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AN EXPONENTIAL TIME DIFFERENCING TIME-STEPPING

SCHEME FOR THE TRACER EQUATIONS IN MPAS-OCEAN

SARA CALANDRINI, PHILIP W. JONES, AND MARK R. PETERSEN

Abstract. Exponential time differencing (ETD) methods, also known as exponential integrators,
constitute a class of numerical methods for the time integration of stiff systems of differential

equations. This manuscript investigates an ETD scheme for solving the tracer equations appearing
in primitive equation ocean models, and shows the results obtained when such a scheme is applied
within a full ocean circulation model. The main idea behind the scheme is the treatment of the
vertical terms (transport and diffusion) with a matrix exponential, whereas the horizontal terms

are dealt with in an explicit way. The performance of the ETD scheme is compared against that
of other semi-implicit time-stepping schemes for realistic ocean configurations on quasi-uniform
and variable resolution meshes.
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1. Introduction

In ocean modeling, the tracer equation describes the transport of tracers, like
temperature, salinity, radioactive material (tritium), chemical concentrations (chlo-
rofluorocarbons) and biological organisms (phytoplankton). In a modern ocean cir-
culation model (OCM), 2 to 50 tracers are tracked in a realistic simulation meaning
that 2 to 50 tracers equations have to be solved, causing a significant computational
load. Hence, efficiently solving multiple tracer equations is an important task in an
ocean model.

Tracer evolution is described by an advection-diffusion equation of the form,

(1) ∂tT +∇x · (uT ) +DxT + ∂z(wT )− ∂z(κz∂zT ) = q(T ),

where T is the tracer concentration, u = (u,w) ∈ R3 is the velocity of water,
which is split into the horizontal velocity u ∈ R2 and the vertical velocity w,
Dx is the horizontal diffusion operator, κz is the vertical diffusion coefficient, and
q(T ) represents interior sources or sinks. Models like POP [8], MITgcm [9] and
MPAS-Ocean [2] use semi-implicit time-stepping schemes for advancing the tracer
equations in time, since fully explicit schemes would be bound by severe time-step
restrictions associated with fast mixing processes. Tracer vertical mixing usually
occurs on fast time-scales and can be induced by density differences and/or by
turbulent motions. These fast processes are often represented as a very strong
diffusion coefficient κz in the vertical diffusion term ∂z(κz∂zT ), resulting in very
short time steps when using a fully explicit time integrator. For this reason, in
POP, MITgcm and MPAS-Ocean, vertical diffusion can be treated implicitly with
an implicit Euler algorithm. The remaining terms of the tracer equation (horizontal
and vertical advection and horizontal diffusion) are treated explicitly in all the three
models and the integration can proceed with longer time steps, typically at the
horizontal advective CFL timescale.

However, the explicit treatment of vertical advection may not be optimal when
many vertical layers are used to resolve mixed layer processes near the surface. For
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example, [2] employs 1-15km horizontal mesh spacing, but a much smaller 10 m
mesh spacing in the vertical. This spacing, combined with higher surface velocities
can lead to small CFL constraints and an implicit treatment of vertical advection
can be beneficial. Implicit-explicit (IMEX) schemes [26, 27, 28] are indeed widely
used in modern high-resolution numerical weather prediction and climate models.
These schemes use an implicit component to deal with the terms in the model
equations describing the fastest moving waves, allowing for longer time steps than
fully explicit methods. An alternative to employing an implicit step for the fastest
moving waves is the use of a matrix exponential. In [10], a time-stepping scheme
that treats vertical diffusion and vertical advection in an exact way with a matrix
exponential has been used to solve the tracer equation on idealized test cases.
This scheme consists of an exponential time differencing (ETD) method where all
the vertical terms are treated with a matrix exponential, whereas the horizontal
terms are dealt with in an explicit way. ETD methods, also known as exponential
integrators, have recently gained attention in the atmosphere and ocean modeling
community due to their stability properties that allow time-steps considerably larger
than those dictated by the CFL condition [11, 12, 13, 14, 15, 16, 17]. For a review
of exponential integrators we refer to [6].

In this work, we consider the ETD time-stepping scheme presented in [10], called
hereafter ETD-CPG, and study its performance in MPAS-Ocean on realistic ocean
test cases. The operator splitting used by ETD-CPG (vertical terms treated with a
matrix exponential vs horizontal terms treated explicitly) has two main advantages.
First, higher accuracy is expected compared to other semi-implicit methods for the
tracer equation because of an exact treatment of the fast vertical terms. Second,
a focus on the vertical terms simplifies the implementation and reduces the cost
in a parallel computing context. Ocean models decompose the domain only in the
horizontal so computation of vertical terms can take place solely within a node and
no additional communication is needed for a parallel implementation. The addition
of accelerators like Graphic Processing Units (GPUs) within a node can be used to
further optimize and reduce the cost of the implementation. Exploiting this local
implementation, we use an approach based on scaling and squaring relations [18, 19]
for the computation of the matrix functions. This approach, already presented in
[10], is based on polynomials of moderate degree and results in a consistent and
stable approximation of the φ-functions described below.

ETD-CPG has already been tested on 2D idealized test cases for the tracer
equation, where it was shown that larger time-steps could be taken than other
semi-implicit time-stepping schemes. Since we are going to test ETD-CPG on
realistic ocean test cases, the time step used will be dictated by the dynamics, i.e.
the change in time of the velocity and thickness of the vertical layers. In the tests
performed in this work, we use both quasi-uniform and variable-resolution meshes
on a sphere and the initial conditions are interpolated from the data gathered by
the Polar Science Center Hydrographic Climatology [23].

