solution of (1); i.e.,

eh = uh −Qk−2
h u,(20)

εh = λh −Qhλ = λh.(21)

Lemma 5.1. For any σ ∈Wh and v ∈Mh, the following identity holds true:

(Lwσ, v)T = (Lσ0, v)T +RT (σ, v),

where

RT (σ, v) = ⟨σ0 − σb, a∇v · n⟩∂T − ⟨a∇σ0 · n− σn, v⟩∂T .

Proof. This proof can be easily obtained using (6). �

Lemma 5.2. Let u and (uh;λh) ∈ Mh × W 0
h be the solutions arising from (1)

and (7)-(8), respectively. The error functions eh and εh satisfy the following error
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equations; i.e.,

s(εh, σ) + b(eh, σ) = ℓu(σ), ∀ σ ∈W 0
h ,(22)

b(v, εh) = 0, ∀v ∈Mh,(23)

where ℓu(σ) is given by

ℓu(σ) =
∑
T∈Th

⟨σ0 − σb, a∇(u−Qk−2
h u) · n⟩∂T − ⟨a∇σ0 · n− σn, u−Qk−2

h u⟩∂T .
(24)

Proof. From (21) and (8) we have

b(v, εh) = b(v, λh) = 0, ∀v ∈Mh,

which gives rise to (23).
Recall that λ = 0. From (7) we arrive at

s(λh −Qhλ, σ) + b(uh −Qk−2
h u, σ)

=− (f, σ0)− ⟨g2, σb⟩ΓN
+ ⟨g1, σn⟩ΓD

− b(Qk−2
h u, σ).

(25)

As to the term b(Qk−2
h u, σ), using Lemma 5.1 and the usual integration by parts

gives

b(Qk−2
h u, σ)

=
∑
T∈Th

(Qk−2
h u,Lwσ)T

=
∑
T∈Th

(Lσ0,Qk−2
h u)T +RT (σ,Qk−2

h u)

=
∑
T∈Th

(Lσ0, u)T +RT (σ,Qk−2
h u)

=
∑
T∈Th

(σ0,∇ · (a∇u))T − ⟨σ0, a∇u · n⟩∂T + ⟨a∇σ0 · n, u⟩∂T +RT (σ,Qk−2
h u).

(26)

Since u is the exact solution of (1), σb = 0 on Γc
N and σn = 0 on Γc

D, we have∑
T∈Th

⟨σb, a∇u · n⟩∂T = ⟨σb, g2⟩ΓN
,(27)

∑
T∈Th

⟨σn, u⟩∂T = ⟨σn, g1⟩ΓD .(28)

Substituting (27), (28) and (1) into (26), we arrive at

b(Qk−2
h u, σ)

=− (σ0, f)−
∑
T∈Th

⟨σ0 − σb, a∇u · n⟩∂T + ⟨a∇σ0 · n− σn, u⟩∂T

− ⟨σb, g2⟩ΓN + ⟨σn, g1⟩ΓD +RT (σ,Qk−2
h u).

(29)

Substituting (29) into (25) gives rise to the error equation (22), which completes
the proof of the lemma. �
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6. Error Estimates

In this section, we shall demonstrate the optimal order of error estimates for the
PDWG scheme (7)-(8).

Theorem 6.1. Let u be the exact solution of the elliptic Cauchy model problem
(1) and (uh, λh) ∈Mh×W 0

h be the numerical solution arising from PDWG method
(7)-(8) with k ≥ 2. Assume (1) the coefficient tensor a is piecewise constants in Ω
with respect to the finite element partition Th which is shape regular as specified in
[52]; (2) the exact solution u is sufficiently regular such that u ∈ Hm(Ω) (2 − θ ≤
m ≤ k − 1) with 0 ≤ θ < 1

2 . The following error estimates hold true; i.e.,

(30) |||λh|||+ |||eh|||1 . hm−1∥u∥m.

