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Abstract. A long standing problem in the modeling of non-Newtonian hydrodynamics of polymeric flows is
the availability of reliable and interpretable hydrodynamic models that faithfully encode the underlying micro-
scale polymer dynamics. The main complication arises from the long polymer relaxation time, the complex
molecular structure and heterogeneous interaction. DeePN2, a deep learning-based non-Newtonian hydro-
dynamic model, has been proposed and has shown some success in systematically passing the micro-scale
structural mechanics information to the macro-scale hydrodynamics for suspensions with simple polymer
conformation and bond potential. The model retains a multi-scaled nature by mapping the polymer config-
urations into a set of symmetry-preserving macro-scale features. The extended constitutive laws for these
macro-scale features can be directly learned from the kinetics of their micro-scale counterparts. In this paper,
we develop DeePN2 using more complex micro-structural models. We show that DeePN2 can faithfully cap-
ture the broadly overlooked viscoelastic differences arising from the specific molecular structural mechanics
without human intervention.
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1 Introduction

Accurate modeling of non-Newtonian hydrodynamics plays a central role in the modeling
of the transport, diffusion, and synthesis processes in many scientific and engineering ap-
plications. Unlike simple fluids, non-Newtonian fluids may exhibit enormously complex
flow behavior as a result of the micro-scale polymer dynamics. In particular, the polymer
relaxation time often becomes comparable to the hydrodynamic time scale. As a result,
the macro-scale fluid evolution can not be uniquely determined by the instantaneous flow
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field and the memory effect is generally important. To close the hydrodynamic equations,
existing models are primarily based on the following two approaches. The first approach
relies on empirical constitutive models [1, 2]. Notable examples include the Hookean
model [3, 4], the FENE-P model [5, 6], the Giesekus model [7], and the Phan-Thien and
Tanner models [8]. Despite their popularity, the accuracy of these models is almost always
in doubt. The second approach resorts to various sophisticated micro-macro coupling al-
gorithms, e.g., by directly solving the Fokker-Planck equation using Lattice Boltzmann
method [9], Galerkin method [10–13], and particle method [14–18], or sampling the poly-
mer configuration via micro-scale simulations [19–21]. While the effects of the polymer
interaction can be carried over to the macro-scale model, the computational cost can be
exceedingly large due to the retaining of the micro-scale description. Methods based on
asymptotic analysis [22,23] or the direct fitting of the strain-stress relationship [24] are lim-
ited to simple flows such as the steady flow. Several semi-analytical approaches have been
proposed [25–31] using moment closure to approximate the micro-scale polymer configu-
ration probability density function (PDF) and to derive the constitutive equations for the
FENE dumbbell solution [29–31]. However, these approaches are all based on restricted
ansatz for the PDF and therefore are not reliable for more general flow regimes.

To construct truly reliable and interpretable hydrodynamic models with molecular-
level fidelity, it is essential to be able to efficiently code the information from the micro-
scale interaction into the macro-scale transport equations. Ideally, the construction should
meet the following requirements:

• be interpretable;

• be reliable – it should be accurate for all kinds of practical situations that one might
encounter;

• respect physical constraints, including symmetries and conservation laws;

• be numerically robust and efficient.

As a first step towards constructing models that meet these requirements, we devel-
oped a machine learning-based approach [32], “deep learning-based non-Newtonian hy-
drodynamic model” or DeePN2, that learns the non-Newtonian hydrodynamic model
from the underlying micro-scale description of the dumbbell solution. Rather than ap-
proximating the closure with standard moments, DeePN2 finds a set of encoders, i.e., a
set of macro-scale features that best represent the micro-scale dumbbell structure. It also
finds accurate closed-form equation for these macro-scale features. The constructed model
retains a clear physical interpretation and accurately captures the nonlinear viscoelastic re-
sponses, where the conventional Hookean and FENE-P models show limitations.

Beyond dumbbell suspensions, one major challenge towards constructing truly reliable
hydrodynamic models arises from the heterogeneous polymer micro-structural mechan-
ics. In this work, we aim to fill the gap by developing the generalized DeePN2 model
for multi-bead polymer molecules with arbitrary structure and interaction. Firstly, with
the proper design of the generalized micro-macro encoders and the machine learning-
based symmetry-preserving constitutive dynamics, we demonstrate that the heteroge-
neous molecular structural-induced interaction can be systematically encoded into the



J. Mach. Learn., 1(1):114-140 116

macro-scale hydrodynamics. Unlike moment closure approximations, the encoders are
not designed to recover the high-dimensional configuration PDF. Instead, they take an in-
terpretable form and are learned to probe the optimal approximation of the polymer stress
and constitutive dynamics. This essential difference enables DeePN2 to circumvent the
high-dimensionality of the polymer configuration PDF. Secondly, the explicit form of the
micro-macro encoders enables us to reliably learn the dynamics of the macro-scale features
directly from the kinetic equations of their micro-scale analog. In this sense, this learning
framework retains a multi-scaled nature where micro-scale interaction and physical con-
straints can be seamlessly inherited. Moreover, the learning only requires instantaneous
micro-scale samples. This unique property differs from the common sophisticated data-
driven approaches [33–40], where time-derivative samples are often needed to learn the
governing dynamics. This is particularly suited for multi-scale fluid models where accu-
rate time-derivative samples may not be readily accessible. We demonstrate the power of
the DeePN2 model for polymer molecules of three distinct shapes with training samples
collected from one-dimensional (1D) homogeneous shear flow. Numerical results show
that the broadly overlooked heterogeneous molecular structural mechanics plays an im-
portant role in the rheology of non-Newtonian fluids, which, fortunately, can be faithfully
encoded into DeePN2. The constructed model successfully captures the hydrodynamics
with different viscoelastic responses for a variety of 1D and 2D flows when compared
with the micro-scale simulation results. The present work also paves the way towards
constructing truly reliable non-Newtonian hydrodynamic models for general 3D flows.

2 Methods

2.1 Micro-scale and continuum hydrodynamic models

Let us start with the micro-scale description of the semi-dilute polymer suspension. We
assume each molecule consists of N particles with the position vector q = [q1; q2; · · · ; qN ],
where qi ∈ R

3 is the position of the i-th particle. The intramolecular potential energy V(q)
takes the form

V(q) =
Nb

∑
j=1

Vb

(
|qj1 − qj2 |

)
, Vb(l) = −

ks

2
l2
0 log

[
1 −

l2

l2
0

]
, (2.1)

where Nb is the bond number and (j1, j2) represents the indices of beads associated with
the j-th bond. Without loss of generality, the individual bond interaction Vb takes the form
of the FENE potential [41], where ks is the spring constant and l0 is the maximum of the
extension length. It is worth mentioning that the polymer molecule is not restricted to the
dumbbell shape. Instead, it generally consists of multiple particles with arbitrary struc-
ture and bond connection. Fig. 2.1 shows a sketch of the polymer molecules with three
different structures. As we will show, given the same form of the individual bond interac-
tion Vb, the different polymer micro-structural mechanics leads to distinct non-Newtonian
hydrodynamics.