The paper is organized as follows. Section 2 describes the vertical and horizontal
discretization of the tracer equation in MPAS-Ocean. Section 3 describes the ETD-
CPG method, focusing on the structure of the linear operator and the computation
of the matrix functions. In section 4 numerical results are presented showing the
convergence of the method and its performance on two test cases with realistic
ocean configurations. Finally, in section 5 we draw our conclusions.
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2. Tracer Equation

In MPAS-Ocean, the governing equations are the primitive equations, which
correspond to the incompressible Boussinesq equations in hydrostatic balance. Fol-
lowing this hydrostatic assumption, the tracer equation in continuous form can be
re-written as

(2)
∂(ρ̃ T )

∂t
+∇ · (ρ̃ Tu) + ∂(ρ̃ Tw)

∂z
= DT

h +DT
ν

where T is the tracer, u is the horizontal velocity, w is the vertical velocity, ρ̃ is the
pseudo-density, and z represents the vertical coordinate which is defined positive
upward. The horizontal and vertical diffusion terms, DT

h and DT
ν , are defined as

DT
h = ∇ · (ρ̃κh∇T ), DT

ν = ρ̃
∂

∂z

(
κν
∂T

∂z

)
(3)

where κh and κν are the horizontal and vertical diffusion, respectively. Without
loss of generality, we assume that no forcing term is present.

2.1. Vertical discretization. For the vertical discretization of the tracer equa-
tion, let us define k as the index of the vertical layers. This index increases down-
ward, so k = 1 is the top layer and k = N is the bottom one. The z coordinate
is positive upward and z = 0 is the mean elevation of the free surface. The tracer
equation with vertical discretization is written as

∂(hkTk)

∂t
+∇ · (hkTkuk) + Tkwk + Tk+1wk+1 = [DT

h ]k + [DT
ν ]k(4)

[DT
h ]k = ∇ · (hkκh∇Tk), [DT

ν ]k = hkδz
m(κνδz

t(Tk))(5)

where wk indicates the transport of fluid from layer k to k − 1, and the pseudo-
density ρ̃ has been replaced by the layer-thickness h. The vertical operators (·),
δzm(·) and δzt(·), on a generic variable ψk, are defined as

ψk =
ψk−1 + ψk

2
(6)

δzm(ψk) =
ψk−1 − ψk

hk
(7)

δzt(ψk) =
ψk − ψk+1

hk
(8)

where the superscripts m and t denote the location as the middle or top of cell k
in the vertical.

In MPAS-Ocean, the vertical mesh uses an Arbitrary Lagrangian-Eulerian (ALE)
algorithm, in which the vertical coordinate is Lagrangian, but can be remapped
to an arbitrary target coordinate. This approach allows a great deal of freedom
to choose among vertical grid types or target grid locations. In the Lagrangian
evolution, the coordinates move with the flow according to the mass conservation
equation, or thickness equation. This equation, discretized in the vertical, has the
form

(9)
∂hk
∂t

+∇ · (hkuk) + wk − wk+1 = 0.

For Lagrangian or isopycnal coordinates, the mesh interfaces move with the flow
so there is no flow across the interface and wk is simply set to zero for every k.
If Eulerian coordinates (e.g. depth or z-level) or other coordinate locations are
desired, the coordinate and thickness is determined by the desired locations and
Equation 9 is used to compute an effective velocity wk across the interface. Using
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a first-order finite difference approximation for the time derivative of h at level k,
we get

(10) wk = wk−1 −∇ · (hkuk)−
hALE
k − hk

∆t

where the quantity hALE
k represents the desired thickness for the new time. The

way hALE
k is computed determines the type of coordinates chosen. For z-level, hALE

k

is computed so that all layers have a fixed thickness except for the top layer, thus

hALE
1 = hrest1 + ζ(11)

hALE
k = hrestk , for k > 1(12)

where hrestk is the resting thickness, i.e. the layer thickness when the ocean is at rest,
and ζ is the sea surface height. In z-star coordinates, hALE

k is computed so that sea
surface height perturbations are distributed throughout the column of fluid, thus

(13) hALE
k = hrestk + ζ

hrestk∑
k′ h

rest
k′

, for all k .

The simulations presented in Section 4 use z-level and z-star vertical coordinates.
The computation of hALE

k for other coordinate systems is described in [1].

2.2. Horizontal discretization. The horizontal discretization in MPAS-Ocean
consists of a C-grid, finite-difference/volume method called TRiSK, introduced for
the first time in [3] and later applied to the nonlinear shallow-water equations in
[4]. TRiSK is applicable to a broad class of meshes, and in MPAS-Ocean it is
mostly applied to spherical centroidal Voronoi tessellations (SCVTs) [5]. To create
a Voronoi tesselation on the surface of the sphere, S, we start by picking {xi}ni=1

distinct grid points and then assign every point on S to whichever xi it is closest
to. This results in a set of Voronoi regions, {Vi}ni=1, that can be expressed as

(14) Vi = {y ∈ S s.t. ||xi − y|| < ||xj − y|| for j = 1, . . . , n and j ̸= i}

so each Vi is uniquely associated with a single grid point xi. In a SCVT, these points
{xi}ni=1 are also approximations of the centroids (mass centers) of the Voronoi cells.
A Delaunay triangulation is the dual-mesh of a Voronoi tessellation; specifying
either uniquely determines the other. The centers {xi}ni=1 of a Voronoi tessellation
coincide with the vertices {xv}mv=1 of the dual mesh triangles. In a C-grid staggering
on an SCVT mesh, height, tracers, pressure and kinetic energy are defined at centers
xi of the Voronoi cells, the normal component of the velocity is located at points
xe on the cell edges, and vorticity (curl of velocity) is defined at cell vertices xv.
As shown in Fig. 1, xe represents the intersection point between the Voronoi cell
edge and the dual triangle edge, and this intersection point corresponds to the
midpoint of the triangle edge. Fig. 1 also displays the the lengths de and le, where
de measures the distance between the Voronoi cells sharing edge e, and le measures
the length of the Voronoi edge e. In the following, the subscripts i and e indicate
the discretized variables through cell centers and edges, respectively. Since we are
focusing on the discretization of the tracer equation only, we will not work with
variables and operators defined at cell vertices.
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Figure 1. Variable collocation points for the TRiSK scheme on a SCVT.