Proof. Letting σ = εh = {ε0, εb, εn} in the error equation (22) and using (23) and
(24) we arrive at

s(εh, εh) = ℓu(εh)

=
∑
T∈Th

⟨ε0 − εb, a∇(u−Qk−2
h u) · n⟩∂T + ⟨εn − a∇ε0 · n, u−Qk−2

h u⟩∂T .(31)

Using Cauchy-Schwarz inequality, the trace inequality (3), the estimate (12) and
(10) gives

∣∣∣∣∣ ∑
T∈Th

⟨ε0 − εb, a∇(u−Qk−2
h u) · n⟩∂T

∣∣∣∣∣
.
( ∑

T∈Th

∥ε0 − εb∥2∂T
) 1

2
( ∑

T∈Th

∥a∇(u−Qk−2
h u)∥2∂T

) 1
2

.
( ∑

T∈Th

h−1
T ∥u−Qk−2

h u∥21,T + h1−2θ
T ∥u−Qk−2

h u∥22−θ,T

) 1
2
( ∑

T∈Th

∥ε0 − εb∥2∂T
) 1

2

. hm−1∥u∥m|||εh|||.

(32)

Similarly, from the Cauchy-Schwarz inequality and the trace inequality (3), the
estimate (12) and (10), we obtain∣∣∣∣∣ ∑

T∈Th

⟨εn − a∇ε0 · n, u−Qk−2
h u⟩∂T

∣∣∣∣∣
≤
( ∑

T∈Th

∥εn − a∇ε0 · n∥2∂T
) 1

2
( ∑

T∈Th

∥u−Qk−2
h u∥2∂T

) 1
2

.
( ∑

T∈Th

∥εn − a∇ε0 · n∥2∂T
) 1

2

×
( ∑

T∈Th

h−1
T ∥u−Qk−2

h u∥2T + h1−2θ
T ∥∇(u−Qk−2

h u)∥21−θ,T

) 1
2

. hm−1∥u∥m|||εh|||.

(33)

Substituting the estimates (32) and (33) into (31) yields

(34) |||εh|||2 = |ℓu(εh)| . hm−1∥u∥m|||εh|||,
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which leads to

(35) |||εh||| . hm−1∥u∥m.

Furthermore, the error equation (22) yields

b(eh, σ) = ℓu(σ)− s(εh, σ), ∀σ ∈W 0
h .

It follows from (34)-(35), Cauchy-Schwarz inequality, triangle inequality, and (10)
that

|b(eh, σ)| ≤ |ℓu(σ)|+ |||εh||||||σ||| . hm−1∥u∥m|||σ|||

for all σ ∈W 0
h . Thus, from the inf-sup condition (13) we obtain

|||eh|||1 . hm−1∥u∥m,

which, together with the error estimate (35), completes the proof of the theorem.
�

For C0-WG elements (i.e., σb = σ0), ℓu(σ) in (24) is simplified into

(36) ℓu(σ) = −
∑
T∈Th

⟨a∇σ0 · n− σn, u−Qk−2
h u⟩∂T ,

which is applicable to derive the error estimate for the primal variable under ultra-
low regularity assumption u ∈ H1−θ(Ω) for 0 ≤ θ < 1

2 . The conclusion is stated in
the following corollary.

Corollary 6.2. Let u be the exact solution of the elliptic Cauchy model problem
(1) and (uh, λh) ∈Mh×W 0

h be the numerical solution arising from PDWG method
(7)-(8) with k ≥ 2. Assume (1) the coefficient tensor a is piecewise constants in Ω
with respect to the finite element partition Th which is shape regular as specified in
[52]; (2) the exact solution u is sufficiently regular such that u ∈ Hm(Ω) (1 − θ ≤
m ≤ k − 1) with 0 ≤ θ < 1

2 . The following error estimates hold true; i.e.,

|||λh|||+ |||eh|||1 . hm−1∥u∥m.