In principle, the viscoelastic response of the system is determined by the full micro-
scale interaction. However, direct simulation for the full micro-scale interaction is often



J. Mach. Learn., 1(1):114-140 117

Figure 2.1: A sket
h of 7-bead polymer mole
ule with 
hain-, star- and net-shaped stru
tures (from left to right).

The solid lines represent the FENE bond potential with the same intera
tion parameters. The dashed lines of the

net-shaped mole
ule represent the three additional side 
hains 
onne
ting the polymer arms. While both the 
hain-

and the star-shaped mole
ules are 
onne
ted with six bonds; the suspensions exhibit di�erent hydrodynami
s due

to the di�erent mi
ro-stru
tural me
hani
s as shown below.

limited by the prohibited computational cost. Continuum hydrodynamics models based
on various empirical constitutive models are often used, with the general form

∇ · u = 0,

ρ
du

dt
= −∇p +∇ · (τs + τp) + fext,

(2.2)

where ρ, u and p represent the fluid density, velocity and pressure field, respectively. fext
is the external body force and τs = ηs(∇u +∇uT) is the solvent stress tensor with shear
viscosity ηs. τp is the polymer stress tensor whose detailed form is generally unknown. To
construct τp, the DeePN2 model seeks the approximation in terms of a set of macro-scale
features c1, · · · , cn, and simultaneously, the constitutive dynamics of these features, i.e.,

τp = G(c1, · · · , cn), (2.3a)
Dci

Dt
= Hi(c1, · · · , cn), i = 1, · · · , n, (2.3b)

where G and Hi represent the stress and constitutive models, respectively. D
Dt denotes the

objective tensor derivative.
Eqs. (2.2) and (2.3) take the form similar to the conventional hydrodynamics. Instead of

using empirical approximation to close the equation, we aim to construct a model directly
from the micro-scale description (2.1) with the help of machine learning, such that the con-
structed model can naturally encode the molecular-specific interaction beyond empirical
approximations with clear physical interpretation.

2.2 DeePN2 for arbitrary molecular structural mechanics

To learn Eq. (2.2) from the full model (2.1), one essential problem lies in how to seamlessly
pass the micro-scale interaction to the continuum model. To bridge the scales, we learn
a set of micro-to-macro encoders, denoted by {bi(q)}

n
i=1, such that the continuum mod-

eling terms (e.g., the polymer stress τp) can be well approximated in terms of the corre-
sponding macro-scale features {ci(q)}

n
i=1 via Eq. (2.3a), where τp := np ∑j〈qj ⊗∇qj

V(q)〉,
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ci = 〈bi(q)〉, np is the polymer number density and 〈·〉 denotes the average with respect
to the configuration PDF. In particular, the features ci need to satisfy the proper invari-
ant and symmetry conditions inherited from the encoders bi(·) such that the constructed
continuum model can strictly preserve frame-indifference condition:

τ̃p = QτpQT , G(c̃1, · · · , c̃n) = QG(c1, · · · , cn)Q
T, (2.4)

where the superscript ·̃ denotes the corresponding values under an arbitrary orthogonal
transformation by Q ∈ SO(3).

To construct the encoder b(·), we note that the micro-scale potential V(q) is transla-
tional and rotational invariant. Accordingly, let r∗(q) ∈ R

3N−6 (we consider the general
case N ≥ 3 here) denote the translational-rotational-invariant configuration vector and
r(q) ∈ R

3N−3 denote the translational-invariant configuration vector consisting of N − 1
linearly independent position vectors. Since Nb ≥ N − 1 for all molecules, one straightfor-
ward choice is the first N − 1 bond connection vectors, i.e.,

r = [r1; r2; · · · ; rN−1] , rj = qj1 − qj2 , 1 ≤ j ≤ N − 1,

r∗ =
[
|r1| , |r2| , |r12| , |r3| , |r13| , |r23| , |r4| , |r24| , |r34| , · · · , |rN−1| ,

∣∣∣r(N−2)(N−1)

∣∣∣
]

,
(2.5)

where rjk := rj − rk. We note that this form applies to general molecular structures; r
determines the molecular structure up to translations. Specifically, r∗ represents the 3N − 6
degrees of freedom after eliminating translational and rotational degrees of freedom, and
r suffices to fully determine the translational invariant polymer configuration and strictly
retains the rotational symmetry in accordance with q, i.e.,

rj(Qq) = Qrj(q), r∗(Qq) = r∗(q).

To preserve rotational symmetry, one straightforward approach is to represent b(·) in the

linear space spanned by
{

rj

}N−1
j=1

. However, this choice yields the trivial macro-scale fea-

ture, i.e.,
〈

rj

〉
≡ 0, due to the rotational symmetry. Alternatively, we construct the follow-

ing second-order tensor

ci = 〈bi(r)〉, bi = fif
T
i , 1 ≤ i ≤ n,

fi = gi(r
∗)

N−1

∑
j=1

wijrj,
(2.6)

where [wij]1≤i≤n,1≤j≤N−1 are the weights and {gi(·)}
n
i=1 is a set of scalar functions that en-

codes the polymer intramolecular interaction. Both terms will be learned from the micro-
scale description and represented by deep neural networks (DNNs). Rotational symme-
tries can be naturally inherited, i.e., c̃ = 〈b(̃r)〉 ≡ QcQT . Compared with the special
form for dumbbell molecules in Ref. [32], Eq. (2.6) provides a general form of c applicable
to multi-bead molecules of arbitrary structure since r and r∗ fully determine the 3N − 3
translational invariant polymer configuration. In the remaining of the paper, we will abuse
the notation and denote b(q) as b(r).
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Besides the polymer stress model (2.3a), the remaining task to close Eq. (2.2) is the con-
struction of the constitutive dynamics (2.3b) of the macro-scale features {ci}

n
i=1. There are

two issues to deal with: the proper form of the objective time derivative of ci and the ac-
curate estimation of their time evolution. In the literature, the objective tensor derivative,
denoted by Dci

Dt , is often chosen to take some heuristic forms (e.g. the convected [3] and
corotational [42] forms). Moreover, the time-series samples collected from the micro-scale
simulations are generally super-imposed with pronounced sampling error; direct estima-
tion of the time derivative as was done in [33,35,38] will end with noisy data. Fortunately,
both challenges are addressed in DeePN2 using an explicit micro-macro correspondence.
The dynamics of ci can be derived from the its micro-scale correspondence bi(r) in the
form of the micro-scale configuration r, i.e.,

d
dt

ci − κ :

〈
N−1

∑
j=1

rj ⊗∇rj
⊗ bi

〉
=

kBT

γ

〈
N−1

∑
j,k=1

Ajk∇rj
· ∇rk

bi

〉

−
1
γ

〈
N−1

∑
j=1

Nb

∑
k=1

Ajk∇rk
V(r1, · · · , rNb

) · ∇rj
bi

〉
, (2.7)

where κ := ∇uT , γ is the friction coefficient and rj is the connection vector as defined
in Eq. (2.5) for j > N − 1. We abuse the notation and denote V(q) as V(r1, · · · , rNb

) =

∑
Nb
j=1 Vb(rj). The molecular structure and interaction are specified via A ∈ R

Nb×Nb , which
is defined by

A = SST, Sjk =





+1, k = j1,
−1, k = j2,
0, else,

1 ≤ j ≤ Nb, 1 ≤ k ≤ N, (2.8)

where j1 and j2 are the same notations as those in Eq. (2.1). We note that Eq. (2.7) only re-
quires the first (N − 1) rows of A since the polymer configuration can be fully determined
by r1, · · · , rN−1. As a special case, if the molecule takes the chain shape, A recovers the
standard Rouse matrix [43, 44].