The tracer equation with horizontal discretization can be written as

∂(hk,iTk,i)

∂t
+ [∇ · ((̂hk,:)e(̂Tk,:)euk,:)]i + Tk,iwk,i + Tk+1,iwk+1,i = [DT

h ]k,i + [DT
ν ]k,i

(15)

[DT
h ]k,i = [∇ · ((̂hk,:)e κh[∇Tk,:]e)]i, [DT

ν ]k,i = hk,iδz
m(κνδz

t(Tk,i))

(16)

where each variable now has two sub-scripted indices, the first indicating the vertical
layer, and the second indicating its position on the horizontal grid, namely either i
or e. Colons in subscripts may be places as second index to indicate that multiple
edges or cell centers are used in computing the horizontal operator. We would like
to point out that the vertical transport through the sea surface and at the bottom
surface is zero, i.e. w1,i = 0 and wN+1,i = 0. Moreover, we consider uk,e = 0 on
all boundary edges. For a generic vector field Yk and variable ψk , the discrete

horizontal operators [∇ ·Yk,:]i, [∇ψk,:]e and (̂ψk,;)e are defined as

[∇ · Yk,:]i =
1

Ai

∑
e∈EC(i)

ne,iYk,ele(17)

[∇ψk,:]e =
1

de

∑
i∈CE(e)

−ne,iψk,i(18)

(̂ψk,;)e =
∑

i∈CE(e)

ψk,i

2
(19)

where Ai indicates the Voronoi cell area, de is the distance between cell centers, le
is edge length and ne,i represents the sign of the vector at edge e with respect to
cell i. The sets EC(i) and CE(e) are defined in Table 1. For more details about
the horizontal discretization of the full primitive equations refer to [2].

3. Exponential Time Differencing

Exponential integrators or exponential time differencing (ETD) schemes are a
special class of time integration methods based on a splitting of the right-hand-
side into a linear part and a remainder. After the derivation of an exponential
integrator, we focus on the choice of the linear operator for solving the tracer
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Table 1. Definition of element groups used to build the discrete
tracer equation.

Syntax Output
e ∈ EC(i) Set of edges that define the boundary of the Voronoi cell i
i ∈ CE(e) Two Voronoi cells that share edge e

equations. We prefer an approximation to the Jacobian of the right-hand-side over
the full Jacobian, due to the physics of the problem and to favorable properties
concerning the implementation and structure of the linear operator. We consider
the ETD-CPG method presented in [10] where the full Jacobian is split into a
vertical and a horizontal part. The vertical part is treated exponentially since the
vertical terms (vertical diffusion and advection) are those associated to the fast
time-scales in the ocean. Many ocean models, like POP, MITgcm and the current
version of MPAS-Ocean, treat implicitly only the tracer vertical diffusion.

3.1. Derivation of an exponential integrator. Let

(20) ∂tT = F (T )

be a system of partial differential equations (PDEs), where T = T (t) denotes the
vector of the solution variables for t ∈ [tn, tn+1], and F (T ) is the right-hand-side.
The interval [tn, tn+1] refers to one time step. Let us split the right-hand-side into
a linear part and a remainder as

(21) F (T ) = AnT +R(T ),

where An represents a linear operator, and R(T ) := F (T ) − AnT denotes the re-
mainder, which in general is nonlinear. Applying the variation of constants formula,
the solution of (20) at time tn+1 = tn +∆t is obtained as

(22) Tn+1 = exp(∆tAn)Tn +

∫ ∆t

0

exp((∆t− τ)An)R(T (tn + τ))dτ .

To build a concrete exponential integrator, let us consider an approximation of
R(T (tn + τ)), that is its Taylor expansion truncated at s, with s ∈ N. By substi-
tuting

R(T (tn + τ)) ≈
s∑

k=1

τk−1

(k − 1)!

dk−1R(T (tn + τ))

dτk−1

∣∣∣∣
τ=0

in (22), the solution Tn+1 can be approximated by

Tn+1 ≈ exp(∆tAn)Tn

+
s∑

k=1

1

(k − 1)!

[ ∫ ∆t

0

exp((∆t− τ)An)τ
k−1dτ

] dk−1R(T (tn + τ))

dτk−1

∣∣∣∣
τ=0

.

Now, let us define

φk(∆tAn) :=
1

∆tk(k − 1)!

∫ ∆t

0

exp((∆t− τ)An)τ
k−1dτ, k = 1, 2, . . . , s(23)

which are know as φ-functions. Using (23), the solution Tn+1 can be rewritten as

(24) Tn+1 ≈ exp(∆tAn)Tn +

s∑
k=1

∆tkφk(∆tAn)
dk−1R(T (tn + τ))

dτk−1

∣∣∣∣
τ=0

,

which is an exponential integrator with s stages.
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Fundamental for any exponential integrator is the computation of the φ-functions
φk(∆tAn). With the change of variable ∆t− τ = (1− σ)∆t, definition (23) can be
rewritten as

φk(∆tAn) =
1

(k − 1)!