Proof. This proof is easily obtained by following the proof of Theorem 6.1 and
(36). �

7. Numerical Experiments

Extensive numerical results for the PDWG finite element scheme (7)-(8) are
reported in this section. The finite element partition Th is generated through a
successive uniform refinement for a coarse triangulation of the unit square domain
Ω = (0, 1)2 by dividing each coarse level triangular element into four congruent
sub-triangles by connecting the three mid-points on the edges. The numerical tests
are based on the lowest order k = 2, where the finite element space for the primal
variable is Mh,2 = {uh : uh|T ∈ P0(T ), ∀T ∈ Th}, and the weak finite element space
for the dual variable is Wh,2 = {λh = {λ0, λb, λn} : λ0 ∈ P2(T ), λb ∈ P2(e), λn ∈
P1(e), e ⊂ ∂T ,∀T ∈ Th}.

Let uh ∈ Mh,2 and λh = {λ0, λb, λn} ∈ Wh,2 be the numerical solutions arising
from the PDWG scheme (7)-(8). The primal variable uh is compared with the
exact solution u at the center of each element which is known as the nodal point
interpolation Ihu. The auxiliary variable λh approximates the true solution λ = 0,
and is compared with Qhλ = 0. The error functions are respectively denoted by

εh = λh −Qhλ = {λ0, λb, λn}, eh = uh − Ihu.
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Table 1. Numerical error with exact solution u = 1; the coeffi-
cient tensor a = [1, 0; 0, 1]; Dirichlet and Neumann on the bound-
ary edge (0, 1)× 0.

1/h ∥eh∥0 ∥λ0∥0 ∥λb∥0 ∥λn∥0
1 0E-16 0.03131E-16 0.05373E-16 0.1412E-16
2 0.05537E-14 0.01277E-14 0.01931E-14 0.1119E-14
4 0.2243E-14 0.02680E-14 0.04223E-14 0.2141E-14
8 0.5730E-13 0.03449E-13 0.05200E-13 0.1962E-13
16 0.1824E-12 0.009643E-12 0.01422E-12 0.06788E-12
32 0.1406E-11 0.001204E-11 0.001745E-11 0.01216E-11

Table 2. Numerical error with exact solution u = 1; the coeffi-
cient tensor a = [1, 0; 0, 1]; Dirichlet and Neumann on the bound-
ary edge 0× (0, 1).

1/h ∥eh∥0 ∥λ0∥0 ∥λb∥0 ∥λn∥0
1 0.2220E-15 0.07805E-15 0.1246E-15 0.5440E-15
2 0.1407E-14 0.03347E-14 0.05395E-14 0.1939E-14
4 0.2757E-14 0.01359E-14 0.01797E-14 0.2002E-14
8 0.2490E-13 0.009452E-13 0.01398E-13 0.1041E-13
16 0.1257E-12 0.001696E-12 0.002536E-12 0.02520E-12
32 0.8767E-12 0.01485E-12 0.02134E-12 0.09533E-12

Table 3. Numerical convergence with exact solution u =
sin(x) sin(y); the coefficient tensor a = [1 + x2, 0.25xy; 0.25xy, 1 +
y2]; Dirichlet on the boundary segments (0, 1) × 0 and (0, 1) × 1
and Neumann on the boundary segments 0× (0, 1) and 1× (0, 1).

1/h ∥eh∥0 order ∥λ0∥0 order ∥λb∥0 order ∥λn∥0 order
2 0.02025 0.07907 0.1255 0.7059
4 0.008189 1.306 0.01649 2.261 0.02475 2.343 0.1705 2.050
8 0.003478 1.235 0.003921 2.073 0.005726 2.112 0.04248 2.005
16 0.001604 1.117 0.0009725 2.012 0.001399 2.033 0.01063 1.999
32 0.0007741 1.051 0.0002434 1.998 0.0003473 2.010 0.002659 1.999

The following L2 norms are used to measure the error functions; i.e.,

∥eh∥0 =
( ∑

T∈Th

∫
T

e2hdT
) 1

2

, ∥λ0∥0 =
( ∑

T∈Th

∫
T

λ20dT
) 1

2

,

∥λb∥0 =
( ∑

T∈Th

hT

∫
∂T

λ2bds
) 1

2

, ∥λn∥0 =
( ∑

T∈Th

hT

∫
∂T

λ2nds
) 1

2

.

