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Abstract. We introduce a novel algorithm for gradient-based optimization of
stochastic objective functions. The method may be seen as a variant of SGD
with momentum equipped with an adaptive learning rate automatically adjusted
by an ‘energy’ variable. The method is simple to implement, computationally
efficient, and well suited for large-scale machine learning problems. The method
exhibits unconditional energy stability for any size of the base learning rate. We
provide a regret bound on the convergence rate under the online convex opti-
mization framework. We also establish the energy-dependent convergence rate
of the algorithm to a stationary point in the stochastic non-convex setting. In
addition, a sufficient condition is provided to guarantee a positive lower thresh-
old for the energy variable. Our experiments demonstrate that the algorithm
converges fast while generalizing better than or as well as SGD with momentum
in training deep neural networks, and compares also favorably to Adam.
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1 Introduction

Stochastic gradient descent (SGD) [33] is now one of the most dominant approaches
for training many machine learning (ML) models including deep neural networks
(DNNs) [8]. In each iteration, SGD only performs one parameter update on a mini-
batch of training examples. Hence it is simple and has been proven to be efficient,
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especially for tasks on large datasets [3, 13, 43]. However, the variance of SGD
can slow down the convergence after the first few training epochs; a decaying step
size typically has to be applied, which is one of the major bottlenecks for the fast
convergence of SGD [3,36]. In recent years, adaptive variants of SGD have emerged
and shown successes for their automatic learning rate adjustment. Examples include
Adagrad [7], Adadelta [45], RMSprop [41], and Adam [17]; while Adam, which may
be seen as a combination of RMSprop and an exponential moving average of the
first moment, stands out in this family of algorithms and stays popular on various
tasks. However, training with Adam or its variants typically generalizes worse than
SGD with momentum (SGDM), even when the training performance is better [43].
This explains why SGD(M) remains as a popular alternative.

AEGD (Adaptive gradient decent with energy) [21] is another gradient-based
optimization algorithm that outperforms vanilla SGD. The distinct feature of AEGD
is the use of an additional energy variable, which is updated together with the
solution. The resulting algorithm is unconditionally energy stable (in the sense
detailed in section 2) regardless of the base learning rate. Moreover, the element-
wise AEGD allows for different effective learning rates for different coordinates,
which has been empirically verified more effective than the global AEGD, see [21].
With AEGD the effective learning rate is the base learning rate multiplied by the
energy term, against a transformed gradient.

With Adam-like adaptive gradient methods, adaptation is realized by the nor-
malization in terms of the running average of the second order moment. While
these algorithms have been successfully employed in several practical applications,
they have also been observed to not converge in some other settings mainly due to
the relative sensitivity in such adaptation. Indeed, counterexamples are provided
in recent works [4, 24, 32] to show that RMSprop and Adam do not converge to an
optimal solution in either convex or non-convex settings. In contrast, the motivation
in AEGD is drawn from the perspective of dynamical systems with energy dissipa-
tion [21]. AEGD is unconditionally energy stable with guaranteed convergence in
energy regardless of the size of the base learning rate and the shape of the objective
functions. This explains why the method can have a rapid initial training process
as well as good final generalization performance.

On the other hand, it has been long known that using momentum can help
accelerate gradient descent, hence speeding up the convergence of vanilla Gradient
Decent (GD) [29]. For many application tasks, momentum can also help reduce the
variance in stochastic gradients [31, 35]. Using momentum has become a popular
tectnique in order to gain convergence speed significantly [1, 17,39].

With all these observations, a natural question is:

Can we take the best from both AEGD and SGDM, i.e., design an al-
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gorithm that not only enjoys the unconditional energy stability as AEGD,
but also features fast convergence and generalizes well as SGDM?

In this paper, we answer this question affirmatively by incorporating a running
sum of the transformed gradient with the element-wise AEGD, termed as AEGDM.
It is shown that AEGDM converges faster than AEGD and features certain advan-
tages over SGDM and Adam.

We highlight the main contributions of our work as follows:

• We propose a novel and simple algorithm AEGDM, integrating momentum
with AEGD, which allows for faster convergence.

• We show the unconditional energy stability of AEGDM, and provide a regret
bound on the convergence rate under the online convex optimization frame-
work. In the non-convex stochastic setting, we prove the energy-dependent
convergence rate to a stationary point.

• We investigate the behavior of energy rt both numerically and analytically. A
sufficient condition to guarantee a positive lower threshold for the energy is
provided.

• We also provide thorough experiments with our proposed algorithm on training
modern deep neural networks. We empirically show that AEGDM achieves a
faster convergence speed than AEGD while generalizing better than or as well
as SGDM.

• Our experimental results show that AEGDM achieves better generalization
performance than Adam.

Regarding the theoretical results, in this work we obtain convergence results for
AEGDM, in both stochastic nonconvex setting and online convex setting. While
in [21], convergence analysis is provided mainly in deterministic setting.

1.1 Further related work

The essential idea using an energy variable in the proposed algorithm is related to
the invariant energy quadratization (IEQ) approach introduced in [44,47] to develop
linear and unconditionally energy stable numerical schemes for a class of PDEs in
the form of gradient flows. The scalar auxiliary variable (SAV) approach [37] im-
proves IEQ by using a global energy variable. In the case without spatial effects,
the two formulations are the same. [21] is the first work to apply this methodology
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to optimization problems. The resulting scheme called AEGD is known to be un-
conditionally energy stable, and it is also the basis for the algorithm studied in this
work.

In the field of stochastic optimization, there is an extensive volume of research for
designing algorithms to speed up the convergence of SGD. Here we review additional
related work from three perspectives.

The first type of idea to accelerate the convergence of GD and SGD is the use of
historical gradients to adapt the step size, with renowned works including [7,41,45]
and Adam [17]. Many further advances have improved Adam, see, e.g., [4,6,16,22–
24,32]. Specifically, AMSGRAD [32] was introduced to resolve the non-convergence
issue of Adam, but the analysis is restricted only to convex problems. AdamW [23]
applied a simple weight decay regularization to Adam, which significantly improves
the performance. There are also some hybrid methods that manage to combine the
advantage of Adam and SGD [16,24].

Another category of work trying to speed up the convergence of GD and SGD is
to apply the momentum. A simple batch GD with constant momentum such as the
heavy-ball (HB) method [29] is known to enjoy the convergence rate of O(1/t) for
convex smooth optimization. With an adaptive momentum the Nesterov’s acceler-
ated gradient (NAG) [25, 26] has the convergence rate up to the optimal O(1/t2).
Recent advances show that NAG has other advantages such as speeding up escaping
saddle points [14], accelerating SGD or GD in non-convex problems [1, 31]. One
can also improve generalization of SGD in training DNNs with scheduled restart
techniques [27,34,42].

As discussed earlier, a major bottleneck for the fast convergence of SGD lies in
its variance [3,36], a natural idea is to reduce the variance of the stochastic gradient.
Different algorithms have been proposed to achieve variance reduction. Some rep-
resentative works are SAGA [5], SCSG [20], SVRG [15], Laplacian smoothing [28],
and iterative averaging methods [30,46].

1.2 Organization

In Section 2, we review the AEGD algorithm and the properties of its update rule.
Section 3 presents the proposed algorithm in this work and explains how momen-
tum is incorporated into the AEGD framework. Section 4 provides a theoretical
analysis of AEGDM’s energy stability and convergence estimates in both stochastic
non-convex optimization, and online convex optimization settings, respectively. We
empirically demonstrate the good performance of our method for a variety of models
and datasets, as shown in Section 5. Concluding remarks are given in Section 6. All
technical proofs of our theoretical results are collectively presented in Appendix A-F.
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A comparison between some adaptive gradient methods and the proposed method
is given in Appendix H. Overall, we show that AEGDM is a versatile algorithm that
scales to large-scale high-dimensional machine learning problems.

