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OPTIMAL CONTROL PROBLEM OF AN SIR MODEL WITH

RANDOM INPUTS BASED ON A GENERALIZED POLYNOMIAL

CHAOS APPROACH

YOON-GU HWANG, HEE-DAE KWON, AND JEEHYUN LEE

Abstract. This paper studies the optimal control problem of a susceptibleinfectiousrecovered
(SIR) epidemic model with random inputs. We prove the existence and uniqueness of a solution
to the SIR random differential equation (RDE) model and investigate the numerical solution to

the model by using a generalized polynomial chaos (gPC) approach. We formulate the optimal
control problem of the SIR RDE model and consider the gPC Galerkin method to convert the
problem into an optimal control problem with high-dimensional ordinary differential equations.
Numerical simulations show that to effectively control an epidemic, vaccination should be given

at the highest rate in the first few days, and after that, vaccination should be stopped completely.
In addition, we observe that the optimal control function and the corresponding states are very
robust to the uncertainty of random inputs.

Key words. Optimal control problem, random differential equation, generalized polynomial
chaos.

1. Introduction

Mathematical models can help predict the dynamics of disease transmission and
evaluate the impact of control measures. The susceptible-infectious-recovered (SIR)
model proposed by O. Kermack and A. G. McKendrick in 1927 [18] is a simple de-
terministic model to describe an epidemic. The model divides the host population
into three compartments: susceptible (S), infectious (I), and recovered (R) indi-
viduals. Several studies have conducted outstanding surveys of basic compartment
models and explored key features of modified models [2, 7, 14].

However, real-world problems often involve uncertainty due to a lack of informa-
tion or measurement errors in the data, for example. The randomness in probability
theory is used to express uncertainty, and stochastic models have been developed
to better describe a complex phenomenon. The stochastic differential equation
(SDE) and the random differential equation (RDE) are known to be effective tools
in epidemiology. The SDE adds white noise to incorporate perturbation, and Ito
integration is the key technique for the analysis [12, 19, 25, 26, 27]. Random vari-
ables are employed to represent uncertain input, including parameters and initial
conditions, and the RDE is introduced as a result. In this research, we consider a
random differential equation for the SIR model [3, 31].

There are analytical and numerical approaches to figure out the property of a
solution to RDE models. The analytical one finds the probability density function
of a solution by using random variable transformation [8, 17, 28, 30]. Among
many numerical schemes to solve RDE models, Monte-Carlo simulation is the basic
algorithm to characterize the solution. Generalized polynomial chaos (gPC) [9,
32] and the stochastic collocation method [32, 33] are useful choices in particular
settings.
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Vaccination is one of the crucial interventions for reducing the spread of infectious
diseases. In order to minimize disease burdens, it is important to determine the
optimal vaccination policies to better allocate limited resources. Previous studies
applied optimal control techniques to derive an efficient vaccination strategy for
influenza outbreaks under specific circumstances [20, 21, 22, 23, 24, 34]. Lahrouz et
al. considered two types of control to reduce the number of infectious individuals:
treatment and preventive campaigns to avoid relapses [20]. Modified models were
introduced to incorporate seasonal forcing and age-structure, and optimal strategies
for vaccination, antiviral treatments, and social distancing were suggested in [21].
Li et al. proposed a model based on complex networks to discuss an effective
quarantine scheme [24] and others have investigated the distribution of vaccines
under limited resources using a model with group mixing [34]. Many researchers
have also applied control theory to develop optimal strategies for other diseases
including HIV, tuberculosis, and vector-borne diseases [1, 5, 15, 16].

The goal of this paper is to derive an optimal vaccination strategy using the
SIR model with random inputs. To achieve that, the gPC Galerkin method, which
can be applied to various numerical techniques and control theory, is employed. In
Section 2, we formulate the SIR RDE model with a random transmission rate and
initial conditions for a susceptible population. Then, the existence and uniqueness
of a solution to the model are analyzed. A brief introduction to gPC in Section 3
is followed by applying the stochastic Galerkin method using an orthogonal poly-
nomial basis to approximate a solution to the RDE model in Section 4. We also
compare the gPC Galerkin solution with Monte-Carlo simulation to evaluate the
quality of approximation. In Section 5, we explore an optimal control problem
that minimizes the number of infected individuals while considering intervention
costs. Finally, Section 6 presents the results from numerical simulations with sev-
eral distributions of random variables, and we conclude with a summary in Section
7.