Tables 1-2 indicate the correctness and reliability of the code for the elliptic
Cauchy model problem (1). The configuration of the test case is as follows: (1)
the exact solution is u = 1; (2) the coefficient tensor is a = [1, 0; 0, 1]; (3) both the
Dirichlet and Neumann boundary conditions are set on the horizontal boundary
segment (0, 1)× 0 (see Table 1) or on the vertical boundary segment 0× (0, 1) (see
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Table 4. Numerical convergence with exact solution
u = sin(πx) cos(πy); the coefficient tensor a = [1 +
x2, 0.25xy; 0.25xy, 1 + y2]; Dirichlet on the boundary seg-
ments (0, 1) × 0 and (0, 1) × 1 and Neumann on the boundary
segments 0× (0, 1) and 1× (0, 1).

1/h ∥eh∥0 order ∥λ0∥0 order ∥λb∥0 order ∥λn∥0 order
1 0.1983 1.775 3.035 5.942
2 0.07463 1.410 0.2382 2.897 0.3974 2.933 1.147 2.373
4 0.02809 1.410 0.04732 2.332 0.07001 2.505 0.3657 1.650
8 0.01183 1.247 0.01125 2.072 0.01625 2.107 0.09009 2.021
16 0.004935 1.262 0.002793 2.010 0.003997 2.024 0.02209 2.028
32 0.002181 1.178 0.0006993 1.998 0.0009954 2.006 0.005478 2.012

Table 5. Numerical convergence with exact solution u = xy(1−
x)(1− y); the coefficient tensor a = [1+x2, 0.25xy; 0.25xy, 1+ y2];
Dirichlet on the boundary segments (0, 1) × 0 and (0, 1) × 1 and
Neumann on the boundary segments 0× (0, 1) and 1× (0, 1).

1/h ∥eh∥0 order ∥λ0∥0 order ∥λb∥0 order ∥λn∥0 order
1 0.03376 0.1206 0.2025 0.1335
2 0.008454 1.998 0.02765 2.125 0.03792 2.417 0.04527 1.560
4 0.002336 1.856 0.006620 2.062 0.009235 2.038 0.01260 1.845
8 0.0008282 1.496 0.001651 2.003 0.002325 1.990 0.003207 1.975
16 0.0003441 1.267 0.0004133 1.998 0.0005838 1.994 0.0007990 2.005
32 0.0001560 1.142 0.0001034 1.999 0.0001462 1.998 0.0001979 2.014

Table 6. Numerical convergence with exact solution u = exy; the
coefficient tensor a = [1 + x2, 0.25xy; 0.25xy, 1 + y2]; Dirichlet on
the boundary segments (0, 1) × 0 and (0, 1) × 1 and Neumann on
the boundary segments 0× (0, 1) and 1× (0, 1).

1/h ∥eh∥0 order ∥λ0∥0 order ∥λb∥0 order ∥λn∥0 order
2 0.05293 0.1790 0.2650 1.604
4 0.02334 1.181 0.04208 2.089 0.06047 2.132 0.4208 1.931
8 0.009735 1.262 0.01057 1.993 0.01506 2.005 0.1080 1.962
16 0.004345 1.164 0.002679 1.980 0.003805 1.985 0.02742 1.978
32 0.002050 1.084 0.0006762 1.986 0.0009587 1.989 0.006912 1.988

Table 2). Note that the numerical solution is consistent with the exact solution u =
1. We observe from Tables 1-2 that the errors are in machine accuracy, especially for
relatively coarse grids, which perfectly consists with the developed theory. However,
the error seems to deteriorate for the finer meshes which may be caused by the
ill-posedness of the elliptic Cauchy problem and/or the poor conditioning of the
discrete linear system.