∫ 1

0

exp((1− σ)∆tAn)σ
k−1dσ, k = 1, 2, . . . , s ,(25)

therefore

φ1(∆tAn) =

∫ 1

0

exp((1− σ)∆tAn)dσ

= (∆tA)−1(exp(∆tAn)− I) ,

φ2(∆tAn) =

∫ 1

0

exp((1− σ)∆tAn)σ dσ

= (∆tAn)
−2(exp(∆tAn)−∆tAn − I),

and so on for k > 2. In the above expressions, I indicates the identity operator.
For k = 0, we have that φ0(∆tAn) = exp(∆tAn). More details about the numerical
computation of these matrix functions will be given in section 3.3.

The parameter s in (24) indicates the number of stages of the ETD method. By
taking s = 1, the exponential Euler method is obtained as

Tn+1 ≈ exp(∆tAn)Tn +∆tφ1(∆tAn)R(Tn)(26)

= Tn +∆tφ1(∆tAn)F (Tn) .(27)

This method is in general a first-order accurate method, but if An is the Jacobian
matrix of the system evaluated at tn, then the method becomes second-order ac-
curate [6, 20]. For the solution of the tracer equation, we are going to consider a
second-order two-stage (s = 2) method that requires the computation of only one
φ-function. This scheme can be written as

T (1st stage)
n = Tn +∆tφ1(∆tAn)F (Tn) ,(28)

Tn+1 = T (1st stage)
n +

1

2
∆tφ1(∆tAn)(R(T

(1st stage)
n )−R(Tn)) ,(29)

where the first derivative of R(Tn + τ) is approximated with a first-order finite-
difference approximation

dR(T (tn + τ))

dτ

∣∣∣∣
τ=0

≈ R(T
(1st stage)
n )−R(Tn)

∆t
.

The scheme (28)-(29) fulfills the nonstiff order conditions described in [7] up to
order two, and the stiff order conditions up to order one. This method was used in
[21] for studying steady and unsteady inviscid flows, using the full Jacobian of the
system as linear operator. In [10] it was tested on idealized test cases for solving
the tracer equation. The choice of the operator An in the context of the tracer
equation is described in the section below.

3.2. Exponential integrator for the tracer equation. Consider the discretized
tracer equation (15), and let us rewrite it as

(30) ∂tT = F (T ) = JnT,

where F (T ) is the right-hand-side and T = T (t) denotes the vector of tracer values
for t ∈ [tn, tn+1]. Since we are assuming a zero forcing term, the tracer equation
is linear in T , therefore the right-hand-side can be written as the Jacobian of the
system evaluated at tn times T .
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Let us split the Jacobian Jn into a vertical and a horizontal part, i.e.

(31) Jn = Jz
n + Jx

n ,

where Jz
n contains the derivatives of the vertical terms only, and Jx

n contains the
derivatives of the horizontal terms only. Thus,

(32) ∂tT = F (T ) = Jz
nT + Jx

nT .

To apply an exponential integrator to solve (32), we have to identify a linear opera-
tor An and a remainder R(T ). Since we wish to treat fast vertical processes with the
ETD approach, the term Jz

n is interpreted as the linear operator An, while J
x
nT is

the remainder R(T ). Thus, we adopt an exponential time differencing solver where
the vertical terms are treated with a matrix exponential, whereas the horizontal
are dealt with in an explicit way. Applying the splitting to the scheme (28)-(29)
we have the ETD-CPG method

T 1st stage
n = Tn +∆tφ1(∆tJ

z
n)F (Tn) ,(33)

Tn+1 = T 1st stage
n +

1

2
∆tφ1(∆tJ

z
n)(R

1st stage
n −Rn) ,(34)

which is a second-order, two-stage ETD method. The remainders are defined as

Rn = F (Tn)− Jz
nTn = Jx

nTn,(35)

R1st stage
n = F (T 1st stage

n )− Jz
nT

1st stage
n = Jx

nT
1st stage
n ,(36)

and they both take into account only the contributions from the horizontal terms.
From an implementation point of view, the matrix Jx

n is never built since Rn is
obtained for free from the construction of the right-hand side F (Tn) needed at the
first stage, and for R1st stage

n we only evaluate the horizontal terms at T 1st stage
n .

The linear operator Jz
n contains the derivatives of the vertical terms only, and

its entries can be ordered so that Jz
n has a block diagonal structure. In the case of

a flat-bottom, this matrix has size NzNx, where Nz is the total number of vertical
layers, and Nx is the total number of Voronoi cells in the horizontal discretization.
Since, for every layer, there is no interaction between the derivatives of the vertical
terms associated with two different Voronoi cells, the derivatives associated with
the same horizontal element form a submatrix of dimension Nz × Nz. Therefore,
Jz
n can be written has

(37) Jz
n =


Jz,1
n 0 0 . . . 0
0 Jz,2

n 0 . . . 0
0 0 Jz,3

n . . . 0
...

...
...

. . .
...

0 0 . . . 0 Jz,Nx
n


where each block Jz,i

n represents the derivatives of the vertical terms associated with
a single Voronoi cell i in the horizontal discretization. In general, the dimension of
one diagonal block depends on the number of vertical layers associated with that
specific Voronoi cell. If all Voronoi cells have the same number of vertical layers,
as in the case of a flat-bottom, all the blocks Jz,i

n would have the same dimension.
For complex coastlines and bathymetry, these matrices would have different sizes,
depending on the number of vertical layers associated with each Voronoi cell.
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The same block diagonal structure as Jz
n is inherited by φ1(∆tJ

z
n) as shown by

Proposition 3 in [10]. Thus,

(38) φ1(∆tJ
z
n) =


φ1(∆tJ

z,1
n ) 0 0 . . . 0

0 φ1(∆tJ
z,2
n ) 0 . . . 0

0 0 φ1(∆tJ
z,3
n ) . . . 0

...
...

...
. . .