1.3 Notation

Throughout this paper, we denote the list {1,··· ,m} as [m] for integer m. For vectors
and matrices we use ‖·‖ to denote the l2-norm. For a function f :Rn→R, we use
∇f and ∂i := ∂θi to denote its gradient and partial derivative, respectively. For
vector θ∈Rn, we denote its i-th coordinate at t-th iteration by θt,i. In the algorithm
description we use z=x/y to denote element-wise division if x and y are both vectors
of the same size; x�y is element-wise product.

2 Review of AEGD

Various gradient methods have been proposed in order to achieve better performance
on diverse stochastic optimization tasks. The most common such task in machine
learning is that of training feedforward neural networks. In this problem, we are
given a set of labelled data points {xi,yi}mi=1, called the training data, and generate
a network output function f̂(θ,x) from a feedforward neural network, where θ corre-
sponds to a collection of the network parameters, then the loss of the network over
data point (xi,yi) is given by Li(θ):=l(f̂(θ,xi),yi) for θ∈Rn. The objective function
becomes

f(θ)=Exi,yi [l(f̂(θ,xi),yi)], (2.1)

which is the average loss across data points. The goal is to fit the network parameters
so that to minimize the loss over the data. For most commonly-used activation and
loss functions, the above function is non-convex.When m is large, SGD or its variants
is preferred for solving (2.1) mainly because of their cheapness per iteration cost.

The key idea of SGD is to modify the updates of GD to be

θt+1 =θt−ηgt,

where gt is a stochastic estimator of the gradient with E[gt]=∇f(θt) and bounded
second moment E[‖gt‖2

2]. Getting gt in the posed problem (2.1) is simple, at each
iteration t we can take gt=∇Lit(θt), where it∈ [m] is picked uniformly at random
at step t.

Typically, Li(θ) is bounded from below, that is,

Li(θ)>−c, i∈ [m],
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for some c>0, then

f(θ) :=
1

m

m∑
i=1

Li(θ)>−c.

The key idea of AEGD introduced in [21] is the use of an additional energy variable
r such that

∇f(θ)=2rv, v :=∇
√
f(θ)+c,

where r, taking as
√
f(θ)+c initially, will be updated together with θ, and v is a

transformed gradient. The gradient flow θ̇=−∇f(θ) is then replaced by

θ̇=−2rv, ṙ=v ·θ̇.

A simple implicit-explicit discretization gives the following AEGD update rule:

θt+1 =θt−2ηrt+1vt, rt+1−rt=vt ·(θt+1−θt).

This yields a decoupled update for r as rt+1 =rt/(1+2η|vt|2).

Remark 2.1. To see why r =
√
f+c is a reasonable choice to develop efficient

optimization algorithms, we consider a more general setting r= (f+c)α where α∈
(0,1). Then the corresponding gradient flow becomes

θ̇=−α−1r1/α−1v, ṙ=v ·θ̇.

Using similar implicit- explicit discretization, one can see that the update for r is
linear if and only if 1

α
−1 = 1, that is α= 1

2
. Any other choices would make the

resulting algorithm too cumbersome to use in practice.

Presented in Algorithm 2.1 is the element-wise version of the stochastic AEGD
proposed and analyzed in [21].

Algorithm 2.1 is shown to be unconditionally energy stable in the sense that for
any step size η>0,

E[r2
t+1,i]=E[r2

t,i]−E[(rt+1,i−rt,i)2]−η−1E[(θt+1,i−θt,i)2], i∈ [n], (2.2)

that is E[ri,t] is strictly decreasing and convergent with E[rt,i]→ r∗i as t→∞. For

AEGD, r0 =
√
Li0(θ0)+c1. Here c is also a hyperparameter, but it requires almost

no tuning as long as Li(θ)+c>0 for any i∈ [m] and θ∈Rn; see [21].
The energy stability property and convergence rates obtained in [21] apply well

for arbitrary sampling of form

f(θ;ξ)=
1

m

m∑
j=1

ξjLj(θ), (2.3)
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Algorithm 2.1 Stochastic AEGD. Good default setting for parameters are c= 1
and η=0.1.

Require: {Li(θ)}mi=1, η: the step size, θ0: initial guess of θ, and T : the total number
of iterations.

Require: c: a parameter such that for any i∈ [m], Li(θ)+c>0 for all θ∈Rn, initial
energy: r0 =

√
Li0(θ0)+c1

1: for t=0 to T−1 do
2: vt :=∇Lit(θt)/

(
2
√
Lit(θt)+c

)
(it is a random sample from [m] at step t)

3: rt+1 =rt/(1+2ηvt�vt) (update energy)
4: θt+1 =θt−2ηrt+1�vt
5: return θT

where ξ∈Rm
+ is a random sampling vector (drawn from some distribution) such that

E[ξj]=1 for j∈ [m]. Of particular interest is the b-minibatch sampling: ξ∈Rm
+ is a

b-minibatch sampling if for every subset M⊂ [m] with |M |=b so that

ξ=
m

b

∑
i∈M

ei.

3 The proposed algorithm

In this section, we propose a novel algorithm for speeding up AEGD with mo-
mentum. We denote the realizations of the stochastic objective function f(θ;ξ) at
subsequent time steps 0,··· ,T by f0(θ),··· ,fT (θ), then ft(θt) and ∇ft(θt) are stochas-
tic function value and gradient at step t, respectively. This set up for problem (2.3)
corresponds to

ft(θt)=f(θt;ξt). (3.1)

This way the stochasticity may come from the evaluation at random samples (mini-
batches) of data points. Such set up is more general and links to the online opti-
mization [9, 48], for which one must select a point in the parameter space before
seeing the cost function for that step. For the static case it reduces to ft(θt)=f(θt).

Under the current setting (online or stochastic with (3.1)), if we assume ft(θ)+c>
0 for any t∈ [T ]−1 and θ∈Rn, the AEGD method can be reformulated as:

vt,i=
∂ift(θt)

2
√
ft(θt)+c

, i∈ [n], (3.2a)



190 H. Liu and X. Tian / Ann. Appl. Math., 38 (2022), pp. 183-222

rt+1,i=
rt,i

1+2ηv2
t,i

, r0,i=
√
f0(θ0)+c, (3.2b)

θt+1,i=θt,i−2ηrt+1,ivt,i. (3.2c)

This method differs from other adaptive gradient methods in that the adaptation
here is through the update of an auxiliary energy variable rt. Keeping this adaptive
feature, we propose a momentum update by accumulating a running sum of the
historical values of vt, i.e.,

mt+1 =
t∑
i=0

µivt−i.

Such AEGD with momentum (i.e., AEGDM) can be expressed as

vt,i=
∂ift(θt)

2
√
ft(θt)+c

, i∈ [n], (3.3a)

mt+1,i=µmt,i+vt,i, m0,i=0, (3.3b)

rt+1,i=
rt,i

1+2ηv2
t,i

, r0,i=
√
f0(θ0)+c, (3.3c)

θt+1,i=θt,i−2ηrt+1,imt+1,i. (3.3d)

The added moving sum allows for the following reformulation

θt+1,i=θt,i−2ηrt+1,ivt,i+µ
rt+1,i

rt,i
(θt,i−θt−1,i),

which is similar to the classical momentum since (µrt+1,i/rt,i)≤µ<1.

Remark 3.1. For the momentum one may also use mt+1 =µmt+(1−µ)vt to obtain
an alternative update rule. With this choice, the related bounds in our theoretical
results would differ through the factor (1−µ). Also, this choice appears to bring
similar performance when using the base learning rate of size η/(1−µ), as evidenced
by our preliminary numerical tests.

We present the procedure of AEGDM in Algorithm 3.1. Here we want to point
out that the computational complexity of AEGDM is at the same level of SGD. The
additional cost only comes from the explicit update of two extra variables m and r
in each iteration.

4 Theoretical results

In this section, we present theoretical results for both online setting and the stochas-
tic setting, respectively.
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Algorithm 3.1 AEGDM. Good default setting for parameters are c= 1, η= 0.01,
µ=0.9.