2. The SIR model with random inputs

In this section, we introduce an SIR model with random coefficients, and we
prove the existence and uniqueness of a solution to the model equation. The SIR
model consists of three compartments. The susceptible compartment, S, represents
individuals who are susceptible to the disease, while the infectious compartment,
I, represents infected individuals who can infect susceptible people. The recovered
compartment, R, represents individuals who have recovered from the disease or
who have been immunized against the disease. The SIR model with random inputs
is given by the following random differential equation [3, 30, 31]:

(1)


Ṡ(t) = −βS(t)I(t)− µu(t)S(t)

İ(t) = βS(t)I(t)− γI(t)

Ṙ(t) = µu(t)S(t) + γI(t)

with initial conditions S(0) = S0, I(0) = I0 and R(0) = R0.
The positive parameter β denotes the transmission rate of the disease, and µ

is vaccination efficacy. Infected individuals leave infectious class I at rate γ. µ
and γ are positive constants. The control function u(t) indicates the rate at which
susceptible individuals are vaccinated, and its value is assumed to be in the range
[0, 1]. Usually, the parameters and initial conditions are considered to be constants
in the deterministic model. In this paper, it is assumed that infection rate β and
the initial value of susceptible compartment S0 are functions of random variables
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to express the uncertainty occurring in reality. Since state R is decoupled from the
system of S and I, from now on we only consider the first two equations in (1) as
follows:

(2)

{
Ṡ(t) = −β(z)S(t)I(t)− µu(t)S(t)

İ(t) = β(z)S(t)I(t)− γI(t)

with initial conditions S(0) = S0(z) and I(0) = I0.
To represent the uncertainty in transmission rate β and initial condition S0,

these values are assumed to be functions of random variable z = (z1, z2) ∈ R2 in
the forms

β(z) = β0 + σβ · z1
and

S0(z) = S0,0 + σS0 · z2
where β0, σβ , S0,0, and σS0 are positive constants. Random variables z1 and z2
are assumed to be independent and identical distributed (i.i.d). Since model (2) is
not deterministic, the model is not solvable numerically by a simple ODE solver.
Monte Carlo simulation is a general method for numerically solving the RDE. In
this paper, however, we consider gPC to solve RDE (2), and we further explore
the optimal control problem with the RDE as the constraint equation. Throughout
our paper, we denote that (Ω,F ,P) is a probability space. For random vector
z = (z1, z2, · · · , zn) ∈ Rn in which the elements are mutually independent, we
define L2

P as follows:

(3) z ∈ L2
P(Ω) =

{
z ∈ Rn

∣∣ E[z2] < ∞
}
,

where E[·] =
∫
Ω

· dP(z) =
∫
Ω

· ρ(z)dz with the given probability density function
ρ(z).

2.1. Existence and Uniqueness. In this subsection, we first prove that there
exists a unique solution to RDE (2). To achieve this, we use the following theorem
(see [26] and [27]).

Theorem 2.1. Let Bt be a Brownian motion. Consider a stochastic differential
equation

(4) dx = g(t,x) dt+ σ(t,x) dBt, ∀t ∈ [0, T ]

where x(0) = x0 is a random initial condition with x0 ∈ L2
P(Ω).

Assume that

(5) ||g(t,x)||2 + ||σ(t,x)||2 < C(1 + ||x||2), ∀x ∈ Rn,

and

(6) ||g(t,x)− g(t,y)||2 + ||σ(t,x)− σ(t,y)||2 < D||x− y||2, ∀x,y ∈ Rn,

where C and D are constants. Then (4) has a unique t-continuous solution x
satisfying

(7) E

[∫ T

0

|x|2 dt

]
< ∞.

Here, || · ||2 is the the L2 norm on n-dimensional Euclidean space Rn. The
existence and uniqueness of the solution to (2) can now be demonstrated in the
following theorem.
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Theorem 2.2. Assume that 0 < β(z) < βmax and 0 < S0(z) < S0,max. Then,
there is a unique solution to RDE (2).