Eq. (2.7) defines the dynamics for the features {ci}
n
i=1, derived from their micro-scale

correspondences. In particular, given the proposed form of the encoder functions (2.6), we
can show that the two combined terms of the left-hand-side of Eq. (2.7) strictly preserve
rotational symmetry (see Appendix A). This leads to an important observation that the
two combined terms provide the generalized form for the macro-scale objective tensor
derivative Dci

Dt . Unlike the heuristic choices in empirical models, the new form retains a
clear micro-scale physical interpretation. Furthermore, all the modeling terms in the form
of 〈·〉 can be directly evaluated using samples collected from the micro-scale simulations
under the corresponding flow condition. This enables us to avoid estimating the time
derivative values from the noise-prone time-series samples. Accordingly, the macro-scale
constitutive dynamics takes the form

dci

dt
− κ : Ei =

kBT

γ
H1,i(c1, · · · , cn)−

1
γ

H2,i(c1, · · · , cn), (2.9)
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where the individual terms will be represented by proper neural networks and parameter-
ized by matching their micro-scale correspondences, i.e.,

Ei(c1, · · · , cn) =

〈
N−1

∑
j=1

rj ⊗∇rj
⊗ bi

〉
,

H1,i(c1, · · · , cn) =

〈
N−1

∑
j,k=1

Ajk∇rj
· ∇rk

bi

〉
,

H2,i(c1, · · · , cn) =

〈
N−1

∑
j=1

Nb

∑
k=1

Ajk∇rk
V(r1, · · · , rN−1) · ∇rj

bi

〉
.

(2.10)

2.3 Symmetry-preserving DNN models

To complete the DeePN2 model, we need to specify the DNN models. These DNN models
should also strictly preserve rotational symmetry. Different from the rotational-invariant
scalar stress model considered in Ref. [45], the second-order tensors G, H1,i, H2,i need
to satisfy the symmetry condition (2.4) and the fourth-order tensors Ei need to retain the
objectivity of Dci

Dt . However, there does not exist such a reference frame in which these
symmetry constraints can be satisfied by the macro-scale modeling terms.

To handle this problem, we consider the eigen-space of the feature c1 with a fixed form
of the encoder b1(·), e.g., by setting g1(·) = w1,: ≡ 1 and let other bi(·) involved in
the training. Let us consider the eigen-decomposition c1 = UΛUT , assuming that it has
distinct eigenvalues. We introduce the following matrices

S(1) =



+1

+1
+1


 , S(2) =



+1

−1
+1


 ,

S(3) =



+1

+1
−1


 , S(4) =



+1

−1
−1


 .

We denote U(j) = US(j) and ĉ
(j)
i = U(j)T

ciU
(j). We can show that the formulation of the

stress model G = 1
4 ∑

4
j=1 U(j)Ĝ(ĉ

(j)
1 , · · · , ĉ

(j)
n )U(j)T

satisfies Eq. (2.4) (see Appendix C).
During simulation, the eigenvalues of c1 may cross each other. To account for this, we

consider all the 6 permutations of the three eigenvalues, i.e.,

G(c1, · · · , cn) =
1

24

5

∑
k=0

4

∑
j=1

U(j,k)Ĝ(ĉ
(j,k)
1 , · · · , ĉ

(j,k)
n )U(j,k)T

, (2.11)

where k represents the rank of permutation (e.g., in lexicographical order) and U(j,k) is
a variation of U(j) with corresponding column permutation. Furthermore, to avoid the
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eigenvector degeneracy, we set a threshold value ǫ for the eigenvalues. When two eigen-
values approach each other, e.g., |λ2 − λ3| < ǫ, we freeze all the eigenvectors until |λ2 −
λ3| ≥ ǫ. In this work, we take ǫ = 10−3, and we refer to Appendix D for detailed numeri-
cal studies.

Eq. (2.11) provides the rotation-symmetric form for the second-order stress tensor G,
where Ĝ is represented by DNNs. The constitutive model terms H1,i and H2,i can be
constructed in a similar manner. Finally, we can show the fourth-order tensors {Ei}

n
i=1

associated with the encoders (2.6) can be constructed in the form

κ : Ei = κci + ciκ
T + κ :

(
9

∑
j=1

E
(j)
1,i ⊗ E

(j)
2,i

)
, (2.12)

where E
(j)
1,i and E

(j)
2,i are second-order tensors which respect the symmetry condition (2.4)

and can be constructed in the form of Eq. (2.11) (see Appendix C). The constructed DeePN2

model takes the form similar to the general hydrodynamic equations (2.2) and (2.3), where
some of the model terms are represented by DNNs in the form of Eqs. (2.11) and (2.12).

2.4 Algorithm

We summarize the DeePN2 model in Algorithm 1.

Algorithm 1 DeePN2 for polymer suspensions retaining micro-structural fidelity.

1: Conduct the micro-scale simulations (see Appendix E) and collect time-discrete train-
ing samples (see Appendix F).

2: Pre-process the training samples by pre-computing the first conformation tensor c1 =
〈b1(r)〉, its eigen-decomposition, and the polymer stress based on the micro-scale poly-
mer configurations for each training sample set.

3: End-to-end training: Establish the joint learning of the symmetry-preserving encoders
(b2(·), · · · , bn(·)) (see Appendix C), the macro-scale DNN functions (the stress G(·)
and the other constitutive modeling terms {Ei(·), H1,i(·), H2,i(·)}

n
i=1) by matching the

micro-scale counterparts derived from the structure-specific kinetic equations (see Ap-
pendix G).

4: Solve the macro-scale hydrodynamic Eqs. (2.2) and (2.9).

3 Numerical results

The present DeePN2 model is trained using micro-scale samples collected from the homo-
geneous shear flow. We demonstrate the model accuracy and generalization ability by
considering various flows in comparison with the results of the micro-scale simulations
for the suspensions with three different polymer structural models as shown in Fig. 2.1.
As we will see, the micro-scale structure does play an important role in the viscoelastic
response. We will use this to examine the DeePN2 model fidelity.
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Figure 3.1: The velo
ity ux (left) and polymer stress τp (right) of the reverse Poiseuille �ow (y = 6) of the

polymer suspensions of three di�erent mole
ule stru
tures shown in Fig. 2.1. τp is normalized by polymer number

density np, i.e., it is the stress energy per polymer (the same for the remaining �gures). With the same FENE

bond, the polymer suspensions exhibit di�erent �ow responses due to the di�erent mole
ule stru
tural me
hani
s.

The dark blue lines with rough os
illations denote the mi
ro-s
ale simulation results; the solid lines with symbols

denote the DeePN

2
predi
tions.