Require: A sequence of objective functions {ft}T−1
t=0 ; a constant c such that ft(θ)+

c>0 for all t∈ [T ]−1; base learning rate η
Require: Initialize: θ0; m0 =0; r0 =

√
f0(θ0)+c1

1: for t=0 to T−1 do
2: vt=∇ft(θt)/(2

√
ft(θt)+c) (transformed gradient)

3: mt+1 =µmt+vt (momentum update)
4: rt+1 =rt/(1+2ηvt�vt) (energy update)
5: θt+1 =θt−2ηrt+1�mt+1

6: return θT

4.1 Online setting

We first present the energy stability and solution properties of AEGDM (3.3), and
then derive a regret bound for it in the online convex setting.

Theorem 4.1 (Energy stability and solution properties). AEGDM (3.3) is uncon-
ditionally energy stable in the sense that for any step size η>0 and each i∈ [n], rt,i
is strictly decreasing and convergent with rt,i→r∗i as t→∞. Moreover, we have the
following:

(i) for any µ<1 and η>0,

lim
t→∞
‖θt+1−θt‖=0,

∞∑
t=0

‖θt+1−θt‖2≤ 2ηn

(1−µ)2
(f0(θ0)+c); (4.1)

(ii) for any η>0,

1

T

T−1∑
t=0

|vt,i|≤

(√
f0(θ0)+c

2

)1/2
1√
ηTrT,i

, i∈ [n]. (4.2)

The proof is deferred to Appendix B.

Remark 4.1. (i) In the static case, ft(θ) = f(θ). Even in such case, f(θt) may
not be decreasing in t unless η is sufficiently small. However, rt, which serves to
approximate

√
f(θt)+c, is strictly decreasing for any η>0. This is why such property

is termed as energy stability.
(ii) The unconditional energy stability featured by AEGDM also implies convergence
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of the sequence ‖θt+1−θt‖ to zero at a rate of at least 1/
√
t. But this is not sufficient–

at least in general–to guarantee the convergence of {θt}t≥0, unless further control on
this sequence is available.
(iii) The coordinate-wise estimate in (4.2) allows the control of the average of |vt| for
each direction. This estimate indicates that the scheme convergence is inseparable
from the asymptotic behavior of rt.

Within the online learning framework proposed in [48], at each step t, the goal is
to predict the parameter θt and evaluate it on a previously unknown cost function
ft. The nature of the sequence is unknown in advance, we evaluate our algorithm
using the regret, that is the sum of all the previous difference between the online
prediction ft(θt) and the best fixed point parameter ft(θ

∗) from a feasible set Θ:

R(T )=
T−1∑
t=0

[ft(θt)−ft(θ∗)],

where

θ∗=argminθ∈Θ

T−1∑
t=0

ft(θ).

We are able to bound R as stated in the following.

Theorem 4.2 (Regret guarantee). Given the sequence {θt} generated by AEGDM
(3.3) with µ< 1 and η > 0. Assume that ‖θ−θ′‖∞≤D∞ for all θ,θ′ ∈Θ, and 0<
ft(θt)+c≤B for all t∈ [T ]−1. When Θ and {ft} are convex, AEGDM achieves the
following bound on the regret, for all T ≥1,

R(T )≤C1

(
n∑
i=1

1

ηrT,i

)1/2√
T+C2, (4.3)

where C1, C2 are constants depending on µ, D∞, B, n and f0(θ0)+c.

The proof and precise expressions for C1, C2 are deferred to Appendix C.

Remark 4.2. (i) The regret bound in (4.3) and the bound in Theorem 4.4 may
be seen as a posteriori results due to their dependence on the energy variable r at
the T -th iteration. These bounds can be useful in planning a learning rate decay
schedule based on the updated rt. If r∗i > 0, then R(T ) is of order O(

√
T ), which

is known the best possible bound for online convex optimization [9, Section 3.2].
r∗i >0 is shown to be conditionally true in the stochastic setting (Theorem 4.5). We
observe from experimental results (see Fig. 6 in Appendix G) that rt,i decays slowly
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at rate of t−α with 0<α< 1
2

(an algebraic decay rate) for large t with η within a

reasonable range. In such case, the upper bound of R(T ) is of order O(T
α+1
2 ). This

still ensures the convergence in the sense that

lim
T→∞

R(T )

T
=0.

It would be of interest to further investigate when this might fail.
(ii) The bound on θt is typically enforced by projection onto Θ [48], with which

the regret bound (4.3) can still be proven since projection is a contraction operator [9,
Chapter 3].

4.2 Stochastic setting

We proceed to present theoretical results for AEGDM (3.3) in the stochastic setting.
Our aim is at solving the following stochastic nonconvex optimization problem

min
θ∈Rn
{f(θ) :=Eξ[f(θ;ξ)]},

where ξ is a random variable satisfying certain distribution, and f(θ;ξ):Rn→R is a
differentiable nonconvex function and bounded from below so that f(θ;ξ)+c>0. In
the stochastic setting, one can only get estimators of f(θ) and its gradient, f(θ;ξ)
and ∇f(θ;ξ), respectively, with which we take

vt=∇f(θt;ξt)/(2
√
f(θt;ξt)+c)

in Algorithm 3.1.
In the stochastic setting, unconditional energy stability and solution properties

in Theorem 4.1 may be stated in the following.

Theorem 4.3 (Energy stability and solution properties). AEGDM (3.3) is uncon-
ditionally energy stable in the sense that for any step size η > 0, E[rt,i] is strictly
decreasing and convergent with E[rt,i]→r∗i as t→∞. Moreover, we have the follow-
ing:

(i) for any µ<1 and η>0,

lim
t→∞

E[‖θt+1−θt‖]=0,
∞∑
t=0

E[‖θt+1−θt‖2]≤ 2ηn

(1−µ)2
(f(θ0)+c); (4.4)

(ii) for any η>0,

1

T

T−1∑
t=0

E[|vt,i|]≤

(√
f(θ0)+c

2

)1/2(
E
[

1

ηTrT,i

])1/2

, i∈ [n]. (4.5)
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In order to present the convergence rate of AEGDM (3.3), we make assumptions
that are commonly used for analyzing the convergence of a stochastic algorithm for
nonconvex problems:

Assumption 4.1.

• Smoothness: The objective function is L-smooth: ∀x,y∈Rn,

f(y)≤f(x)+∇f(x)>(y−x)+
L

2
‖y−x‖2.

• Independent samples: The random samples {ξt}∞t=1 are independent.

• Unbiasedness: The estimate of the gradient and function value are unbiased:

Eξt [∇f(θt;ξt)]=∇f(θt), Eξt [f(θt;ξt)]=f(θt).

• Bounded variance: The variance of the estimator of both gradient and
function value satisfy

Eξt [‖∇f(θt;ξt)−∇f(θt)‖2
2]≤σ2

g , Eξt [|f(θt;ξt)−f(θt)|2]≤σ2
f .

Theorem 4.4 (Convergence rate). Let {θt} be the solution sequence generated by
AEGDM (3.3) with ft in the form of (3.1) and µ<1, η>0. Under Assumption 4.1
and assume that the stochastic gradient and function value are bounded such that
‖∇f(θt;ξt)‖≤G∞ and 0<a≤f(θt,ξt)+c≤B, then for all T ≥1,

1

T
E

[
min
i
rT,i

T−1∑
t=0

‖∇f(θt)‖2
2

]
≤ C1+C2n+C3σg

√
nT

ηT
,

where C1, C2, C3 are constants depending on µ, η, L, G∞, a, B, n and f0(θ0)+c.

The proof and the precise expressions for C1, C2, C3 are deferred to Appendix
E.

The question of how rT depends on T is theoretically interesting but subtle to
characterize. Numerically we observe that for η less than a threshold, rT,i tends
either to a positive number (r∗i >0) or to zero much slower than 1/

√
T (see Fig. 6 in

Appendix G). The above result is meaningful in both cases. In the case r∗i >0, the
rate of O(1/

√
T ) is recovered from this bound. Next we shall identify a sufficient

condition for ensuring such lower positive threshold for rT,i.
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4.3 Lower bound of the energy

First note that the L-smoothness of f(θ) implies the LF -smoothness of F (θ) =√
f(θ)+c with

LF =
1

2
√
f(θ∗)+c

(
L+

G2
∞

2(f(θ∗)+c)

)
. (4.6)

This will be used in our analysis of the asymptotic behavior of the energy. The
result is stated below.