Proof. Let

x̃ =

[
S
I

]
and g̃(t, x̃) =

[
−β(z)SI − µuS
β(z)SI − γI

]
.

With this notation, model equation (2) can be rewritten as

dx̃ = g̃dt, with x̃(0) = x̃0.

Here, σ̃(t, x̃) = 0.
Let

x =
[
S I β(z)

]T
, g =

[
g̃ 0

]T
, and σ =

[
σ̃ 0

]T
.

Then we obtain an augmented system to which Theorem 2.1 can be applied as
follows:

(8) dx = g(t,x)dt+ σ(t,x) dBt,

where x(0) =
[
S(0) I(0) β(z)

]T
and σ(t,x) = 0.

Since β(z) < βmax and S(t), I(t) < Ntot where Ntot denotes the total population,
we have

||g(t,x)||2 = ||g̃(t, x̃)||2 =

∣∣∣∣∣∣∣∣[−β(z)SI − µuS
β(z)SI − γI

]∣∣∣∣∣∣∣∣
2

≤ C(1 + ||x̃||2) ≤ C(1 + ||x||2).

That is, our stochastic differential equation (8) satisfies condition (5).
To show condition (6), we consider the gradient of g:

∇g =

−β(z)I − µu −β(z)S −SI
β(z)I β(z)S − γ SI
0 0 0

 .

It is clear that |∇g| is bounded due to the boundedness of β(z), S, I, and u.
So, g(t,x) is globally Lipschitz continuous with respect to x, i.e., condition (6) is
satisfied. Therefore, there exists a unique t-continuous solution to RDE SIR model
(2) by Theorem 2.1. �

3. The generalized polynomial chaos approach

In this section, we apply the gPC approach in order to obtain a numerical solution
to the SIR RDE model. Let z be a random variable in L2

P with a probability density
function ρ(z); i.e.,

E
[
z2
]
=

∫
|z|2ρ(z) dz < ∞.

We consider the gPC basis functions, { Φi(z) }, which are orthogonal polynomial
functions such that for i, j = 0, 1, 2, · · ·
(9) E [Φi(z) · Φj(z)] = νiδij

where νi = E
[
|Φi(z)|2

]
and δij is the Kronecker delta function. The type of

orthogonal polynomials can be chosen according to the type of distribution for
the random variable. For example, if the random variable has a uniform random
variable in [a, b], the Legendre polynomials can be used as basis functions satisfying
orthogonality (9). In addition, it is best to choose the Jacobi, Hermite, and Laguerre
polynomials as basis functions when the random variable has beta, normal, and
gamma distributions, respectively. A more general approach, such as arbitrary
polynomial chaos (aPC), is used where there is a dependency between random
variables [29].
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We now derive a high-dimensional ODE system that approximates our model
RDE (2) by using gPC. To begin, we apply polynomial chaos expansion to the sus-
ceptible compartment S(t, z), the infectious compartment I(t, z), and transmission
rate β(z):

S(t, z) =
∞∑
i=0

S̃i(t)Φi(z), I(t, z) =
∞∑
i=0

Ĩi(t)Φi(z), and β(z) =
∞∑
i=0

βiΦi(z).(10)

Substituting expansions (10) into the SIR RDE (2) gives

∞∑
i=0

˙̃Si(t)Φi(z) = −

( ∞∑
i=0

βiΦi(z)

)( ∞∑
i=0

S̃i(t)Φi(z)

)( ∞∑
i=0

Ĩi(t)Φi(z)

)

−µu(t)

( ∞∑
i=0

S̃i(t)Φi(z)

)
∞∑
i=0

˙̃Ii(t)Φi(z) =

( ∞∑
i=0

βiΦi(z)

)( ∞∑
i=0

S̃i(t)Φi(z)

)( ∞∑
i=0

Ĩi(t)Φi(z)

)

−γ

( ∞∑
i=0

Ĩi(t)Φi(z)

)
.