...
0 0 . . . 0 φ1(∆tJ

z,Nx
n )


meaning that, for every Voronoi cell i, a matrix φ1(∆tJ

z,i
n ) is associated with

it. From an implementation point of view, all these matrices are independent
from one another, since the Jz,i

n matrices are independent, so no inter-processor
communications are needed for the computation of either the Jz,i

n and φ1(∆tJ
z,i
n )

matrices in a parallel setting.

3.3. Computation of the φ-functions. For the construction of the φ1(∆tJ
z,i
n )

matrices needed in the ETD-CPG scheme, we use a method based on scaling and
squaring relations, as in [10, 13]. For a generic a matrix A, the scaling and squaring
method for the computation of exp(A) ([25]) exploits the fact that exp(A) can be
well approximated by a rational function for small ||A||, where || · || indicates any
subordinate matrix norm. To guarantee that the starting matrix has a small norm,
A is first scaled by 2M , for M ∈ N, so that ||A/2M || < 1, and then the relation

exp(A) = exp(A/2M )2
M

is used to obtain an approximation of exp(A). In [10], we
extend the idea in [25] to construct a method based on scaling and squaring relations
(as eq. (43) below) for the computation of the φk-functions. In the following, we
first derive this method for a generic φk-function, and then consider the specific
case of the φ1-function.

Following definition (25) for a given a matrix A, φk(2A) is given by

(39) φk(2A) =
1

2k(k − 1)!

∫ 2

0

exp((2− σ)A)σk−1dσ.

Splitting the integral into the intervals (0, 1) and (1, 2) we get

2kφk(2A) =

∫ 1

0

exp((2− σ)A)
σk−1

(k − 1)!
dσ +

∫ 2

1

exp((2− σ)A)
σk−1

(k − 1)!
dσ

(40)

= exp(A)

∫ 1

0

exp((1− σ)A)
σk−1

(k − 1)!
dσ +

∫ 1

0

exp((1− σ)A)
(1 + σ)k−1

(k − 1)!
dσ(41)

where the second integral was shifted to (0, 1). Now, using the binomial identity

(42)
(1 + σ)k−1

(k − 1)!
=

k−1∑
j=0

σk−j−1

(k − j − 1)!j!

in the second term and the definition of φk and φk−j we get the recursive formula

(43) 2kφk(2A) = exp(A)φk(A) +

k−1∑
j=0

φk−j(A)

j!

where the matrix function of 2A is expressed as a product of two matrix functions
of A plus some correction terms. The scaling and squaring method for the com-
putation of φk(A) is based on eq. (43) applied M times to a scaled matrix A/2M ,
where M ∈ N. The starting step is a Taylor expansion up to order r of exp(A/2M )
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used to approximate φk(A/2
M ) and φk−j(A/2

M ) using their definition (25). The
algorithm can be summarized as follows:

Algorithm 1: Computation of φk(A)

Step 1. Build a polynomial approximation of exp(A/2M ), φk(A/2
M ) and

φk−j(A/2
M ), for 0 ≤ j ≤ k − 1.

Step 2. Apply the recursive formula (43) using the polynomial approximations.
Step 3. Compute approximations for exp(A/2M−s) and φk−j(A/2

M−s), for
1 ≤ s ≤M − 1.

Step 4. Repeat Step 2 and Step 3 M times.

For the specific case of φ1(A), the recursive formula looks like

(44) φ1(2A) =
1

2
(exp(A) + I)φ1(A)

where I is the identity matrix. The algorithm for the construction of φ1(A) based
on the above formula can be summarized as follows:

Algorithm 2: Computation of φ1(A)

Step 1. Define p00(A/2
M ) and p01(A/2

M ) to be polynomial approximations of
exp(A/2M ) and φ1(A/2

M ) as

p00(A/2
M ) = Tr(A/2

M ) + (A/2M )r+1q(A/2M )

p01(A/2
M ) =

A−1

2M
(p00(A/2

M )− I)

where Tr(z) = 1+ z+ · · ·+ zr/r! is the Taylor approximation of exp(z) up
to order r, and q(z) is a remainder.

Step 2. For 0 ≤ s ≤M − 1, given ps0(A/2
M−s) and ps1(A/2

M−s) compute
ps+1
1 (A/2M−(s+1)) using formula (44) as

ps+1
1 (A/2M−(s+1)) =

1

2

(
ps0(A/2

M−s) + I
)
ps1(A/2

M−s)

Step 3. Given ps0(A/2
M−s), compute ps+1

0 (A/2M−(s+1)) as

ps+1
0 (A/2M−(s+1)) = ps0(A/2

M−s)ps0(A/2
M−s)

Step 4. Repeat Step 2 and Step 3 until s =M − 1.

Finally, the polynomial pM1 (A) will be the approximation of φ1(A). Since it is
not our intention to provide a full account of this method based on scaling and
squaring relations, refer to [10] for more details, including an error estimate for the
approximation φ1(A) ≈ pM1 (A).

In terms of cost for the approximation pM1 (∆tJz,i
n )) needed in ETD-CPG, it

is important to notice that the matrices Jz,i
n are banded, in particular they are

tridiagonal for second-order discretization schemes like the one presented in section
2.1. Working with banded matrices greatly reduces the cost of the scaling and
squaring algorithm, compared to working with dense matrices. For two banded
matrices with bandwidth b, their product will be banded with bandwidth 2b, and
its cost will be less than 2(1 + 2b)N2

z , as explained in [22]. In the context of the
scaling and squaring method, M matrix-matrix products of banded matrices are
performed, therefore the cost of the approximation of one φ1(J

z,i
n ) is 2(1+2Mb)N2

z .
Looking at the ETD-CPG scheme (33)-(34), the computation of the Nx φ1 matrices
has to be performed only once for a given time-step, since the same matrices are
needed for the first and second stage. Moreover, assuming a zero forcing term, all
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tracers equations share the same linear operator, i.e. Jz
n is the same for all of them.