Theorem 4.5 (Lower bound of rT ). Under the same assumptions as in Theorem
4.4, we have

min
i
E[rT,i]≥max

{√
f(θ∗)+c−ηD1−µD2−σD3,0

}
, (4.7)

where σ=max{σf ,σg}, with LF given in (4.6) and

D1 =
LFn(f(θ0)+c)

(1−µ)2
, D2 =

1

2

(
1+

1

(1−µ)2

)
n
√
f(θ0)+c,

D3 =
1

2a1/2
+

√
G2
∞

4a3
+

1

a

√
f(θ0)+c

1−µ
√
ηnT .

Moreover, in the absence of noise, we have

min
i
rT,i>min

i
r∗i >0, if ηD1+µD2<

√
f(θ∗)+c. (4.8)

The derivation of LF and the proof for Theorem 4.5 are deferred to Appendix F.

Remark 4.3. 1. Eq. (4.8) is only a sufficient condition. We observe from our
experimental results that the upper bound for η to guarantee the positiveness of r∗i
can be much larger (see Fig. 6 in Appendix G).

2. In Theorem 4.5, we measure how far r∗ can deviate from F (θ∗) in the worst
situation. In the case of no momentum and no noise, we have

min
i
rT,i>min

i
r∗i >0 if η<

√
f(θ∗)+c

D1

.

This recovers the result in [21] for the deterministic AEGD.
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5 Numerical experiments

In this section, we empirically evaluate AEGDM and compare it with SGDM, Adam,
and AEGD on several benchmark problems. We show that in the deterministic case,
AEGDM does speed up the convergence of AEGD; in the stochastic case like training
deep neural network tasks, the fluctuation of test accuracy of AEGDM is much
smaller than that of AEGD (which confirms that AEGDM reduces the variance of
AEGD), while AEGDM still achieves comparable final generalization performance of
AEGD, which is as well as or better than SGDM. Adam makes rapid initial progress
but does not generalize well at the end as the other three methods.

We begin with testing the deterministic counterpart of the method on the 2D-
Rosenbrock function, then we conduct the stochastic version on several image classi-
fication tasks, including three datasets: MNIST†, CIFAR-10 & CIFAR-100 [18]; and
six convolution neural network architectures: LeNet-5 [19], VGG-16 [38], ResNet-
32 [10], DenseNet-121 [11], SqueezeNet [12], GoogleNet [40]. We choose these ar-
chitectures because of their broad importance and superior performance on several
benchmark tasks.

In all experiments, we set the parameter c=1 for both AEGD and AEGDM. The
momentum parameter µ is set to the default value 0.9 for both SGDM and AEGDM.
For Adam, we also directly apply the default hyperparameter values with β1 = 0.9
and β2=0.999. For each method, we only tune the base learning rate. Details about
tuning learning rate for training deep neural networks are presented in Section 5.2.

5.1 2D-Rosenbrock function

We first compare AEGDM with AEGD and GD with momentum (GDM) on the
2D-Rosenbrock function defined by

f(x1,x2)=(1−x1)2+100(x2−x2
1)2. (5.1)

For this non-convex function, the global minimum f ∗=0 achieved at (1,1) is inside a
long, narrow, parabolic shaped flag valley. It is trivial to find the valley, but known
to be difficult to converge to the global minimum.

The initial point is set at (−3,−4). We fine tune the step size and choose the
one that achieves the fastest convergence speed for each method. Fig. 1(a) presents
the optimality gap v.s. iteration of the three methods, the step size (represented by
‘lr’) used for each method is also included. We see that the performance of AEGD
is comparable with that of GDM, and AEGDM converges much faster than both of

†http://yann.lecun.com/exdb/mnist/.
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(a) Optimality gap (b) Trajectory

Figure 1: Comparison of the performance of three different methods on the 2D Rosenbrock function.

them. This confirms that momentum can speed up the convergence of AEGD. We
also present the trajectory of GDM and AEGDM in Fig. 1(b), it can be seen that
though the step size of AEGDM is a lot larger than that of GDM, the oscillation of
AEGDM is much smaller, this explains why AEGDM converges much faster than
GDM.

5.2 Image classification

Now we compare the performance of AEGDM with SGDM, Adam and AEGD on
several image classification tasks, including LeNet-5 on MNIST; VGG-16, ResNet-
32, DenseNet-121 on CIFAR-10; and SqueezeNet, GoogleNet on CIFAR-100. For
experiments on MNIST, we run 50 epochs with a minibatch size of 128 and weight
decay of 1×10−4. For experiments on CIFAR-10 and CIFAR-100, we employ the
fixed budget of 200 epochs and reduce the learning rates by 10 after 150 epochs.
Detailed settings like batch size, and weight decay were chosen as suggested for
respective base architectures. We also summarize them in Appendix G ‡.

For each method, we fine tune the base learning rate and report the
one that achieves the best final generalization performance. For SGDM, we
search the base learning rate η among {0.01,0.05,0.1,0.2,0.3}; for Adam, we
search η from {0.0001,0.0003,0.0005,0.001,0.002}; for AEGD, we search η from
{0.05,0.1,0.2,0.3,0.4}; for AEGDM, we search η from: {0.005,0.008,0.01,0.02,0.03}.
We found that these choices work well for a wide range of tasks, including examples
given below.

‡We make our code available at https://github.com/txping/AEGDM.



198 H. Liu and X. Tian / Ann. Appl. Math., 38 (2022), pp. 183-222

(a) VGG-16, training loss (b) ResNet-32, training loss

(c) DenseNet-121, training loss (d) VGG-16, test accuracy

(e) ResNet-32, test accuracy (f) DenseNet-121, test accuracy

Figure 2: Training loss and test accuracy for VGG-16, ResNet-32 and DenseNet-121 on CIFAR-10.
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(a) LeNet-5, training loss (b) SqueezeNet, training loss

(c) GoogleNet, training loss (d) LeNet-5, test accuracy

(e) SqueezeNet, test accuracy (f) GoogleNet, test accuracy

Figure 3: Training loss and test accuracy for LeNet-5 on MNIST and SqueezeNet, GoogleNet on
CIFAR-100.
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MNIST Figs. 3(a), (d) show the training loss and test accuracy against epochs
of each method. We see that in the training part, AEGDM and SGDM convergence
faster and achieve lower training loss than AEGD and Adam. For test accuracy,
we observe an obvious fast initial progress of AEGDM, and it generalizes as well as
SGDM at the end. While AEGD and Adam still have small oscillations by epoch
50. In addition, AEGDM gives the highest test accuracy (99.3%) among all the
methods.

CIFAR-10 From Fig. 2 we can see that the oscillation of AEGD in test accuracy
is significantly reduced by AEGDM. Though Adam makes rapid progress in the early
stage, the generalization performance of Adam become worse than SGDM, AEGD
and AEGDM after epoch 150 when the learning rate decays. In addition, we observe
that AEGDM obtain better final generalization performance than SGDM in some
tasks. For ResNet-32, AEGDM even surpass SGDM by ∼1% in test accuracy.

CIFAR-100 The results are included in Fig. 3. We see that the overall perfor-
mance of each method is similar to that on CIFAR-10. For SqueezeNet, AEGDM
gives the highest test accuracy (71.33%) among the four methods. For GoogleNet,
AEGD outperforms SGDM by ∼0.5% in test accuracy after learning rate decays.

The above results are obtained by fine tuning the base learning rate for each
method in each task. While in practice, tuning hyperparameters can be tedious,
thus methods require little tuning are more desirable. Therefore, we also conduct
comparison (with more methods involved, including AdaBound, AdaBelief, Radam,
Yogi) where the default base learning rate is used for each method in all tasks. The
results and detailed setting are presented in the Appendix G, from which we see
that AEGDM with default base learning rate (0.01) generalizes better than SGDM
with default base learning rate (0.1) in all tasks.