Multiplying by Φℓ(z) for ℓ = 0, 1, · · · , N , taking an expectation of the random
variable, and truncating the expansions, we have

˙̃Sℓ(t) = −E

[(
N∑
i=0

βiΦi(z)

)(
N∑
i=0

S̃i(t)Φi(z)

)(
N∑
i=0

Ĩi(t)Φℓ(z)

)
· Φℓ

]
− µu(t)S̃ℓ(t)

(11)

˙̃Iℓ(t) = E

[(
N∑
i=0

βiΦi(z)

)(
N∑
i=0

S̃i(t)Φi(z)

)(
N∑
i=0

Ĩi(t)Φℓ(z)

)
· Φℓ

]
− γĨℓ(t).

After rearranging (11), we finally obtain a 2(N + 1)-dimensional ODE system
that approximates RDE system (2) as follows: for ℓ = 0, 1, · · · , N ,

(12)


˙̃Sℓ(t) = −

N∑
i,j,k=0

βiS̃j(t)Ĩk(t)E [Φi · Φj · Φk · Φℓ]− µu(t)S̃ℓ(t),

˙̃Iℓ(t) =
N∑

i,j,k=0

βiS̃j(t)Ĩk(t)E [Φi · Φj · Φk · Φℓ]− γĨℓ(t),

with initial conditions S̃ℓ(0) = E [S0(z)Φℓ(z)] and Ĩℓ(0) = E [I0Φℓ(z)]. We use
chaospy, Python software package [10], to generate orthonormal polynomials { Φi }
and to compute E [Φi · Φj · Φk · Φℓ] .

4. Numerical solution to the SIR RDE model

In numerical simulations for the approximate solution to RDE (2), we use the
following initial values and parameter values related to the 2009 H1N1 pandemic
[4, 11]:

(13)
Ntot = 1.155× 108, I0 = 5× 103, S0 = Ntot − I0,

R0 = 1.58, 1
γ = 1.91, β = R0

γS0
, µ = 0.7.
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4.1. Uniform distribution. In this subsection, we set the random inputs as fol-
lows:

β(z) = β0 + σβ · z1 and S0(z) = S0,0 + σS0 · z2,
where

β0 = 0.95β, S0,0 = 0.95S0, σβ = 0.1β, and σS0 = 0.1S0.

It is assumed that random variables z1 and z2 have a uniform distribution within
[0, 1], so β(z) ∈ [0.95β, 1.05β] and S0(z) ∈ [0.95S0, 1.05S0]. While there are several
types of basis functions for the expansions (10) in the polynomial chaos approach,
it is best to choose the Legendre polynomials in this case. The first six Legendre
polynomials up to the second order used in this numerical simulation are given by

Φ0(z) = 1.0

Φ1(z) = 3.46 · z2 − 1.73

Φ2(z) = 3.46 · z1 − 1.73

Φ3(z) = 13.41 · z22 − 13.41 · z2 + 2.23

Φ4(z) = 12.0 · z1 · z2 + 1.5 · 10−14 · z22 − 6.0 · z1 − 6.0 · z2 + 3.0

Φ5(z) = 13.41 · z21 + 1.34 · 10−14 · z1 · z2 + 1.67 · 10−29 · z22 − 13.41 · z1
− 6.70 · 10−15 · z2 + 2.24.

Using numpy numerical solver, we obtain S̃i(t) and Ĩi(t) by solving high-dimensional
ODE system (12). In Figure 1, we present a density of realizations by Monte-
Carlo simulation, the average values of Monte-Carlo results (black solid line),
and the expectation values of the approximate solutions (black dashed line), i.e.,

E

[
N∑
i=0

S̃i(t)Φi(z)

]
and E

[
N∑
i=0

Ĩi(t)Φi(z)

]
, for comparison. In the Monte-Carlo

simulation, we solve equation (2) using 1,000 samples for β(z) and S0(z) gener-
ated by the uniform distribution. As depicted in Figure 1, the results using the
Monte-Carlo method and the gPC approach are nearly identical. Figure 2 shows
the histograms of β(z) and S0(z). The data shown is a random sample of 1,000
points from a uniform distribution [0, 1], i.e., zi ∼ U(0, 1). In Figure 3, we explore
the effect of the order in the basis polynomial by presenting the distributions of
approximate solutions S(t, z) and I(t, z) for different orders of basis polynomial
(d = 1, 2, 3, and 4) at time t = 20 and 60. We can see that the distributions of
the solutions with a polynomial order of 2 or more are similar to the distribution
obtained by Monte-Carlo simulation.