Therefore, the matrices Jz,i
n and φ1(∆tJ

z,i
n ) are the same for all tracers.

4. Numerical Results

In this section, numerical tests are presented to investigate the performance of
the ETD-CPG solver (33)-(34) in MPAS-Ocean. The ETD time-stepping scheme
is compared against a semi-implicit scheme named hereafter RK4+IE, which con-
sists of a convergent operator splitting scheme that employs implicit Euler for the
treatment of the vertical diffusion term and RK4 for the rest of the terms, i.e.

∂tT = FRK4(t, T ) + FIE(t, T )

where

FRK4(t, T ) = −∇x · (uT )−DxT − ∂z(wT )

FIE(t, T ) = ∂z(κz∂zT )

considering the tracer equation in continuous form.
The tests consists of realistic ocean configurations on quasi-uniform and variable

resolution meshes. Smooth initial and boundary conditions are provided, where
the initial conditions are interpolated from data gathered by the Polar Science
Center Hydrographic Climatology [23]. All the time-steps used in the simulations
are dictated by the dynamics, i.e. the change in time of the velocity and thickness
of the water. For the solution of the momentum and thickness equation, the split-
explicit time-stepping scheme available in MPAS-Ocean has been used. This scheme
adopts a baroclinic/barotropic splitting where the barotropic velocity and total
ocean depth are explicitly subcycled within each large time-step taken for the three-
dimensional baroclinic velocity. For more details about this split-explicit method
refer to [2].

We start by testing the ETD-CPG method in a 2D idealized case to show that
the correct order of convergence in time is achieved.

4.1. Convergence. To show the correct implementation of the method in MPAS-
Ocean, we test ETD-CPG on a 2D steady state test case, so the initial condition is
the analytical solution which should remain constant over all time integration. We
consider a planar mesh of dimensions 500m × 500m discretized with 100 Voronoi
cells with de = 5m. The number of vertical layers is 50. We assume u, w and
h constant in time. The velocity field is a circular, divergence-free field, which is
tangential to the boundaries. It is defined as

(45) (u,w) = (ψ1(x)ψ2′(z),−ψ1′(x)ψ2(z))

where

(46) ψ1(x) = 1−
(x− xmax

2 )4

(xmax

2 )4
, ψ2(z) = 1−

(z − zmin

2 )2

(−zmin

2 )2

with xmax = 500 and zmin = −500. Fig 2 shows the horizontal, u, and vertical, w,
velocity profiles. We solve for one tracer equation with initial condition

(47) T (x, z) = 0.5(1 + tanh(2ψ3 − 1))

where ψ3(x, z) = ψ1(x)ψ2(z). The tracer T goes from 0 at boundary of the domain
to 1 in the center, as Fig 3 shows.

Assuming zero tracer diffusion, the initial condition (47) is an exact solution
of the tracer equation. Solving the tracer equation with ETD-CPG considering
no diffusion, the steady state is indeed maintained over time, as Fig 3 shows for
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t = 6 hours. In order to investigate the convergence properties of the ETD scheme,
we compare the solutions for various time-steps to a temporally over-refined solu-
tion computed with RK4. Figure 4 shows that ETD-CPG exhibits second-order
accuracy, as predicted by theory.

Figure 2. Initial conditions for horizontal and vertical velocity
for the steady state test case.

Figure 3. Initial condition for the tracer and steady state solution
after 6 hours.

4.2. Test-case 1: quasi-uniform meshes. Now, we test the performance of
ETD-CPG on a test case with a realistic ocean configuration. We consider two
quasi-uniform meshes, QU120 and QU60, with resolutions of 120km and 60km,
respectively. QU120 has a total of 29,223 cells, whereas QU60 has 116,643 cells.
We study the performance of ETD-CPG in terms of scalability and CPU time,
and compare it against the semi-implicit time-stepping scheme RK4+IE, where
implicit Euler is used for the treatment of the vertical diffusion. A comparison
regarding the efficiency of the schemes (error vs run-time) is also provided at the
end of the section. Overall, RK4+IE is first-order accurate and treats the vertical
advection explicitly, whereas ETD-CPG is second-order accurate and treats the
vertical advection exactly, with a matrix exponential. For the computation of the φ1

matrices, we chose two different values of M in the scaling and squaring algorithm,
M = 2 and M = 0. With M = 0, we only perform the first step in Algorithm 2
presented in section 3.3, i.e. we consider a Taylor approximation of the exponential
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Figure 4. Convergence rate of the time stepping scheme.

Figure 5. Initial conditions for temperature (left) and salinity
(right) on a QU60 mesh.

and substitute it in the definition of the φ1-function, eq. (25). From now on, we
are going to call ETD-2 the ETD-CPG method that uses the scaling and squaring
algorithm with M = 2, whereas ETD-0 will refer to the ETD-CPG method that
uses the scaling a scaling algorithm with M = 0. In ETD-0 the computation of the
φ1 matrices is less accurate than in ETD-2, but for realistic test cases, like those
presented in this work, this loss of accuracy does not significantly affect the overall
accuracy and stability of the solution. From a physics point of view, in realistic
global ocean simulations, most processes do not produce a significant movement of
energy or waves in the vertical direction, as forcing by the wind or by currents in the
upper layers of water are involved, where transport happens manly in the horizontal
direction and at large time-scales. Mathematically, this behaviour is reflected in
the structure of the ∆tJz,i

n matrices, specifically in having ∆tJz,i
n matrices with a

norm close to one. For this reason, since we are approximating φ1-functions of ’well-
behaved’ matrices, usingM = 2 orM = 0 does not have a significant impact on the
overall accuracy and stability of the ETD method. In localized phenomena where
processes happening at faster time-scales are predominant, like eddies, M = 0 may
not provide an accurate enough approximation for the φ1-functions, because the
∆tJz,i

n matrices might have a norm considerably greater than one.
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Table 2. CPU time for the QU120 and QU60 mesh for different
time-steps. The number of vertical layers is 64 and the run time
is 6 hours. For all the runs, 32 cores have been used.