Tables 3-6 demonstrate the numerical performance of the PDWG scheme (7)-
(8) when the exact solutions are given by u = sin(x) sin(y), u = sin(πx) cos(πy),
u = xy(1 − x)(1 − y) and u = exy, respectively. The coefficient tensor is a =
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Table 7. Numerical convergence with exact solution u =
sin(x) sin(y); the coefficient tensor a = [1, 0; 0, 1]; Dirichlet and
Neumann on the boundary segments (0, 1)× 0 and (0, 1)× 1, and
Dirichlet on the boundary segment 0× (0, 1).

1/h ∥eh∥0 order ∥λ0∥0 order ∥λb∥0 order ∥λn∥0 order
1 0.07102 0.3979 0.6416 2.777
2 0.03856 0.8810 0.06642 2.583 0.1032 2.636 0.4885 2.507
4 0.01390 1.473 0.02039 1.703 0.03087 1.741 0.1443 1.759
8 0.003625 1.939 0.006680 1.610 0.009868 1.645 0.04291 1.750
16 0.001311 1.467 0.002131 1.648 0.003087 1.676 0.01235 1.796
32 0.0004754 1.463 0.0007006 1.605 0.001005 1.620 0.004066 1.603

Table 8. Numerical convergence with exact solution u =
cos(x) cos(y); the coefficient tensor a = [1, 0; 0, 1]; Dirichlet and
Neumann on the boundary segments (0, 1)× 0 and (0, 1)× 1, and
Dirichlet on the boundary segment 0× (0, 1).

1/h ∥eh∥0 order ∥λ0∥0 order ∥λb∥0 order ∥λn∥0 order
2 0.02161 0.09323 0.138 0.4247
4 0.009932 1.121 0.02531 1.881 0.03693 1.904 0.1116 1.928
8 0.003352 1.567 0.006692 1.919 0.009652 1.936 0.02920 1.934
16 0.001396 1.264 0.001836 1.866 0.002630 1.876 0.007239 2.012
32 0.0006223 1.165 0.0005124 1.841 0.0007307 1.847 0.001986 1.866

Table 9. Numerical convergence with exact solution u = xy(1−
x)(1 − y); the coefficient tensor a = [1, 0; 0, 1]; Dirichlet and Neu-
mann on the boundary segments (0, 1) × 0 and (0, 1) × 1, and
Dirichlet on the boundary segment 0× (0, 1).

1/h ∥eh∥0 order ∥λ0∥0 order ∥λb∥0 order ∥λn∥0 order
1 0.01042 0.07688 0.1406 0.2900
2 0.004678 1.155 0.02185 1.815 0.02976 2.240 0.03095 3.228
4 0.001630 1.521 0.005182 2.076 0.007245 2.038 0.005847 2.404
8 0.0005178 1.655 0.001261 2.039 0.001780 2.025 0.001644 1.831
16 0.0002162 1.260 0.0003168 1.993 0.0004484 1.989 0.0004812 1.772
32 9.508E-05 1.185 8.028E-05 1.980 0.0001137 1.979 0.0001483 1.698

[1 + x2, 0.25xy; 0.25xy, 1 + y2]. The boundary conditions are set as follows: (1)
Dirichlet on the boundary segments (0, 1) × 0 and (0, 1) × 1; and (2) Neumann
on the boundary segments 0 × (0, 1) and 1 × (0, 1). Note that this is a standard
mixed boundary value problem without Cauchy data given on the boundary. The
numerical results show that the convergence rate for eh in the discrete L2 norm is
of an order a bit higher than O(h). This group of numerical examples imply the
effectiveness of the PDWG algorithm (7)-(8) for the classical well-posed problems.
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Table 10. Numerical convergence with exact solution u = exy;
the coefficient tensor a = [1, 0; 0, 1]; Dirichlet and Neumann on the
boundary segments (0, 1) × 0 and (0, 1) × 1, and Dirichlet on the
boundary segment 0× (0, 1).