4.2. Normal distribution. In this section, we examine the results of the Monte-
Carlo simulation and gPC approximation with random inputs β(z) and S0(z) where
z is a random vector with a two-dimensional independent normal distribution. We
set the random inputs as follows:

β(z) = β0 + σβ · z1 and S0(z) = S0,0 + σS0 · z2,

where

β0 = β, S0,0 = S0, σβ =
0.05β

3
, and σS0 =

0.05S0

3
.

It is assumed that random variables z1 and z2 have a normal distribution with mean
0 and a standard deviation of 1, i.e., zi ∼ N(0, 1), for i = 1, 2. So the 3σ intervals
of β(z) and S0(z) are [0.95β, 1.05β] and [0.95S0, 1.05S0], respectively.
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Figure 1. The density of realizations for S(t, z) and I(t, z) with
1,000 samples from a Monte-Carlo simulation when the random
variables have a uniform distribution. The bold solid line repre-
sents the average values of the Monte-Carlo results and the bold
dashed line represents the expectation values of the approximate
solutions from gPC.

(a) Histogram of β(z) (b) Histogram of S0(z)

Figure 2. 1,000 samples of β(z) and S0(z) where z = (z1, z2)
such that zi ∼ U(0, 1).

In the normal distribution, the Hermite polynomial could be chosen as a basis
function for gPC expansion. The normalized Hermite polynomials up to the second
order are given by

Φ0(z) = 1.0

Φ1(z) = z2

Φ2(z) = z1

Φ3(z) = 0.71 · z22 − 0.71

Φ4(z) = z1 · z2
Φ5(z) = 0.71 · z21 − 0.71.

As shown in Figure 4, 5, and 6, most of the numerical results from Monte-
Carlo simulation and the gPC approach are similar to those in Subsection 4.1. The
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(a) t = 20

(b) t = 60

Figure 3. Distributions of approximate solutions S(t, z) and
I(t, z) for different orders of the basis polynomial (d = 1, 2, 3, and
4) from gPC at time t = 20 and 60 when the random variables
have a uniform distribution. The blue cross marker represents the
results from the Monte-Carlo simulation.

only difference is that the approximations for the distribution of infectious solution
I(t, z) are not good for odd-order cases in Figure 6.

5. Optimal control of the SIR RDE model

The main goal of this study is to design an efficient vaccination strategy for
influenza outbreaks using the SIR RDE model. One way to achieve this goal is to
explore an optimal control problem that minimizes not only the mean number of
infected people, but also the cost of vaccination. Thus, we define the objective or
cost functional as

(14) J (u, S, I) = E

∫ T

0

w1I
2(t, z) + w2uS(t, z) + w3u

2(t) dt.

The second and third terms in the objective functional represent the number of
vaccines administered and the cost related to vaccination, respectively, while w1,
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Figure 4. The density of realizations for S(t, z) and I(t, z) with
1,000 samples from Monte-Carlo simulation when the random vari-
ables have a normal distribution. The bold solid line represents
the average values of the Monte-Carlo results and the bold dashed
line represents the expectation values of the approximate solutions
from gPC.

(a) Histogram of β(z) (b) Histogram of S0(z)

Figure 5. 1,000 samples of β(z) and S0(z) where z = (z1, z2)
such that zi ∼ N(0, 1).

w2, and w3 are weight constants to balance the relative costs in the objective
functional (14). The weight constants can also be chosen to change the relative
importance of each term in the functional. Let U be the set of admissible control
functions:

U = L∞([0, T ];U) where U = [0, 1].

Now our optimal control problem can be formulated as

(OP) min
u∈U

J (u, S, I) subject to the SIR RDE model (2).