QU120 QU60
dt RK4 + IE ETD-2 ETD-0 RK4 + IE ETD-2 ETD-0
60m 15.86s 4.58s 3.12s 55.91s 17.38s 11.72s
30m 31.77s 9.13s 6.20s 111.69s 34.68s 23.30s
15m 63.43s 18.22s 12.36s 223.80s 69.22s 46.36s
8m 118.14s 34.12s 23.17s 418.45s 129.99s 86.87s

In this test case, the computation of the tracer advection tendencity uses a
standard finite volume (FV) algorithm in MPAS-O discretization (eqs. (4) and
(15)). Specifically, horizontal advection of tracers uses a third-order FV algorithm,
whereas for the vertical advection a second-order FV algorithm is used. We solve
for five tracers, where two of them (temperature and salinity) are active, meaning
they feed back on the dynamics through the density and pressure terms. The
remaining three are passive and are simply transported by the flow. The initial
conditions for temperature and salinity are interpolated from the Polar Science
Center Hydrographic Climatology [23] and are shown in Fig. 5. All five tracers
share the same linear operator Jz

n, so the matrices φ1(∆tJ
z,i
n ) are the same for

all tracers and are computed only once per time-step. The model is run for six
hours, and the time steps used for the simulations are dictated by the dynamics,
meaning that we use (baroclinic) time-steps for which the split-explicit scheme in
MPAS-Ocean is stable in resolving the momentum and thickness equations. In all
the tables presented, the average wallclock times over three repeated simulations
are shown.

Table 2 shows the CPU times for RK4+IE, ETD-2 and ETD-0 on the meshes
QU120 and QU60. Four different time-steps have been used, with 60m being the
largest possible time-step dictated by the dynamics to ensure stability. For the
QU120 mesh, we see that ETD-2 is 3.5 times faster than RK4+IE for all time-steps
considered, and the gain is even bigger with ETD-0, which is 5.1 times faster than
RK4+IE. Similar speed-ups can be seen for the QU60 mesh, where ETD-2 is 3.2
times faster than RK4+IE for all time-steps considered, and ETD-0 is 4.8 times
faster. We expected to have bigger gains with ETD-0 since it is less expensive than
ETD-2. The large improvement in time is primarily because the older RK4 scheme
requires multiple evaluations of all the tendency (RHS) terms for a given time step
while the ETD schemes only require one evaluation per step. All simulations in
Table 2 have been run with 64 vertical layers, which is a realistic value for present
day ocean simulations. Having 64 layers in the vertical implies that the φ1 matrices
in the simulations presented are, at most, 64× 64, i.e. the ETD procedure requires
forming many (one for each horizontal cell) 64× 64 matrices in parallel.

In table 3, we investigate how the number of vertical layers impacts the perfor-
mance of the ETD methods in terms of CPU time. For all the runs, the largest
possible time-step (dt = 60m), has been used. For ETD-2 and ETD-0 we expect the
CPU time to quadruple when doubling the number of layers, since matrices with
N2

z elements are multiplied. The CPU time should only double for RK4+IE, so the
performance advantage for ETD is expected to decrease with the number of layers.
This behavior is indeed demonstrated in Table 3. With fewer layers, the matrix
multiplication is a relatively small fraction of the total cost and the time increases
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Table 3. CPU time for the QU120 and QU60 mesh for different
numbers of vertical layers. The time-step used is dt= 60m. For all
the runs, 32 cores have been used.

QU120 QU60
layers RK4+IE ETD-2 ETD-0 RK4+IE ETD-2 ETD-0
16 4.16s 0.75s 0.65s 14.89s 2.75 2.45s
32 8.05s 1.65s 1.35s 28.73s 6.35s 5.13s
64 15.79s 4.58s 3.11s 55.91s 17.38s 11.72s
128 31.00s 15.74s 10.48s 108.02s 60.73s 38.24s

Table 4. Scalability for QU60 with two different numbers of lay-
ers. The largest time step, dt= 60m, was used for all simulations.

16 layers 64 layers
cores RK4 + IE ETD-2 ETD-0 RK4 + IE ETD-2 ETD-0
8 52.94s 10.14s 8.84s 197.43s 63.24s 40.41s
16 28.55s 5.40s 4.80s 106.39s 33.81s 22.58s
32 14.89s 2.72s 2.42s 55.94s 17.40s 11.68s
64 7.94s 1.42s 1.27s 30.01s 9.18s 6.30s
128 4.37s 0.73s 0.67s 16.04s 4.67s 3.22s

linearly with number of levels for all schemes. As the number of layers increases,
the expected quadrupling begins to become evident, especially when moving from
64 to 128 levels. This range is particularly relevant since current production con-
figurations use 60-100 layers, with the choice of resolution governed by the need to
accurately represent surface mixed-layer processes and bathymetric features while
minimizing overall cost of simulation. Nevertheless, ETD-2 and ETD-0 are consid-
erably faster than RK4+IE for all cases considered. The largest difference is with
16 layers, where ETD-2 and ETD-0 are more than 5.4 times faster than RK4+IE
for both mesh considered. With 128 vertical layers, ETD-2 is 2 times faster than
RK4+IE on QU120 and 1.8 times faster on QU60, whereas ETD-0 is 3 times faster
than RK4+IE on QU120 and 2.8 times faster on QU60. Since this is an initial
implementation, there remain a number of optimizations that can still be exploited
to reduce costs. In addition to CPU optimizations, the use of accelerators or even
tensor cores would dramatically reduce the overall cost.