1/h ∥eh∥0 order ∥λ0∥0 order ∥λb∥0 order ∥λn∥0 order
1 0.1067 0.6226 0.8525 4.572
2 0.05165 1.047 0.1483 2.070 0.2128 2.002 0.9598 2.252
4 0.01646 1.650 0.04342 1.772 0.06371 1.740 0.2797 1.779
8 0.005303 1.634 0.01198 1.858 0.01749 1.865 0.07875 1.828
16 0.002344 1.178 0.002741 2.128 0.003944 2.149 0.01915 2.040
32 0.0009561 1.294 0.0007732 1.826 0.001105 1.836 0.005242 1.869

Table 11. Numerical convergence with exact solution u =
sin(πx) sin(πy); the coefficient tensor a = [1, 0; 0, 1]; Dirichlet and
Neumann on the boundary segments (0, 1)× 0 and (0, 1)× 1.

1/h ∥eh∥0 order ∥λ0∥0 order ∥λb∥0 order ∥λn∥0 order
1 0.1281 0.8807 1.501 0.3968
2 0.04934 1.377 0.2939 1.583 0.4002 1.907 0.3624 0.1307
4 0.02366 1.060 0.07421 1.986 0.1037 1.949 0.08287 2.129
8 0.01312 0.8503 0.01867 1.991 0.02633 1.977 0.02670 1.634
16 0.006379 1.041 0.004740 1.977 0.006706 1.973 0.008679 1.621
32 0.003017 1.080 0.001215 1.964 0.001720 1.963 0.002968 1.548

Table 12. Numerical convergence with exact solution u = xy(1−
x)(1 − y); the coefficient tensor a = [1, 0; 0, 1]; Dirichlet and Neu-
mann on the boundary segments (0, 1)× 0 and (0, 1)× 1.

1/h ∥eh∥0 order ∥λ0∥0 order ∥λb∥0 order ∥λn∥0 order
2 0.002822 0.02069 0.02818 0.02300
4 0.001610 0.8103 0.005023 2.042 0.007021 2.005 0.005487 2.068
8 0.0008414 0.9358 0.001246 2.011 0.001758 1.998 0.001748 1.650
16 0.0003811 1.142 0.0003160 1.979 0.0004471 1.975 0.0005608 1.640
32 0.0001708 1.158 8.086E-05 1.967 0.0001145 1.966 0.0001848 1.602

Tables 7-10 demonstrate the performance of the PDWG algorithm (7)-(8) when
the exact solutions are given by u = sin(x) sin(y), u = cos(x) cos(y), u = xy(1 −
x)(1−y) and u = exy, respectively. The setting of boundary conditions is as follows:
(1) both Dirichlet and Neumann on the boundary segments (0, 1)×0 and (0, 1)×1;
and (2) Dirichlet on the boundary segment 0 × (0, 1). The coefficient tensor is
a = [1, 0; 0, 1]. The numerical results in Tables 7-10 show that the convergence
order for the primal variable is higher than O(h).

Tables 11-12 illustrate the numerical performance of the PDWG algorithm when
both Dirichlet and Neumann conditions are given on the boundary segments (0, 1)×
0 and (0, 1) × 1. The exact solutions are taken by u = sin(πx) sin(πy) and u =
xy(1 − x)(1 − y), respectively; and the coefficient tensor is a = [1, 0; 0, 1]. We can
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Table 13. Numerical convergence with exact solution u = exy;
the coefficient tensor a = [1 + x2, 0.25xy; 0.25xy, 1 + y2]; Dirichlet
and Neumann on the boundary segments (0, 1)× 0 and (0, 1)× 1.