6 Discussion

We have developed AEGDM, a gradient method adapted with energy and momen-
tum for solving stochastic optimization problems. The method integrates AEGD
introduced in [21] with momentum, featuring unconditional energy stability and
guaranteed regret bound. Our experiments show that AEGDM improves AEGD by
speeding up the convergence in the deterministic setting and reducing the variance
in the stochastic setting. By comparison with SGDM and Adam, we show the po-
tential of AEGD(M) in training deep neural networks to get faster convergence or
better generalization performance.

The convergence rates are energy-dependent, hence it is highly desired to obtain
sharper estimates on the asymptotic behavior of rt as t→∞ relative to the base
learning rate η. The result in Theorem 4.5 as an indication of a lower bound for rt
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is not optimal at all. We expect a positive lower bound for rt at least for small time
steps in the deterministic case. This may be seen by analyzing the ODE system
obtained from the scheme when the time step tends to zero. In fact, a global version
of such system can be derived from (3.3) as

θ̇=−2rm, (6.1a)

ṙ=−2r|v|2, (6.1b)

0=−(1−µ)m+v, (6.1c)

where v(s) =∇F (θ(s)), with s as the continuous time variable, F (θ) =
√
f(θ)+c.

Observe that

d

ds
[r(s)−(1−µ)F (θ(s))]

=−2r|v|2−(1−µ)〈∇F (θ),θ̇〉
=−2r|v|2−(1−µ)〈v,−2rm〉=0.

Using the choice r0 =F (θ0), we obtain

r(s)=(1−µ)F (θ(s))+µF (θ0).

Hence for any s>0,

r(s)≥(1−µ)minF (θ)+µF (θ0)≥minF (θ)>0.

We leave more refined analysis in future work.

In this appendix, we present technical proofs of theoretical results in this work.

Appendix A: auxiliary lemmas and notation

Lemma A.1. Set

Gi(T,µ)=
T∑
t=1

rt,im
2
t,i.

Then

Gi(T,µ)≤ 1

(1−µ)2
Gi(T,0) (A.1)

provided µ<1.
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Proof. Note that using m0,i=0 we may rewrite Gi as

Gi(T,µ)=
T∑
t=0

rt,im
2
t,i

with Gi(0,µ)=0. For any ε>0 with (1+ε)µ2<1,

Gi(T,µ)=
T−1∑
t=0

rt+1,im
2
t+1,i=

T−1∑
t=0

rt+1,i(µmt,i+vt,i)
2

≤
T−1∑
t=0

((1+ε)µ2rt,im
2
t,i+(1+ε−1)rt+1,iv

2
t,i) (since rt+1,i≤rt,i)

≤(1+ε)µ2Gi(T−1,µ)+(1+ε−1)Gi(T,0)

≤((1+ε)µ2)TGi(0,µ)+(1+ε−1)Gi(T,0)(1+(1+ε)µ2+···+((1+ε)µ2)T−1)

≤(1+ε−1)Gi(T,0)
1

1−(1+ε)µ2
.

Since 0≤µ<1, we may take ε=(1−µ)/µ>0 so that (1+ε)µ2 =µ<1, and 1+ε−1 =
(1−µ)−1, hence (A.1).

Lemma A.2. For 0≤µ<1,

Gi(T,µ)≤ r0,i

2η(1−µ)2
. (A.2)

Proof. From (3.3c), it follows

rt,i−rt+1,i=2ηrt+1,iv
2
t,i.

Taking summation over t from 0 to T−1 and using telescopic cancellation, we have

r0,i−rT,i=2η
T−1∑
t=0

rt+1,iv
2
t,i.

Rearrange the above to get

Gi(T,0)=
T−1∑
t=0

rt+1,iv
2
t,i≤

r0,i

2η
. (A.3)

By Lemma A.1, we get (A.2).
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For the proofs of Theorems 4.1 and 4.2, we introduce notation,

Ft :=
√
ft(θt)+c. (A.4)

The initial data for ri is taken as r0,i=F0. With such choice

G(T,µ)=
n∑
i=1

Gi(T,µ)≤ nF0

2η(1−µ)2
. (A.5)

For the proofs of Theorem 4.3, Theorem 4.4 and Theorem 4.5, we introduce notation

F̃t :=
√
f(θt;ξt)+c. (A.6)

The initial data for ri is taken as r0,i= F̃0. With such choice,

G(T,µ)=
n∑
i=1

Gi(T,µ)=
nF̃0

2η(1−µ)2
. (A.7)

Lemma A.3. Under the assumptions in Theorem 4.4, we have for all t∈ [T ],

(i) ‖∇f(θt)‖∞≤G∞.

(ii) E[(F̃t)
2]=F 2(θt)=f(θt)+c.

(iii) E[F̃t]≤F (θt). In particular, E[r0,i]=E[F̃0]≤F (θ0).

(iv) E[|F (θt)−F̃t|]≤ 1
2a1/2

σf .

(v) E[‖∇F (θt)−vt‖2
2]≤ G2

∞
8a3
σ2
f+ 1

2a
σ2
g .

Proof. (i) By assumption ‖gt‖∞≤G∞, we have

‖∇f(θt)‖∞=‖E[gt]‖∞≤E[‖gt‖∞]≤G∞.

(ii) This follows from the unbiased sampling of

f(θt)=Eξt [f(θt;ξt)].

(iii) By Jensen’s inequality, we have

E[F̃t]≤
√
E[F̃ 2

t ]=
√
F (θt)2 =F (θt).
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(iv) By the assumption 0<a≤f(θt;ξt)+c= F̃ 2
t , we have

E[|F (θt)−F̃t|]≤E

[∣∣∣∣f(θt)−f(θt;ξt)

F (θt)+F̃t

∣∣∣∣
]
≤ 1

2a1/2
E[|f(θt)−f(θt;ξt)|]≤

1

2a1/2
σf .

(v) By the definition of F (θ) and vt in (3.3a), we have

‖∇F (θt)−vt‖2
2 =

∥∥∥∥∇f(θt)

2F (θt)
− gt

2F̃t

∥∥∥∥2

2

=
1

4

∥∥∥∥∇f(θt)(F̃t−F (θt))

F (θt)F̃t
+
∇f(θt)−gt

F̃t

∥∥∥∥2

2

≤1

2

∥∥∥∥∇f(θt)(F̃t−F (θt))

F (θt)F̃t

∥∥∥∥2

2

+
1

2

∥∥∥∥∇f(θt)−gt
F̃t

∥∥∥∥2

2

≤G
2
∞

2a2
|F̃t−F (θt)|2+

1

2a
‖∇f(θt)−gt‖2

2,

where both the gradient bound and the assumption that

0<a≤f(θt;ξt)+c= F̃ 2
t

are essentially used. Take an expectation to get

E[‖∇F (θt)−vt‖2
2]≤G

2
∞

2a2
E[|F̃t−F (θt)|2]+

1

2a
E[‖∇f(θt)−gt‖2

2].

Similar to the proof for (iv), we have

E[|F̃t−F (θt)|2]≤ 1

4a
σ2
f .

This together with the variance assumption for gt gives

E[‖∇F (θt)−vt‖2
2]≤G

2
∞

8a3
σ2
f+

1

2a
σ2
g .

Thus, we complete the proof.
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Appendix B: proof of Theorem 4.1

The decreasing of rt,i can be easily seen from (3.3c) since r0,i>0 and 1+2ηv2
t,i≥1

for all t≥1 and i∈ [n]. Using (A.2), we have

T−1∑
t=0

‖θt+1−θt‖2
2 =

n∑
i=1

T−1∑
t=0

(−2ηrt+1,imt+1,i)
2

≤4η2

n∑
i=1

T−1∑
t=0

r0,irt+1,im
2
t+1,i

=4η2G(T,µ)F0≤
2ηn

(1−µ)2
(f0(θ0)+c).

Using the Cauchy-Schwarz inequality, we get

T−1∑
t=0

|vt,i|=
T−1∑
t=0

1
√
rt+1,i

√
rt+1,i|vt,i|

≤

(
T−1∑
t=0

1

rt+1,i

)1/2(T−1∑
t=0

rt+1,iv
2
t,i

)1/2

≤
(
Gi(T,0)

)1/2

(
T

rT,i

)1/2

.