First, we consider the reverse Poiseuille flow in a 60 × 100 × 60 domain (in reduced
unit) with the opposite body force fext = (0.016, 0, 0) applied to each half of the domain
divided by the plane y = 50 starting from t = 0. At t = 800, the external force is removed.
The relaxation process of the flow field is recorded until the total simulation time t = 1600.
For all the three systems, the predictions from DeePN2 agree well with the micro-scale
simulations results, as shown in Fig. 3.1. In particular, the flow velocity fields of the three
systems are nearly identical at the initial stage t ∈ [0, 200], as the development of the
flow field is dominated by the solvent and the near-equilibrium responses of the polymer
molecules in this regime. Starting from t = 250, the velocity fields of the three systems
exhibit distinct evolution processes. The velocity of the chain-shaped molecule suspension
exhibits the largest oscillation and the longest development stage during t ∈ [250, 800]. In
contrast, the velocity of the star-shaped molecule suspension exhibits moderate oscillation
and shows an apparent increase during t ∈ [400, 800], indicating that the polymer elastic
energy reaches a plateau earlier than the chain-shaped system. Moreover, the velocity
of the net-shaped molecule suspension exhibits the smallest oscillation, indicating that
the three additional side-chains further affect the rheological properties of the polymer
suspension.

Such differences can also be studied by examining the polymer stress development.
As shown in Fig. 3.1, the value of τpxx

for the chain-shaped molecule suspension keeps
increasing through the development stage t ∈ [0, 800] while for the star-shaped molecule,
τpxx

shows only a moderate increase. In contrast, the net-shaped molecule suspension
reaches steady state at about t = 400. Moreover, the steady value of the shear stress
τpxy

of the chain-shaped molecule is also larger than the star-shaped and the net-shaped
molecules, indicating the largest restored elastic energy. This result is also consistent with
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Figure 3.2: The evolution of the polymer stress τp and 
onformation tensor c1 obtained from the reverse Poiseuille

�ow (y = 6) of the polymer suspensions. The 
lo
kwise loops represent the development and relaxation pro
esses.

For the visualization, the 
onformation tensor c1xx is res
aled by the maximum value obtained from the mi
ro-s
ale

simulation.

the larger velocity oscillation from the minimal values to 0 during the relaxation process
with t ∈ [800, 1000].

The different rheological properties of the three polymer suspensions can be under-
stood as follows. Although both the chain-shaped and star-shaped molecules have 6
identical FENE bonds, the chain-shaped molecule is less symmetric than the star-shaped
molecule. Accordingly, it shows larger dispersion in the R

18 configuration space, and
hence, is more flexible than the star-shaped molecule. The elastic response time of the
chain-shaped molecule suspension is longer than that of the star-shaped molecule suspen-
sion; larger elastic energy can be restored during the relaxation stage. On the other hand,
the net-shaped molecule is more rigid than the star-shaped molecule due to the additional
bond interaction.

Another important feature of non-Newtonian fluids is the hysteresis effect. Classical
models such as Hookean and FENE-P cannot capture such effects [46, 47]. Fig. 3.2 shows
the evolution of the polymer stress and conformation tensor for the chain- and star-shaped
molecule suspensions. The clockwise loops show the hysteresis effects during the devel-
opment and relaxation processes; the non-unique stress values indicate that linear and
mean field approximations are insufficient in describing the viscoelastic response of the
system. In contrast, these effects are accurately captured with the DeePN2 model. Simi-
lar to Fig. 3.1, the chain-shaped molecule suspension shows more pronounced hysteresis
effect due to the larger dispersion in the configuration space, reflected as the larger “loop
area” than the results for star-shaped molecule suspension.

Next, we investigate the Womersley flow [48] by applying the opposite oscillating body
force fext = (± f0 cos(2πωt), 0, 0) to each half of the domain along the z-direction, where
we set f0 = 0.012 and ω = 1/3000. Fig. 3.3 shows the velocity development of the star- and
net-shaped molecule suspensions. Similar to the reverse Poiseuille flow, the net-shaped
molecule suspension shows less pronounced viscoelastic responses, reflected as the slower
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Figure 3.3: The os
illating Womersley �ow of the star- and net-shaped mole
ule suspensions predi
ted from the

mi
ro-s
ale simulation, DeePN

2
and the FENE-P model. The FENE-P model parameters are 
hosen to mat
h

the dynami
s of the orientation tensor (the ve
tor between two free-end parti
les) near equilibrium. Left: the

velo
ity evolution ux(y, t) at y = 6. Right: the velo
ity pro�le ux(y, t) at t = 6450.

decay near t ∈ [200, 400] and the larger oscillation due to the less elastic energy storage.
For comparison, we also show the prediction from the conventional FENE-P model. The
parameters are chosen to match the dynamics of the orientation tensor (the vector between
two free-end particles) near equilibrium. As expected, the FENE-P model shows limita-
tions for predicting the flow responses of the two suspensions.

The distinct viscoelastic responses of the different suspensions can be further eluci-
dated by examining the elongation flow. We impose the traceless flow gradient ∇u =
diag(ǫ̇,−ǫ̇, 0) where the strain rate ǫ̇ is set to be 4 × 10−4. Fig. 3.4 shows the stress de-
velopment of the chain- and star-shaped molecule suspensions. The micro-scale simula-
tions are imposed by the generalized uniaxial extension flow boundary conditions [49,50].
Compared with the shear flow, the elongation flow yields larger extension and longer pro-
cesses, as was shown in experimental studies [51]; the steady state is achieved at about
t = 2.5 × 103 and t = 104 for the star- and chain-shaped molecule suspensions, respec-
tively. Moreover, the steady stress value τpxx

of the chain-shaped molecule suspension is
much larger than the value of the star-shaped molecule suspension. Such differences are
also due to the larger flexibility of the chain-shaped molecule, which produces a stronger
extension under external flow. DeePN2 successfully captures the different responses and
shows good agreement with the micro-scale simulations for both cases.

Finally, we consider the Taylor-Green vortex flow [52, 53] in a 100 × 100 × 160 domain
(in reduced unit) of the micro-scale simulation. The external force fext = ( fx , fy, 0) is
applied to the domain following

fx(x, y) = −2 f0 sin
(

2πx

L

)
cos

(
2πy

L

)
, fy(x, y) = 2 f0 cos

(
2πx

L

)
sin
(

2πy

L

)
,

where L = 100 and f0 = 6 × 10−3. Periodic boundary conditions are imposed along all
of the three directions. The force field imposes an elongation to the flow field along the
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Figure 3.4: The elongation �ow of the 
hain- and star-shaped mole
ule suspensions predi
ted from the mi
ro-s
ale

simulation and DeePN

2
. With the same bond potential and strain rate, the 
hain-shaped mole
ule suspension

yields larger elongation stress. The lines with rough os
illations denote the mi
ro-s
ale simulation results; the

solid lines with symbols denote the DeePN

2
predi
tions.

x-direction and a compression along the y-direction. The flow near the center (L/2, L/2)
resembles the planar elongation flow. Four vortices appear at (L/2 ± L/4, L/2 ± L/4).
Fig. 3.5(a-b) shows the steady-state velocity field. Compared with the star-shaped molecule
suspension, the velocity field of the chain-shaped molecule suspension shows larger devia-
tion from the symmetric structure of the Newtonian flow (i.e., ∝ [− sin (2πx/L) cos (2πy/L) ,
cos (2πx/L) sin (2πy/L)]) due to the larger polymer stress across the flow regime. Fur-
thermore, the two suspensions yield different velocity magnitude, as shown in Fig. 3.5(c).
Fig. 3.5(d) shows the velocity development at (75, 49). The velocities of both suspensions
achieve a similar maximum value near t = 30 and decay along with the polymer stress de-
velopment. However, the star-shaped molecule suspension reaches the steady state much
earlier with a larger velocity than the chain-shaped molecule suspension.