Finally, Table 4 shows the scalability of the two ETD methods compared with
that of RK4+IE for two different numbers of vertical layers. Only the QU60 mesh
was used, and the largest time step, dt= 60m, was adopted for all simulations. All
three methods exhibit good scalability, meaning that the CPU times nearly halve
by doubling the number of cores, as is expected for a scheme that does not involve
communication between cores.

As mentioned at the beginning of the section, another important advantage of
the ETD schemes is that they are more accurate than RK4+IE. Fig. 6 shows the
efficiency (error vs run-time) of the three schemes on the QU60 mesh for the four
time-steps used in Table 2 (60m, 30m, 15m and 8m). ETD-0 and ETD-2 both
show second-order accuracy whereas RK4+IE shows first-order. For all five tracers
(temperature, salinity and three passive tracers) the convergence rates coincide.
To produce the plot, velocity and thickness of the vertical layers have been fixed
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Figure 6. Convergence rate of RK4+IE, ETD-0 and ETD-2 on
the QU60 mesh. Simulation have been run with time-steps of 60m,
30m, 15m and 8m for all three schemes.

(maintained constant) over time, and errors have been computed against a reference
solution obtained with RK4 with a small time-step.

4.3. Test-case 2: variable resolution mesh. In this test case, a variable res-
olution mesh named EC60to30 is used. The resolution varies from 30 km at the
equator and poles to 60 km at the mid-latitudes. The number of vertical layers
used is 60. The grid contains 235,160 cells, 714,274 edges, and 478,835 vertices on
each layer. As for the previous test case, we use a third-order accurate standard
FV scheme in MPAS-O discretization for the computation of the horizontal tracer
advection tendency and a second-order FV scheme for the vertical advection ten-
dency. We solve for 5 tracers, two of them being temperature and salinity, whereas
the remaining three are passive tracers. The initial conditions for temperature and
salinity are interpolated from the Polar Science Center Hydrographic Climatology,
and are shown in Fig. 7. The performance of ETD-2 and ETD-0 in terms of CPU
time is shown in Table 5 compared with that of RK4+IE. The averaged wallclock
times are presented after repeating each simulation three times. The model is run
for 10 days, and 128 cores have been used for all runs. Results are shown for
three different time-steps with 90 minutes being the largest possible stable time-
step allowed by the dynamics. As for the previous test case, ETD-2 and ETD-0
are considerably faster than RK4+IE. For all time-steps considered, ETD-2 is 3.15
times faster than RK4+IE, and ETD-0 is 5.36 times faster. Since in realistic global
ocean simulations most processes occur in the horizontal and involve large scales,
the lower accuracy in the computation of the φ1-function in ETD-0 does not com-
promise the overall accuracy and stability of the exponential integrator, allowing a
speed-up of more than 40% over ETD-2.

5. Conclusions

In this work, we presented an exponential integrator for solving the tracer equa-
tions used in ocean modeling and studied its performance on global realistic ocean
test cases. The method is a second-order two-stage ETD scheme that treats all
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Figure 7. Initial conditions for temperature (left) and salinity
(right) on a EC60to30 mesh.

Table 5. CPU time for the EC60to30 test case for different time-
steps. the number of vertical layers is 60. For all runs, 128 cores
have been used.

EC60to30
dt RK4 + IE ETD-2 ETD-0
90m 813.71s 258.47s 151.71s
60m 1221.65s 388.14s 227.66s
30m 2441.69s 773.99s 454.08s

the vertical terms with a matrix exponential and all the horizontal terms explicitly.
The vertical terms are treated exponentially to avoid the restrictive explicit time
step constraints due to fast mixing time-scales and the use of smaller vertical mesh
spacing near the surface in ocean models. The computation of the matrix functions
φ1(∆J

z,i
n ) uses a scaling and squaring method based on polynomials of moderate

degree. In the two global ocean test cases presented, we chose two different val-
ues of M in the scaling and squaring algorithm, M = 2 and M = 0, producing the
ETD-2 and ETD-0 methods, respectively. We compared the performance of ETD-2
and ETD-0 against that of another semi-implicit method, RK4+IE, where implicit
Euler is used for the treatment of the vertical diffusion. In the tests presented,
we found that ETD-2 and ETD-0 are in general faster than RK4+IE, and at the
same time more accurate, since they are second-order accurate whereas RK4+IE
is only first-order accurate. Considering 60 layers in the vertical, which is a real-
istic value for present day ocean simulations, ETD-2 is shown to be 3 times faster
than RK4+IE in both test cases. The gain in time produced by ETD-0 is even
bigger, with this method being 4.8 to 5.3 times faster than RK4+IE in the two
test cases presented. The bigger gain produced by ETD-0 is due to the fact that in
this method the φ1(∆J

z,i
n ) are computed less accurately than in ETD-2. Since in

global realistic ocean simulations most processes happen in the horizontal at large
time-scale, we can take advantage of the physics of the problem and compute the
φ1-functions in a cheaper way (M = 0) without compromising the overall accuracy
and stability of the simulations. For more localized phenomena where fast vertical
mixing and/or fast vertical transport are predominant, then the accuracy in the
computation of the φ1 would have a bigger impact, and M = 0 may not provide
an accurate enough approximation for the φ1-functions. In test case 1, we also
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showed that considering a larger number of vertical layers, 128, the ETD methods
presented are from 2 to 3 times faster than RK4+IE, and they show good parallel
efficiency with different number of cores ranging from 8 to 128.

In conclusion, the ETD method studied in this work appears to be a valid time-
stepping scheme for solving the tracer equations in modern ocean models. Future
work will consists in coupling this time-stepping scheme with the semi-implicit
scheme for the dynamics presented in [24] to use even larger time-steps.
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