The desired estimate (4.2) follows by using (A.3).

Appendix C: proof of Theorem 4.2

By convexity of ft, the regret can be bounded by

R(T )=
T−1∑
t=0

ft(θt)−ft(θ∗)≤
T−1∑
t=0

∇ft(θt)>(θt−θ∗)=
T−1∑
t=0

n∑
i=1

∂ift(θt)(θt,i−θ∗i ). (C.1)

Using the update rule (3.3), we have for i∈ [n],

θt+1,i=θt,i−2ηrt+1,imt+1,i=θt,i−2ηrt+1,i(µmt,i+vt,i),

which upon subtraction of θ∗i and squaring both sides yields

(θt+1,i−θ∗i )2 =(θt,i−θ∗i )2−4ηrt+1,i(µmt,i+vt,i)(θt,i−θ∗i )+4η2r2
t+1,im

2
t+1,i.



206 H. Liu and X. Tian / Ann. Appl. Math., 38 (2022), pp. 183-222

Rearranging we get

4ηrt+1,ivt,i(θt,i−θ∗i )

=
(

(θt,i−θ∗i )2−(θt+1,i−θ∗i )2
)
−4ηrt+1,iµmt,i(θt,i−θ∗i )+4η2r2

t+1,im
2
t+1,i.

Note that 4ηrt+1,ivt,i=2ηrt+1,i∂ift/Ft, hence the above can be rewritten as

∂ift(θt)(θt,i−θ∗i )

=
Ft

2ηrt+1,i

(
(θt,i−θ∗i )2−(θt+1,i−θ∗i )2

)
+2µFtmt,i(θ

∗
i −θt,i)+2ηFtrt+1,im

2
t+1,i

=
Ft

2ηrt+1,i

(θt,i−θt+1,i)
(

(θt,i−θ∗i )+(θt+1,i−θ∗i )
)

+2µFtmt,i(θ
∗
i −θt,i)+2ηFtrt+1,im

2
t+1,i

=Ftmt+1,i

(
(θt,i−θ∗i )+(θt+1,i−θ∗i )

)
+2µFtmt,i(θ

∗
i −θt,i)+2ηFtrt+1,im

2
t+1,i.

Using (C.1), we have

R(T )≤
T−1∑
t=0

n∑
i=1

Ftmt+1,i

(
(θt,i−θ∗i )+(θt+1,i−θ∗i )

)
+
T−1∑
t=0

n∑
i=1

2µFtmt,i(θ
∗
i −θt,i)+

T−1∑
t=0

n∑
i=1

2ηFtrt+1,im
2
t+1,i. (C.2)

Introduce

M(T ) :=
T−1∑
t=0

n∑
i=1

|mt+1,i|

and using the bound Ft≤B1/2, we can estimate R(T ) as follows:

R(T )≤2B1/2D∞(M(T )+µM(T−1))+2ηB1/2G(T,µ)

≤2(1+µ)B1/2D∞M(T )+2ηB1/2G(T,µ).

Note that G(T,µ) is bounded by (A.5) and M(T ) can be bounded by

M(T )=
T−1∑
t=0

n∑
i=1

|mt+1,i|

≤

(
T−1∑
t=0

n∑
i=1

rt+1,i|mt+1,i|2
)1/2(T−1∑

t=0

n∑
i=1

1

rt+1,i

)1/2

≤
√
G(T,µ)

(
n∑
i=1

T

rT,i

)1/2

.
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Connecting all the above estimates, we obtain

R(T )≤C1

(
n∑
i=1

1

rT,i

)1/2√
T+C2,

where
C1 =2(1+µ)B1/2D∞

√
G(T,µ), C2 =2ηB1/2G(T,µ).

The regret bound (C.2) follows by using (A.5). This completes the proof of the
regret bound.

Appendix D: proof of Theorem 4.3

The proof is entirely similar to the proof of Theorem 4.1, with the use of expectation.

Appendix E: proof of Theorem 4.4

Since f is L-smooth, we have

f(θt+1)≤f(θt)+∇f(θt)
>(θt+1−θt)+

L

2
‖θt+1−θt‖2

2. (E.1)

Denoting ηt=η/F̃t, we rewrite the second term in the RHS of (E.1) as

∇f(θt)
>(θt+1−θt)

=∇f(θt)
>(−2ηrt+1mt+1)

=−2η∇f(θt)
>rt+1(µmt+vt)

=−2η∇f(θt)
>rt+1vt−2µη∇f(θt)

>rt+1mt

=−∇f(θt)
>ηtrt+1gt−2µη∇f(θt)

>rt+1mt (since gt=2F̃tvt)

=−∇f(θt)
>ηt−1rtgt+∇f(θt)

>(ηt−1rt−ηtrt+1)gt−2µη∇f(θt)
>rt+1mt. (E.2)

We further bound the second term and third term in the RHS of (E.2) separately.
For the second term, we have

∇f(θt)
>(ηt−1rt−ηtrt+1)gt

=∇f(θt)
>ηt−1(rt−rt+1)gt+∇f(θt)

>(ηt−1−ηt)rt+1gt

=∇f(θt)
>ηt−1(rt−rt+1)gt+(ηt−1−ηt)g>t rt+1gt
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+(ηt−1−ηt)(∇f(θt)−gt)>rt+1gt

≤ηt−1‖∇f(θt)‖∞‖rt−rt+1‖1,1‖gt‖∞+|ηt−1−ηt|g>t rt+1gt

+|ηt−1−ηt|·|(∇f(θt)−gt)>rt+1gt|
≤(ηG2

∞/
√
a)(‖rt‖1,1−‖rt+1‖1,1)+(2η/

√
a)g>t rt+1gt

+(2η/
√
a)|(∇f(θt)−gt)>rt+1gt|. (E.3)

The fourth inequality holds because for a positive diagonal matrix A,

x>Ay≤‖x‖∞‖A‖1,1‖y‖∞,

where
‖A‖1,1 =

∑
i

aii.

The last inequality follows from rt+1,i≤rt,i for i∈ [n] and (i) in Lemma A.3.
For the third term in the RHS of (E.2), we have

−2µη∇f(θt)
>rt+1mt

=−2µηg>t rt+1mt+2µη(gt−∇f(θt))
>rt+1mt

≤µηg>t rt+1gt+µηm
>
t rt+1mt+2µη|(gt−∇f(θt))

>rt+1mt|, (E.4)

where the inequality follows from that for a positive diagonal matrix A,

x>Ay≤ 1

2
x>Ax+

1

2
y>Ay.

Connecting (E.3) and (E.4), we can further bound (E.2) by

∇f(θt)
>(θt+1−θt)

≤−∇f(θt)
>ηt−1rtgt+(ηG2

∞/
√
a)(‖rt‖1,1−‖rt+1‖1,1)

+(2η/
√
a+µη)g>t rt+1gt+µηm

>
t rt+1mt

+(2η/
√
a)|(∇f(θt)−gt)>rt+1gt|+2µη|(gt−∇f(θt))

>rt+1mt|. (E.5)

Substituting (E.5) into (E.1) and rearranging to get

∇f(θt)
>ηt−1rtgt

≤(f(θt)−f(θt+1))+(ηG2
∞/
√
a)(‖rt‖1,1−‖rt+1‖1,1)+(2η/

√
a+µη)g>t rt+1gt

+µηm>t rt+1mt+(2η/
√
a)|(∇f(θt)−gt)>rt+1gt|

+2µη|(gt−∇f(θt))
>rt+1mt|+

L

2
‖θt+1−θt‖2

2.
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Taking an conditional expectation on (θt,rt), we have

∇f(θt)
>ηt−1rt∇f(θt)=Eξt

[
∇f(θt)

>ηt−1rtgt

]
≤Eξt

[
(f(θt)−f(θt+1))+(ηG2

∞/
√
a)(‖rt‖1,1−‖rt+1‖1,1)