Fig. 3.6 (a-b) shows the steady-state stress field for the two suspensions. We see that
the chain-shaped molecule suspension exhibits larger polymer stress variation along the
elongation and contraction directions, reflected in the larger loop area in Fig. 3.6(b). Such
difference is also consistent with the more pronounced asymmetric velocity field shown in
Fig. 3.5(a-b). In addition, we also examine the transient states where the flow undergoes
intricate and heterogeneous process. Fig. 3.6(c) shows the stress development at point
(49, 35), where τpxx

and τpyy
cross over during the evolution. During the initial stage, τpyy

increases along with the flow development towards to the stagnation point. At t > 150,
τpyy

decreases due to the compression along the y-direction. Meanwhile, τpxx
increases

and achieves a steady state slightly larger than τpyy
for the star-shaped solution. On the

other hand, the chain-shaped solution ends up with a significantly larger value of τpxx
due

to the larger molecule flexibility and further extension along the x-direction. The different
viscoelastic responses are also reflected in the stress development at point (49, 49). As
shown in Fig. 3.6(d), the chain-shaped solution exhibits longer evolution of τpxx

and larger
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Figure 3.5: The velo
ity �eld of the Taylor-Green vortex �ow of the 
hain- and star-shaped mole
ule suspensions

predi
ted from the mi
ro-s
ale simulations and DeePN

2
. (a-b) The 2D steady-state velo
ity �eld of the 
hain- and

star-shaped mole
ule suspensions from the mi
ro-s
ale simulations. The velo
ity �eld of the 
hain-shaped system

yields more pronoun
ed deviations from the symmetri
 Newtonian �ow due to the more pronoun
ed polymer

stress a
ross the �ow regime. (
) The steady-state 1D velo
ity pro�le ux(x, y = 49). The solid and dashed lines

represent the predi
tions from the mi
ro-s
ale simulations and the DeePN

2
model, respe
tively. (d) The time

history of ux(x = 75, y = 49).

steady value than the star-shaped solution. DeePN2 successfully captures such micro-
structure-induced rheological differences and shows good agreement with the micro-scale
simulation results.

4 Discussion

We have developed a general machine-learning based model, DeePN2, for describing the
non-Newtonian hydrodynamics for polymer solutions with arbitrary molecular structure
and interaction. The constructed model retains a clear physical interpretation and faith-
fully encodes the micro-scale structural information into the macro-scale hydrodynamics,
where conventional models based on empirical closures generally show limitations. In par-
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Figure 3.6: The stress �eld of the Taylor-Green vortex �ow of the 
hain- and star-shaped mole
ule suspensions

predi
ted from the mi
ro-s
ale simulations and DeePN

2
. (a) The 2D steady-state stress �eld of the 
hain-shaped

mole
ule suspension from the mi
ro-s
ale simulations. (b) The 1D steady-state stress pro�les τpxx
(x, y = 49)

and τpxx
(x = 49, y). The 
hain-shaped mole
ule suspension yields larger stress variations (i.e., the �loop area�)

along the �ow domain. (
-d) The stress evolution of τpxx
(t) and τpyy

(t) at the points (49, 35) and (49, 49),

respe
tively. The dashed and the solid lines denote the mi
ro-s
ale simulations and the DeePN

2
predi
tions,

respe
tively.

ticular, for the chain- and star-shaped molecule suspensions with the same bead number
and bond interaction, DeePN2 successfully captures the different viscoelastic responses
arising from the different molecular structural symmetry (i.e., the effective rigidity) in the
configuration space without additional human intervention. Unlike the direct evaluation
or moment-closure representations of the configurational PDF, the present DeePN2 model
directly learns a set of micro-to-macro mappings to probe the optimal approximations of
the constitutive dynamics in terms of the macro-scale features, and thereby circumvent-
ing the numerical challenges due to the high-dimensionality of the polymer configura-
tion space. This multi-scaled nature enables us to learn the constitutive dynamics of the
macro-scale features directly from the kinetic equations of their micro-scale counterparts
using only discrete rather than the time-derivative samples commonly used in the ma-
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chine learning-based models of complex dynamic problems.
One thing we have not investigated systematically is the generation of training samples.

For DeePN2 to be truly reliable, the training samples should be representative enough for
all the practical situations that one might encounter. However, due to the cost associ-
ated with generating such training samples, we would also like the training set to be as
small as possible. This calls for an adaptive procedure for generating the training sample,
such as the concurrent learning procedure discussed in [54]. The present DeePN2 mod-
els are trained with samples collected from homogeneous shear flow. Even though the
numerical predictions show good agreement with micro-scale simulations for a variety of
flows, one should not expect this to be generally the case. Further work on sampling is
needed to make sure that one can produce truly reliable DeePN2 models. Furthermore,
instead of the general form (2.6), a specific design of the encoders b(·) accounting for the
molecule symmetry and rigidity may facilitate the extraction of the macro-scale features
c. In addition, more accurate micro-scale kinetic models accounting for the heterogeneous
hydrodynamic interactions [55] and non-Markovianity [56, 57] can be used to construct
the macro-scale constitutive dynamics. Finally, the adaptive choice of the number of fea-
tures and the enhanced sampling of the discrete micro-scale configurations may further
improve the performance of the DeePN2 model. We leave these issues for future work.
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Appendices

A Rotational frame-indifference of the constitutive dynamics for

the multi-bead encoder function

We consider a polymer molecule consisting of N particles. Let r = [r1; r2; · · · ; rN−1] denote
the polymer configuration, so that there exists an invertible linear transformation between[
r; ∑

N
i=1 qi/N

]
and [q1; q2; · · · ; qN ], where qi is the position of the i-th particle. In fact,

there are multiple choices for r, including the one we have applied in Eq. (2.5), where r
consists of (N − 1) edges of a spanning tree in the bead-bond structure.

We consider a second-order tensor taking the general form

b = f(1)(r)f(2)(r)T, f(1)(r) =
N−1

∑
j=1

g
(1)
j (r∗)rj, f(2)(r) =

N−1

∑
j=1

g
(2)
j (r∗)rj, (A.1)
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where r∗ is a translational-rotational-invariant vector and g(1) and g(2) are two scalar func-
tions. We note that the encoder in the form of Eq. (A.1) is more general than Eq. (2.6).