1/h ∥eh∥0 order ∥λ0∥0 order ∥λb∥0 order ∥λn∥0 order
2 0.09498 0.1600 0.2125 1.629
4 0.08063 0.2362 0.03763 2.088 0.05258 2.015 0.4707 1.791
8 0.03599 1.164 0.01069 1.821 0.01550 1.762 0.1461 1.688
16 0.01465 1.297 0.002853 1.900 0.004152 1.900 0.04208 1.796
32 0.006831 1.100 0.0008062 1.823 0.001161 1.838 0.01166 1.852

Table 14. Numerical convergence with exact solution u =
sin(x) cos(y); the coefficient tensor a = [1 + x2, 0.25xy; 0.25xy, 1 +
y2]; Dirichlet and Neumann on the boundary segments (0, 1) × 0
and (0, 1)× 1, and Neumann on the boundary segment 0× (0, 1).

1/h ∥eh∥0 order ∥λ0∥0 order ∥λb∥0 order ∥λn∥0 order
1 0.05811 1.050 1.993 0.8839
2 0.02234 1.379 0.2415 2.121 0.4034 2.304 0.1804 2.293
4 0.009729 1.199 0.06850 1.818 0.1056 1.934 0.05650 1.675
8 0.004034 1.270 0.02069 1.727 0.03058 1.788 0.02364 1.257
16 0.001292 1.642 0.005941 1.800 0.008589 1.832 0.008732 1.437
32 0.0005206 1.311 0.001395 2.090 0.001994 2.107 0.002616 1.739

Table 15. Numerical convergence with exact solution u = exy;
the coefficient tensor a = [1 + x2, 0.25xy; 0.25xy, 1 + y2]; Dirichlet
and Neumann on the boundary segments (0, 1)× 0 and (0, 1)× 1,
and Neumann on the boundary segment 0× (0, 1).

1/h ∥eh∥0 order ∥λ0∥0 order ∥λb∥0 order ∥λn∥0 order
1 0.1009 2.097 3.548 3.380
2 0.05792 0.8002 0.4685 2.162 0.7333 2.275 1.300 1.379
4 0.02899 0.9985 0.1087 2.108 0.1647 2.154 0.5187 1.326
8 0.01315 1.140 0.01971 2.463 0.02922 2.495 0.1603 1.694
16 0.004980 1.401 0.005810 1.762 0.008517 1.779 0.04668 1.780
32 0.002143 1.216 0.001291 2.170 0.001858 2.196 0.01099 2.086

observe from the numerical results that the convergence rate for eh in the discrete
L2 norm is of an order a bit higher than O(h).

Table 13 presents the numerical performance of the PDWG algorithm in the
following configuration: (1) the exact solution is u = exy; (2) the coefficient tensor
is a = [1 + x2, 0.25xy; 0.25xy, 1 + y2]; (3) both Dirichlet and Neumann conditions
are given on the boundary segments (0, 1)× 0 and (0, 1)× 1. We can observe from
Table 13 that the convergence rate for the numerical solution uh in the discrete L2

norm is of an order a little higher than O(h).
Tables 14-15 demonstrate the performance of the PDWG scheme for the nu-

merical tests in the following configuration: (1) the coefficient tensor is a = [1 +
x2, 0.25xy; 0.25xy, 1 + y2]; (2) the boundary conditions are set by Dirichlet and
Neumann on the boundary segments (0, 1)× 0 and (0, 1)× 1 and Neumann on the
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Table 16. Numerical convergence with exact solution u = xy(1−
x)(1 − y); the coefficient tensor a = [1, 0; 0, 1]; Dirichlet and Neu-
mann on the boundary segments (0, 1) × 0 and (0, 1) × 1, and
Dirichlet on the boundary segment 0× (0, 1).