+(2η/
√
a+µη)g>t rt+1gt+µηm

>
t rt+1mt+(2η/

√
a)|(∇f(θt)−gt)>rt+1gt|

+2µη|(gt−∇f(θt))
>rt+1mt|+

L

2
‖θt+1−θt‖2

2

]
, (E.6)

where the assumption Eξt [gt] =∇f(θt) is used in the first equality. Since ξ1,··· ,ξt
are independent random variables, we set E=Eξ1Eξ2 ···EξT and take a summation
on (E.6) over t from 0 to T−1 to get

E

[
T−1∑
t=0

∇f(θt)
>ηt−1rt∇f(θt)

]
≤E
[
f(θ0)−f(θT )

]
+(ηG2

∞/
√
a)E
[
‖r0‖1,1−‖rT‖1,1

]
+(2η/

√
a+µη)E

[
T−1∑
t=0

g>t rt+1gt

]
+µηE

[
T−1∑
t=0

m>t rt+1mt

]

+(2η/
√
a)E

[
T−1∑
t=0

|(∇f(θt)−gt)>rt+1gt|

]
+2µηE

[
T−1∑
t=0

|(gt−∇f(θt))
>rt+1mt|

]

+
L

2
E

[
T−1∑
t=0

‖θt+1−θt‖2
2

]
. (E.7)

Below we bound each term in (E.7) separately. First recall

gt=2vt
√
f(θt;ξt)+c and f(θt;ξt)+c≤B,

we have

T−1∑
t=0

g>t rt+1gt≤4B
T−1∑
t=0

v>t rt+1vt=4BG(T,0)≤2nBF̃0/η,

where (A.7) with µ=0 was used. Note that by rt+1,i≤rt,i, we have

T−1∑
t=0

m>t rt+1mt≤
T−1∑
t=0

m>t rtmt=
T−2∑
t=0

m>t+1rt+1mt+1≤G(T,µ)≤ nF̃0

2η(1−µ)2
,
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where (A.7) was used. These two bounds allow us to further get

T−1∑
t=0

‖rt+1gt‖2
2 =

n∑
i=1

T−1∑
t=0

r2
t+1,ig

2
t,i≤

n∑
i=1

T−1∑
t=0

r0,irt+1,ig
2
t,i

=

( n∑
i=1

T−1∑
t=0

rt,ig
2
t,i

)
F̃0≤2nBF̃ 2

0 /η, (E.8)

and also
T−1∑
t=0

‖rt+1mt‖2
2≤
( n∑

i=1

T−1∑
t=0

rt,im
2
t,i

)
F̃0≤

nF̃ 2
0

2η(1−µ)2
. (E.9)

For the rest three terms in (E.7), we use the Cauchy-Schwarz inequality to get

E

[
T−1∑
t=0

|(gt−∇f(θt))
>rt+1mt|

]

≤E

[
T−1∑
t=0

‖∇f(θt)−gt‖2‖rt+1mt‖2

]

≤E

[(T−1∑
t=0

‖∇f(θt)−gt‖2
2

)1/2(T−1∑
t=0

‖rt+1mt‖2
2

)1/2
]

≤

(
E

[
T−1∑
t=0

‖∇f(θt)−gt‖2
2

])1/2(
E

[
T−1∑
t=0

‖rt+1mt‖2
2

])1/2

≤σg
√
nT/2ηF (θ0)/(1−µ), (E.10)

where (E.9) and the bounded variance assumption were used. We replace mt in
(E.10) by gt and use (E.8) to get

E

[
T∑
t=1

|(∇f(θt)−gt)>rt+1gt|

]

≤

(
E

[
T−1∑
t=0

‖∇f(θt)−gt‖2
2

])1/2(
E

[
T−1∑
t=0

‖rt+1gt‖2
2

])1/2

≤σg
√

2BnT/ηF (θ0). (E.11)

By (4.4), the last term in (E.7) is bounded above by

L

2
E

[
∞∑
t=0

‖θt+1−θt‖2

]
≤ Lηn

(1−µ)2
F 2(θ0). (E.12)
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Substituting (E.11), (E.10), (E.12) into (E.7), using Lemma A.3, E[‖r0‖1,1]≤nF (θ0),
we get

E

[
T−1∑
t=0

∇f(θt)
>ηt−1rt∇f(θt)

]
≤(f(θ0)−f(θ∗))+ηn(G2

∞/
√
a)F (θ0)+

(
4B/
√
a+2µB+µ/(2(1−µ)2)

)
nF (θ0)

+(2
√

2B/a+
√

2µ/(1−µ))σg
√
ηnTF (θ0)+LηnF 2(θ0)/(1−µ)2. (E.13)

Note that the left hand side is bounded from below by

ηB−1/2E

[
min
i
rT,i

T−1∑
t=0

‖∇f(θt)‖2
2

]
,

where we used ηt≥η/B1/2. Thus we have

E

[
min
i
rT,i

T−1∑
t=0

‖∇f(θt)‖2
2

]
≤ C1+C2n+C3σg

√
nT

η
,

where

C1 =(f(θ0)−f(θ∗))B1/2,

C2 =
(
ηG2
∞/
√
a+4B/

√
a+2µB+µ/(2(1−µ)2)

)
B1/2

√
f(θ0)+c

+ηLB1/2(f(θ0)+c)/(1−µ)2,

C3 =
(
2
√
B/a+µ/(1−µ)

)√
2ηB

√
f(θ0)+c.

Appendix F: proof of Theorem 4.5

Recall that F (θ)=
√
f(θ)+c, then for any x,y∈{θt}Tt=0 we have

‖∇F (x)−∇F (y)‖=

∥∥∥∥∇f(x)

2F (x)
−∇f(y)

2F (y)

∥∥∥∥
=

1

2

∥∥∥∥∇f(x)(F (y)−F (x))

F (x)F (y)
+
∇f(x)−∇f(y)

F (y)

∥∥∥∥
≤ G∞

2(F (θ∗))2
|F (y)−F (x)|+ 1

2F (θ∗)
‖∇f(x)−∇f(y)‖.
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One may check that

|F (y)−F (x)|≤ G∞
2F (θ∗)

‖x−y‖.

These together with the L-smoothness of f lead to

‖∇F (x)−∇F (y)‖2≤LF‖x−y‖,

where

LF =
1

2
√
f(θ∗)+c

(
L+

G2
∞

2(f(θ∗)+c)

)
.

This confirms the LF -smoothness of F , which yields

F (θt+1)−F (θt)

≤∇F (θt)
>(θt+1−θt)+

LF
2
‖θt+1−θt‖2

=(∇F (θt)−vt)>(θt+1−θt)+v>t (θt+1−θt)+
LF
2
‖θt+1−θt‖2.

Summation of the above over t from 0 to T−1 and taken with the expectation gives

E[F (θT )−F (θ0)]≤
3∑
i=1

Si, (F.1)

where

S1 =E

[
T−1∑
t=0

v>t (θt+1−θt)

]
,

S2 =E

[
T−1∑
t=0

(∇F (θt)−vt)>(θt+1−θt)

]
,

S3 =E

[
T−1∑
t=0

LF
2
‖θt+1−θt‖2

]
.

Below we bound S1, S2, S3 separately. To bound S1, we first note that

rt+1,i−rt,i=−2ηrt+1,iv
2
t,i=vt,i(−2ηrt+1,ivt,i)

=vt,i
(
−2ηrt+1,i(mt+1,i−µmt,i)

)
=vt,i

(
−2ηrt+1,imt+1,i+2µηrt+1,imt,i

)
=vt,i(θt+1,i−θi)+2µηrt+1,ivt,imt,i,
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from which we get

S1 =E

[
T−1∑
t=0

v>t (θt+1−θt)

]

=E

[
n∑
i=1

T−1∑
t=0

rt+1,i−rt,i−2µηrt+1,ivt,imt,i

]

=
n∑
i=1

E[rT,i]−nE[F̃0]−2µηE

[
n∑
i=1

T−1∑
t=0

rt+1,ivt,imt,i

]
,

where the third equality follows from (3.3c).
For S2, by Cauchy-Schwarz inequality, we have

S2 =E

[
T−1∑
t=0

(∇F (θt)−vt)>(θt+1−θt)

]

≤E

[
T−1∑
t=0

‖∇F (θt)−vt)‖2‖θt+1−θt)‖2

]

≤E

[(T−1∑
t=0

‖∇F (θt)−vt)‖2
2

)1/2(T−1∑
t=0

‖θt+1−θt‖2
2

)1/2
]

≤

(
E

[
T−1∑
t=0

‖∇F (θt)−vt)‖2
2

])1/2(
E

[
T−1∑
t=0

‖θt+1−θt‖2
2

])1/2

≤
√

2F (θ0)

1−µ
√
ηnT

√
G2
∞

8a3
σ2
f+

1

2a
σ2
g ,

where the last inequality is by (v) in Lemma A.3 and (4.4) in Theorem 4.3.
For S3, also by (4.4) in Theorem 4.3, we have

S3 =
LF
2
E

[
T−1∑
t=0

‖θt+1−θt‖2

]
≤ LFηnF

2(θ0)

(1−µ)2
.