In this appendix and the next, we consider two frames: frame 1 is static inertial, and
frame 2 is rotating with respect to frame 1 with an time dependent orthogonal transforma-
tion Q(t). Let x̃, ṽ, b̃ and x, v, b denote the positions, velocities, and second-order tensors
in frame 1 and 2 respectively. They have the following relations:

x̃ = Qx, ṽ = Qv + Q̇x, b̃ = QbQT . (A.2)

The material derivatives in both frames are

d
dt

∣∣∣∣
frame 1

:=
∂

∂t
+ ṽ · ∇x̃,

d
dt

∣∣∣∣
frame 2

:=
∂

∂t
+ v · ∇x. (A.3)

Proposition A.1. With b defined by Eq. (A.1), we have

d
dt

c − κ :

〈
N−1

∑
j=1

rj ⊗∇rj
⊗ b

〉
=

kBT

γ

〈
N−1

∑
j,k=1

Ajk∇rj
· ∇rk

b

〉

−
1
γ

〈
N−1

∑
j=1

Nb

∑
k=1

Ajk∇rk
Vp(r) · ∇rj

b

〉
, (A.4)

obeys rotational symmetry.

Proof. Let us choose the vector r∗ = [|r1|, |r2|, |r12|, |r3|, |r13|, |r23|, · · · , |rN−2,N−1|]. Denote
by r∗i the i-th element of r∗ and r∗i the corresponding the 3-dimensional vector, i.e., r∗6 =
|r23| and r∗6 = r23. Following Eq. (A.1), b consists of

b =
N−1

∑
j,k=1

bjk, bjk = g(r∗)rjr
T
k , (A.5)

where g(r∗) denotes g
(1)
j (r∗)g

(2)
k (r∗) for simplicity. With this general form, we have

d
dt

〈
b̃jk

〉 ∣∣
frame 1 = Q̇

〈
bjk

〉
QT + Q

〈
bjk

〉
Q̇T + Q

d
dt

〈
bjk

〉 ∣∣
frame 2QT. (A.6)

Moreover, we note that

κ̃ :

(
N−1

∑
i=1

r̃i ⊗∇r̃i
⊗ b̃jk

)

=
N−1

∑
i=1

[(
QκQT + Q̇QT

)
· Qrj

]
· Q ⊗∇ri

⊗
(

QbjkQT
)

=
N−1

∑
i=1

(κ · ri) · ∇ri

(
QbjkQT

)
+ (QTQ̇ri) · ∇ri

(
QbjkQT

)
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=
N−1

∑
i=1

Q(κ · ri) · ∇ri
bjkQT + Q

(
QTQ̇bjk + bjkQ̇TQ

)
QT

+ Q

(
N−1

∑
i=1

ri
T(Q̇TQ)∇ri

g(r∗)

)
rjr

T
k QT

=
N−1

∑
i=1

Q(κ · ri) · ∇ri
bjkQT + Q̇bjkQT + QbjkQ̇T, (A.7)

where we have used ri
T(Q̇TQ)ri ≡ 0 since QTQ̇ is anti-symmetric. Eq. (A.6) and Eq. (A.7)

shows that the combination of the two terms on the left-hand-side of Eq. (A.4) rigorously
preserve the rotational symmetry, i.e.,

(
d
dt

〈
b̃
〉
− κ̃ :

N−1

∑
i=1

〈
r̃i ⊗∇r̃i

⊗ b̃
〉
)∣∣∣∣∣

frame 1

≡ Q

(
d
dt

〈b〉 − κ :
N−1

∑
i=1

〈ri ⊗∇ri
⊗ b〉

)∣∣∣∣∣
frame 2

QT. (A.8)

It is straightforward to prove rotational symmetry for the other terms in Eq. (A.4).

B Symmetry-preserving neural network representation of the

objective tensor derivatives

Proposition B.1. The following ansatz of
〈

∑
N−1
i=1 ri ⊗ ∇ri

⊗ b
〉

ensures that the dynamic of
evolution of c retains rotational invariance.

N−1

∑
i=1

〈ri ⊗∇ri
⊗ b〉 =

N−1

∑
j,k=1

〈
g
(1)
j (r∗)g

(2)
k (r∗)(rj ⊗∇rj

+ rk ⊗∇rk
)⊗ rjr

T
k

〉

+
9

∑
k=1

E
(k)
1 (c)⊗ E

(k)
2 (c), (B.1)

where c = (c1, · · · , cn), c̃ = (c̃1, · · · , c̃n), and E1 and E2 satisfy

Ẽ1 := E1(c̃) = QE1(c)Q
T, Ẽ2 := E2(c̃) = QE2(c)Q

T. (B.2)

Proof. Without loss of generality, we represent the fourth order tensor by the following
two bases

F1(c)⊗ F2(c)⊗ F3(c) + F3(c)⊗ (F2(c)⊗ F1(c))
T{2,3} , F1(c), F3(c) ∈ R

3, F2(c) ∈ R
3×3,

E1(c)⊗ E2(c), E1(c), E2(c) ∈ R
3×3, (B.3)
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where the super-script T{2,3} represents the transpose between the 2nd and 3rd indices;
also F1, F2, F3, E1 and E2 satisfy the symmetry conditions

F1(c̃) = QF1(c), F3(c̃) = QF3(c),

E1(c̃) = QE1(c)Q
T, E2(c̃) = QE2(c)Q

T, F2(c̃) = QF2(c)Q
T.

(B.4)

For the term E1(c)⊗ E2(c), we have

κ : E1(c)⊗ E2(c) = Tr(κE1(c))E2(c) (B.5)

and

κ̃ : Ẽ1 ⊗ Ẽ2
∣∣
frame 1 =

(
QκQT + Q̇QT

)
:
(

QE1(c)Q
T ⊗ Ẽ2

)

= Tr(κE1(c))Ẽ2 + Tr(Q̇QTQE1(c)Q
T)Ẽ2

= Tr(κE1(c))Ẽ2

≡ Q
(

κ : E1(c)⊗ E2(c)
∣∣
frame 2

)
QT, (B.6)

where we have used Tr(Q̇QT) ≡ 0.
For the term F1(c)⊗ F2(c)⊗ F3(c) + F3(c)⊗ (F2(c)⊗ F1(c))

T{2,3} , we have

κ : F1(c)⊗ F2(c)⊗ F3(c) = F2(c)
T

κF1(c)F3(c)
T (B.7)

and

κ̃ : F̃1 ⊗ F̃2 ⊗ F̃3 = QF2(c)
T

κF1(c)F3(c)
TQT + QF2(c)

TQTQ̇F1(c)F3(c)
TQT. (B.8)

On the other hand, we note that

db̃

dt

∣∣
frame 1 = Q̇bQT + QbQ̇T + Q

db

dt

∣∣
frame 2QT . (B.9)

To ensure the rotational symmetry of Db
Dt , we have

F2 ≡ I, ∑
i

F
(i)
1 ⊗ I ⊗ F

(i)
3 =

N−1

∑
j,k=1

〈
g
(1)
j (r∗)g

(2)
k (r∗)rj ⊗ I ⊗ rk

〉
. (B.10)