1/h ∥eh∥0 order ∥λ0∥0 order ∥λb∥0 order ∥λn∥0 order
1 0.01042 0.07688 0.1406 0.2900
2 0.004678 1.155 0.02185 1.815 0.02976 2.240 0.03095 3.228
4 0.001630 1.521 0.005182 2.076 0.007245 2.038 0.005847 2.404
8 0.0005178 1.655 0.001261 2.040 0.001780 2.025 0.001644 1.831
16 0.0002162 1.260 0.0003168 1.993 0.0004484 1.989 0.0004812 1.772
32 9.508E-05 1.185 8.028E-05 1.980 0.0001137 1.980 0.0001483 1.698

Table 17. Numerical convergence with exact solution u = exy;
the coefficient tensor a = [1, 0; 0, 1]; Dirichlet and Neumann on the
boundary segments (0, 1) × 0 and (0, 1) × 1, and Dirichlet on the
boundary segment 0× (0, 1).

1/h ∥eh∥0 order ∥λ0∥0 order ∥λb∥0 order ∥λn∥0 order
1 0.1067 0.6226 0.8525 4.572
2 0.05165 1.047 0.1483 2.070 0.2128 2.002 0.9598 2.252
4 0.01646 1.650 0.04342 1.772 0.06371 1.740 0.27965 1.779
8 0.005303 1.634 0.01197662 1.858 0.01749 1.865 0.07875 1.828
16 0.002344 1.178 0.002741 2.128 0.003944 2.149 0.01915 2.040
32 0.0009561 1.294 0.0007732 1.826 0.001105 1.836 0.005242 1.869

Table 18. Numerical convergence with exact solutions u1 =
sin(x) cos(y), u2 = sin(πx) sin(πy), u3 = sin(x) sin(y) and u4 =
exy; the coefficient tensor a = [1+x2, 0.25xy; 0.25xy, 1+y2]; Dirich-
let and Neumann on the boundary segments (0, 1)×0 and (0, 1)×1,
Dirichlet on the boundary segment 0× (0, 1) and Neumann on the
boundary segment 1× (0, 1).

1/h ∥eh∥0(u1) order ∥eh∥0(u2) order ∥eh∥0(u3) order ∥eh∥0(u4) order
2 0.01916 0.06362 0.02025 0.06538
4 0.006850 1.484 0.02385 1.415 0.008189 1.306 0.02519 1.376
8 0.002455 1.480 0.008741 1.448 0.003478 1.235 0.01014 1.312
16 0.0008979 1.451 0.003645 1.262 0.001604 1.117 0.004450 1.189
32 0.0003603 1.317 0.001663 1.132 0.0007741 1.051 0.002072 1.103

boundary segment 0× (0, 1); (3) the exact solutions are given by u = sin(x) cos(y)
and u = exy, respectively. Tables 14-15 indicate that the convergence order for the
PDWG solution uh in the discrete L2 norm is of an order higher than the order
O(h).

Tables 16-17 demonstrate the performance of the PDWG algorithm for the exact
solutions u = xy(1− x)(1− y) and u = exy, respectively. The boundary conditions
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are set as follows: (1) Dirichlet and Neumann on the boundary segments (0, 1)× 0
and (0, 1)×1, and (2) Neumann on the boundary segment 0×(0, 1). The coefficient
tensor is a = [1, 0; 0, 1]. The numerical results in Tables 16-17 illustrate that the
convergence rate for eh in the discrete L2 norm is higher than the order O(h).

Table 18 demonstrate the performance of the PDWG method when the exact
solutions are given by u1 = sin(x) cos(y), u2 = sin(πx) sin(πy), u3 = sin(x) sin(y)
and u4 = exy respectively. The boundary conditions are set as follows: (1) Dirichlet
and Neumann conditions on the boundary segments (0, 1) × 0 and (0, 1) × 1; (2)
Dirichlet on the boundary segment 0 × (0, 1); and (3) Neumann on the boundary
segment 1×(0, 1). The coefficient tensor is chosen by a = [1+x2, 0.25xy; 0.25xy, 1+
y2]. We observe from Table 18 that the convergence order for the error eh in the
discrete L2 norm is of an order higher than O(h).
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