With the above bounds on S1, S2, S3, (F.1) can be rearranged as

F (θ∗)+2µηE

[
n∑
i=1

T−1∑
t=0

rt+1,ivt,imt,i

]
−LFηnF

2(θ0)

(1−µ)2

−F (θ0)

1−µ
√
ηnT

√
G2
∞

4a3
σ2
f+

1

a
σ2
g
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≤
n∑
i=1

E[rT,i]−nE[F̃0]+F (θ0)

≤
(

min
i
E[rT,i]+(n−1)E[F̃0]

)
−(n−1)E[F̃0]+

(
F (θ0)−E[F̃0]

)
≤min

i
E[rT,i]+E[|F (θ0)−F̃0|]

≤min
i
E[rT,i]+

1

2a1/2
σf ,

where (iii) in Lemma A.3 was used. Hence,

min
i
E[rT,i]≥F (θ∗)+2µηE

[
n∑
i=1

T−1∑
t=0

rt+1,ivt,imt,i

]
−ηD1−σD3, (F.2)

where σ=max{σf ,σg} and

D1 =
LFnF

2(θ0)

(1−µ)2
, D3 =

1

2a1/2
+
F (θ0)

1−µ
√
ηnT

√
G2
∞

4a3
+

1

a
.

The remaining term in (F.2) with µ= 0 vanishes. For µ> 0 we proceed to bound
this term as follows:

n∑
i=1

T−1∑
t=0

rt+1,ivt,imt,i

≥− 1

2

n∑
i=1

T−1∑
t=0

rt+1,iv
2
t,i−

1

2

n∑
i=1

T−1∑
t=0

rt+1,im
2
t,i

≥− 1

2
(G(T,0)+G(T−1,µ))

≥−
(

1+
1

(1−µ)2

)
nF̃0/(4η),

which allows us to obtain

2µηE

[
n∑
i=1

T−1∑
t=0

rt+1,ivt,imt,i

]
≥−µ

2

(
1+

1

(1−µ)2

)
nE[F̃0]≤−µ

2

(
1+

1

(1−µ)2

)
nF (θ0).

Therefore,

min
i
E[rT,i]≥max

{√
f(θ∗)+c−ηD1−µD2−σD3,0

}
,
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where σ=max{σf ,σg} and

D1 =
LFn(f(θ0)+c)

(1−µ)2
, D2 =

1

2

(
1+

1

(1−µ)2

)
n
√
f(θ0)+c,

D3 =
1

2a1/2
+

√
f(θ0)+c

1−µ
√
ηnT

√
G2
∞

4a3
+

1

a
.

Appendix G: implementation details of

experiments

We summarize the setup for experiments presented in Section 5 in Table 1, where
‘BS’ and ‘WD’ represent batch size and weight decay employed for each task, re-
spectively. The last four columns are base learning rate that achieves the best final
generalization performance for each method in respective tasks.

Figs. 4 and 5 present the comparison results where the defaults base learning
rate for each method:

• AEGDM: 0.01.

• AEGD: 0.1.

• SGDM: 0.01 for VGG-16 (on both CIFAR10 and CIFAR100), 0.1 for other
tasks.

• AdaBelief, AdaBound, RAdam, Yogi, Adam: 0.001.

is used in all tasks. Also different from the setting reported in Table 1, here we
set batch size as 128 and weight decay as 5×10−4 in all tasks. It can be seen that
AEGDM and AEGD generalize better than all other methods, and AEGD display
smaller oscillation / faster convergence than AEGD.

Table 1: Training settings in our experiments.

Dataset Model BS WD SGDM Adam AEGD AEGDM

MNIST LeNet-5 128 1e−4 0.01 0.001 0.05 0.008
CIFAR-10 VGG-16 128 5e−4 0.03 0.0003 0.1 0.005
CIFAR-10 ResNet-32 128 1e−4 0.05 0.001 0.2 0.008
CIFAR-10 DenseNet-121 64 1e−4 0.05 0.0005 0.2 0.02
CIFAR-100 SqueezeNet 128 1e−4 0.3 0.003 0.2 0.02
CIFAR-100 GoogleNet 128 1e−4 0.2 0.0003 0.2 0.03



216 H. Liu and X. Tian / Ann. Appl. Math., 38 (2022), pp. 183-222

(a) VGG-16, training loss (b) ResNet-34, training loss

(c) DenseNet-121, training loss (d) VGG-16, test accuracy

(e) ResNet-34, test accuracy (f) DenseNet-121, test accuracy

Figure 4: Test accuracy for VGG-16, ResNet-34 and DenseNet-121 on CIFAR-10.
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(a) VGG-16, training loss (b) ResNet-34, training loss

(c) DenseNet-121, training loss (d) VGG-16, test accuracy

(e) ResNet-34, test accuracy (f) DenseNet-121, test accuracy

Figure 5: Test accuracy for VGG-16, ResNet-34 and DenseNet-121 on CIFAR-100.
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Figure 6: minirt,i of AEGDM with default base learning rate 0.01 in neural network tasks.

The experiments were coded in PyTorch and conducted using job scheduling on
Intel E5-2640 v3 CPU (two 2.6GHz 8-Core) with 128GB Memory per Node.

Appendix H: a comparison of some gradient-based

methods

How does AEGDM compare with AEGD, SGD, SGDM, Adam and other adaptive
methods? We apply a more generic formulation, so that these methods will all take
the following form

θt+1 =θt−ηA−1
t mt+1. (H.1)

Here mt+1 depends on {vj}tj=0, historical search direction, and A−1
t is a diagonal

matrix. The diagonal form of A−1
t allows for different effective learning rates for

different coordinates. The use of inverse A−1
t here is to be consistent with the form

of the natural gradient method [2], θ← θ−ηA−1∇f(θ), in which A is typically a
positive definite matrix, playing the role of a metric matrix for certain Riemannian
manifold. Table 2 is a comparison in terms of different choices of A−1

t and/or mt+1.

Note that in Table 2, the negative power function is understood as an element-
wise operation. For the hyper-parameters, µ∈ (0,1) for SGDM and AEGDM; r0 =√
f0(θ0)+c1 for both AEGD and AEGDM; β1∈ (0,1) and β2∈ (0,1) for Adam and

RMSprop, subject to possible unbiased corrections [17,41].
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Table 2: Comparison of some optimization algorithms.

vt mt+1 A−1
t

SGD ∇ft(θt) vt I
SGDM ∇ft(θt)

∑t
j=0µ

t−jvj I

RMSprop ∇ft(θt) vt diag
[(

(1−β2)
∑t

j=0β
t−j
2 vj�vj

)− 1
2
]

ADAM ∇ft(θt) (1−β1)
∑t

j=0β
t−j
1 vj diag

[(
(1−β2)

∑t
j=0β

t−j
2 vj�vj

)− 1
2
]

AEGD ∇ft(θt)
2
√
ft(θt)+c

vt diag
[
r0�

(∏t
j=0(1+2ηvj�vj)

)−1]
AEGDM ∇ft(θt)

2
√
ft(θt)+c

∑t
j=0µ

t−jvj diag
[
r0�

(∏t
j=0(1+2ηvj�vj)

)−1]
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