Hence, we have

d
dt

c̃ − κ̃ :

(

∑
i

F̃
(i)
1 ⊗ F̃

(i)
2 ⊗ F̃

(i)
3 + F̃

(i)
3 ⊗

(
F̃
(i)
2 ⊗ F̃

(i)
1

)T{2,3}

)∣∣∣∣∣
frame 1

≡Q

(
d
dt

c − κ :

(

∑
i

F
(i)
1 ⊗ F

(i)
2 ⊗ F

(i)
3 + F

(i)
3 ⊗

(
F
(i)
2 ⊗ F

(i)
1

)T{2,3}

))∣∣∣∣∣
frame 2

QT. (B.11)



J. Mach. Learn., 1(1):114-140 132

Furthermore, using Eq. (B.10), we obtain

∑
i

F
(i)
1 ⊗ F

(i)
2 ⊗ F

(i)
3 + F

(i)
3 ⊗

(
F
(i)
2 ⊗ F

(i)
1

)T{2,3}

=
N−1

∑
j,k=1

〈
g
(1)
j (r∗)g

(2)
k (r∗)(rj ⊗∇rj

+ rk ⊗∇rk
)⊗ rjrk

T
〉

. (B.12)

Accordingly, the remaining part of ∑
N−1
i=1 〈ri ⊗∇ri

⊗ b〉 is expanded by
〈

N−1

∑
i=1

ri ⊗∇ri

N−1

∑
j,k=1

g
(1)
j (r∗)g

(2)
k (r∗)⊗ rjr

T
k

〉
=

9

∑
i=1

E
(i)
1 (c)⊗ E

(i)
2 (c). (B.13)

Combining Eqs. (B.11), (B.12) and (B.13), we conclude that the decomposition

N−1

∑
i=1

〈ri ⊗∇ri
⊗ b〉 =

N−1

∑
j,k=1

〈
g
(1)
j (r∗)g

(2)
k (r∗)(rj ⊗∇rj

+ rk ⊗∇rk
) ⊗rjr

T
k

〉

+
9

∑
k=1

E
(k)
1 (c)⊗ E

(k)
2 (c) (B.14)

ensures the objectivity of the time-derivative of c.

C Symmetry-preserving neural network representation of the

second-order tensor

In the DeePN2 model, we construct the NN representations of the second-order tensors
for the stress G, constitutive terms H1, H2, and objective tensor derivative terms E1 and
E2 that satisfy the rotational symmetry conditions, i.e.,

G(c̃1, · · · , c̃n) = QG(c1, · · · , cn)Q
T, (C.1)

where c̃i = QciQ
T and Q is an orthogonal matrix.

To preserve the rotational symmetry condition (C.1), we fix the form of encoder b1 and
transfer the learning to the eigen-space of c1. Let us assume that the eigen-decomposition
c1 = UΛUT has distinct eigenvalues, where U is the matrix whose columns are the eigen-
vectors of c1. U is not unique due to the non-uniqueness of the eigenvectors. Without loss
of generality, we further assume that the first element of u1 to be positive. With the fol-
lowing lemma, we show that the general form of U can be always written as U(j) := US(j)

with j = 1, · · · , 4, where S(j) is given by

S(1) =



+1

+1
+1


 , S(2) =



+1

−1
+1


 ,
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S(3) =



+1

+1
−1


 , S(4) =



+1

−1
−1


 .

Lemma C.1. For a symmetry matrix M ∈ R
3×3, let SM denote the set of matrices with the

transformation of S(j), i.e., SM :=
{

S(1)MS(1), · · · , S(4)MS(4)
}

. For any M(j) := S(j)MS(j) ∈

SM, S(k)M(j)S(k) ∈ SM, 1 ≤ j, k ≤ 4. Furthermore, SM can be constructed by M(j), i.e.,

SM ≡
{

S(1)M(j)S(1), · · · , S(4)M(j)S(4)
}

.

Proof. By applying S(j) to M, it is easy to see that the diagonal part of M(j) remains the
same. Since M(j) is also symmetric, we only need to check the upper-triangular part,
taking the four possible operations



∗ + +

∗ +
∗






∗ − +

∗ −
∗






∗ + −

∗ −
∗






∗ − +

∗ −
∗


 ,

where “+” represents that the element remains the same and “−” represents a sign change.
We see that number of “−” operations is either 0 or 2. Starting from any of the above
choice for M(j), all of the four operators yields either 0 or 2 “−” operations. Therefore,
S(k)M(j)S(k) ∈ SM. Furthermore, if the upper triangular part of M has distinct absolute
values, then ∀M(j), Sk MjSk 6= Sk′ MjSk′ with k 6= k′, hence SM can be constructed by Mj.
Otherwise, if some upper triangular entries of M share the same absolute value, we can
draw the same conclusion accordingly.

Now we consider the matrix whose columns are the eigenvectors of c̃1 = Qc1QT, de-
noted by Ũ. We can write Ũ = QUS(j), where j ∈ {1, 2, 3, 4}. Accordingly, the DNN input
of ci takes the form

ŨT c̃iŨ =
(

QUS(j)
)T

QciQ
T
(

QUS(j)
)
= S(j)UTciUS(j).

Let M = UTciU, by using Lemma C.1, it is easy to see that SUTciU
can be constructed by

taking j = 1, · · · , 4.

Proposition C.1. Let U be the matrix whose columns are the eigenvectors of c1. Let the DNN

input be ĉ
(j)
i = S(j)UTciUS(j). The following form of τp

G(c1, · · · , cn) =
1
4

4

∑
j=1

U(j)Ĝ(ĉ
(j)
1 , · · · , ĉ

(j)
n )U(j)T

, U(j) = US(j). (C.2)

satisfies the rotational symmetry constraint (C.1).

Finally, to account for the swap of the eigenvectors when the eigenvalues cross over,
we consider the 6 permutations of the three eigenvalues of c1, i.e.,

G(c1, · · · , cn) =
1

24

5

∑
k=0

4

∑
j=1

U(j,k)Ĝ(ĉ
(j,k)
1 , · · · , ĉ

(j,k)
n )U(j,k)T

, (C.3)
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where k represents the rank of permutation (e.g., in lexicographical order) and U(j,k) is a
variation of U(j) with corresponding column permutation.

D Validation of the rotational-symmetry preserving NN

representation

To validate the performance of the proposed DNN representation, we check the accuracy
of the modeling terms given a set of conformation tensors c1, · · · , cn under different uni-
tary transformations. Fig. D.1 shows the relative error under each transformation. The
DNN representation (C.2) yields the same results under all the transformation. In con-
trast, the DNN without accounting for the four transformations yields significant error
due to the non-uniqueness of the eigenvectors of c1.

In addition, we examine the 2D Taylor-Green vortex flow where the evolution of c1
becomes degenerate at certain points. Fig. D.2 shows the stress evolution at (45, 37). At
t = 1080, the eigenvalues λ2 and λ3 cross over. Concurrently, the prediction of the polymer
stress τp from the model without considering the swap of u2 and u3 shows apparent
deviations near the regime as shown in Fig. D.2. In contrast, the prediction from the model
retaining the eigenvalue permutation trained by Eq. (2.11) shows good agreement with the
MD results.

Figure D.1: The relative l∞ error of the model predi
tion under randomly 
hosen orthogonal transformations

without (left) and with (right) a

ounting for the four eigen-spa
e transformations in Eq. (C.2).

E Micro-scale model of the polymer solutions

In the present study, we consider suspensions with three different polymer structures as
shown in Fig. 2.1. Each polymer molecule consists of N = 7 beads connected with Nb
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Figure D.2: Stress evolution of the Taylor-Green vortex �ow at position (45, 37) of the 
hain-shaped mole
ule

suspension. Left: predi
tion without 
onsidering the swap of eigenve
tors when the two eigenvalues approa
hes

near t = 1255 as shown in the inset plot. Right: predi
tions from the model retaining the eigenvalue permutation

trained by Eq. (2.11). The dashed and the solid lines denote the mi
ro-s
ale simulations and the DeePN

2

predi
tions, respe
tively.

FENE bonds, i.e.,

V(q) =
Nb

∑
j=1

Vb

(
|qj1 − qj2 |

)
, Vb(l) = −

ks

2
l2
0 log

[
1 −

l2

l2
0

]
, (E.1)

where ks represents the spring constant and l0 is the maximum of the extension length. The
chain- and star-shaped molecules have Nb = 6 bonds with the same bond parameters ks =
0.1 and l0 = 2.3 (in reduced unit). The net-shaped molecule is similar to the star-shaped
molecule with the same parameters for the first 6 bonds; 3 additional bonds connect the
side chain particles with ks = 0.1 and l0 = 3.7. The polymer number density of the three
suspensions is np = 0.3. The solvent is modeled by the dissipative particle dynamics
(DPD) [58, 59] with number density ns = 4.0. The pairwise interaction between particle i
and j takes the standard form

Fij = FC
ij + FD

ij + FR
ij , FC

ij =

{
a(1.0 − rij/rc)eij, rij < rc,
0, rij > rc,

FD
ij =

{
−γwD(rij)(vij · eij)eij, rij < rc,
0, rij > rc,

FR
ij =

{
σwR(rij)ξijeij, rij < rc,
0, rij > rc,

where rij = ri − rj, rij = |rij|, eij = rij/rij, and vij = vi − vj, ξij are independent identically
distributed (i.i.d.) Gaussian random variables with zero mean and unit variance. γ and
σ are related with the system temperature by the second fluctuation-dissipation theorem
[60] as σ2 = 2γkBT, where kBT is set to 0.25. The detailed parameters are given in Table
E.1.
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Table E.1: Parameters (in redu
ed unit) of the mi
ro-s
ale model of the polymer solution (S-solvent, P-polymer).

a γ σ k rc

S-S 4.0 5.0 1.58 0.25 1.0

S-P 0.0 40.0 4.47 0.0 1.0

P-P 4.0 0.01 0.071 1.0 0.7

F Collecting training samples

Collecting training samples is one of the most important steps in the construction of
DeePN2. To obtain reliable models, we need to ensure that the training sample set is
representative enough of all the practical situations that the model is intended for. In the
present study, we collect the training samples in shear flow with shear rate γ̇ ∈ [0, 0.09].
Since the training of the DeePN2 model only requires discrete polymer configurations
rather than time-series samples, one convenient approach is to consecutively increase the
shear rate and collect the discrete configurations during the shear extension and relaxation
process, where the inclusion of the relaxation process can facilitate the sampling of poly-
mer configuration phase space due to the viscoelastic hysteresis effect. 32000 samples are
collected where each sample consists of 5000 polymer configurations, which will be em-
ployed to evaluate the constitutive dynamics terms 〈·〉. Due to the permutation symmetry
of the the particle label, the effective number of configurations per sample is 1 × 104 for
the chain-shaped molecule and 3 × 104 for the star- and net-shaped molecules.

G Training procedure

The DeePN2 model is constructed via the training of the NN representations of the encoder
mappings

{
gj(r

∗)
}n

j=1
, stress model G, evolution dynamics

{
H1,j

}n

j=1
,
{

H2,j
}n

j=1
and the

4th order tensors
{
Ej

}n

j=1
of the objective tensor derivatives. In this study, we choose n = 3

encoders and fix g1(r
∗) ≡ 1. For the chain-shaped molecule, we set w1,i = 1 − i/N, 1 ≤

i ≤ N − 1 and ∑i w1,iri represents the orientation between the free-end particle and the
center of mass. For the star- and net-shaped molecules, we set w1,1 = 1 and w1,i = 0 for
i ≥ 2. All terms are represented by the fully connected NN. The number of hidden layers
are set to be (120, 120, 120), (300, 300, 300), (400, 400, 400), (450, 450, 450), (560, 560, 560),
respectively. The activation function is taken to be the hyperbolic tangent. We emphasize
that the mappings

{
gj(r

∗)
}n

j=1
and weights w ∈ R

n×(N−1) involve in the training process

for the joint learning of the encoders
{

bj(r)
}n

j=1
defined in Eq. (2.6) and the macro-scale

features
{

cj

}n

j=1
, although they do not appear explicitly in the macro-scale hydrodynamic

equations.
The DNNs are trained by the Adam stochastic gradient descent method [61] for 20

epochs, using 5 samples per batch size. The initial learning rate is 2.8 × 10−4 and decay
rate is 0.75 per 20000 steps.
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Similar to Ref. [32], the loss function is defined by

L = λGLG + λH1 LH1 + λH2 LH2 + λE LE ,

where λG = 0.2, λH1 = 0.1, λH2 = 0.6 and λE = 0.1 are hyperparameters. For each
training batch of m training samples, LG, LH1 , LH2 , LE of the system are given by

LG =
m

∑
l=1

n

∑
i=1

∥∥∥∥∥∥
Gi(c

(l))−

〈
Nb

∑
k=1

rk ⊗∇rk
V

〉(l)
∥∥∥∥∥∥

2

,

LH1 =
m

∑
l=1

n

∑
i=1

∥∥∥∥∥∥
H1,i(c

(l))−

〈
N−1

∑
j,k=1

Ajk∇rj
· ∇rk

bi

〉(l)
∥∥∥∥∥∥

2

,

LH2 =
m

∑
l=1

n

∑
i=1

∥∥∥∥∥∥
H2,i(c

(l))−

〈
N−1

∑
j=1

Nb

∑
k=1

Ajk∇rk
V · ∇rj

bi

〉(l)
∥∥∥∥∥∥

2

,

LE =
m

∑
l=1

n

∑
i=1

∥∥∥∥∥∥

9

∑
s=1

E
(s)
1,i (c

(l))⊗ E
(s)
2,i (c

(l))−

〈
N−1

∑
k=1

rk ⊗∇rk
g2

i ⊗
N−1

∑
j,j′=1

wijwij′rjrj′
T

〉(l)
∥∥∥∥∥∥

2

,

(G.1)

where ‖ · ‖2 denotes the total sum of squares of the entries in the tensor, and c(l) =

(c
(l)
1 , · · · , c

(l)
n ).
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