To compute the optimal control function associated with problem (OP), we
should derive an optimality system which is the necessary conditions of the op-
timal solution of the problem. However, it is not easy to derive the optimality
system, because constraint equations (2) are random differential equations. We
use the gPC approach to overcome this difficulty. The gPC approach converts the
optimal control problem of random differential equations into an optimal control
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(a) t = 20

(b) t = 60

Figure 6. Distributions of approximate solution S(t, z) and
I(t, z) for different orders of basis polynomial (d = 1, 2, 3, and
4) from gPC at time t = 20 and 60 when the random variables
have a normal distribution. The blue cross marker represents the
results from Monte-Carlo simulation.

problem of high-dimensional ordinary differential equations by applying polynomial
chaos expansion. The original optimal control problem (OP) is transformed into
approximate optimal control problem (AOP) as follows: for fixed N ,

(AOP) min
u∈U

J (u, S̃, Ĩ) subject to the high-dimensional SIR ODE system (12)

where S̃ =

N∑
i=0

S̃i(t)Φi(z) and Ĩ =

N∑
i=0

Ĩi(t)Φi(z) are the solution to high-dimensional

SIR ODE system (12).
We now derive an optimality system that characterizes the optimal control func-

tion by using Pontryagin’s Maximum Principle [6]. The system can be used to
compute candidates for optimal controls. For this, we first introduce a Hamilton-
ian that consists of the integrand of objective functional (14), coupled with the
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right-hand sides of high-dimensional SIR ODE system (12) through adjoint vari-
ables λS̃n

(t) and λĨn
(t) for n = 0, 1, 2, · · · , N . Since our control function is bounded,

we define Lagrangian (L) which is the Hamiltonian augmented with penalty terms
for boundedness. Before defining the Lagrangian, we need to rewrite objective
functional (14) for simplicity:

E

∫ T

0

w1Ĩ
2(t, z) + w2uS̃(t, z) + w3u

2(t) dt

=

∫ T

0

w1E

( N∑
i=0

Ĩi(t)Φi(z)

)2
+ w2uE

[
N∑
i=0

S̃i(t)Φi(z)

]
+ w3u

2(t) dt

=

∫ T

0

w1

N∑
i=0

Ĩ2i (t) + w2uS̃0(t) + w3u
2(t) dt

Lagrangian (L) is now defined by

L = w1

N∑
i=0

Ĩ2i + w2u(t)S̃0 + w3u
2(t)

+
N∑
ℓ=0

λS̃ℓ

−
N∑

i,j,k=0

βiS̃j(t)Ĩk(t)E [Φi · Φj · Φk · Φℓ]− µu(t)S̃ℓ(t)


+

N∑
ℓ=0

λĨℓ

 N∑
i,j,k=0

βiS̃j(t)Ĩk(t)E [Φi · Φj · Φk · Φℓ]− γĨℓ(t)


− v1(t)u(t)− v2(t)(1− u(t)),

where vi(t) ≥ 0, (i = 1, 2) are the penalty multipliers satisfying

(15) v1(t)u(t) = v2(t)(1− u(t)) = 0 at u = u∗.

Here u∗ is the optimal control function yet to be found.

Theorem 5.1. Given optimal control function u∗ and the corresponding solutions
(S̃, Ĩ) to high-dimensional SIR ODE system (12) that minimize objective functional
(14), there exist adjoint variables λS̃n

(t) and λĨn
(t) for n = 0, 1, 2, · · · , N satisfying

(16)

λ̇S̃n
= −w2uδ0n − λS̃n

−
N∑

i,k=0

βiĨkEinkn − µu(t)

− λĨn

 N∑
i,k=0

βiĨkEinkn


λ̇Ĩn

= −2w1Ĩn − λS̃n

−
N∑

i,j=0

βiS̃jEijnn

− λĨn

 N∑
i,j=0

βiS̃jEijnn − γ


with terminal conditions λS̃n

(T ) = λĨn
(T ) = 0 where

Eijkℓ = E [Φi · Φj · Φk · Φℓ] .

Moreover, optimal control u∗ is characterized as

(17) u∗(t) = max

(
0,min

(
1,

1

2w3

[
µ

N∑
ℓ=0

λS̃ℓ
(t)S̃ℓ(t)− w2S̃0

]))
.
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Proof. The results follow from an application of Pontryagin’s Maximum Principle
[6]. Differentiating Lagrangian L with respect to state variables S̃n and Ĩn, respec-
tively, we obtain the equations for adjoint variables λS̃n

(t) and λĨn
(t) as follows for

n = 0, 1, 2, · · · , N :

λ̇S̃n
= − ∂H

∂S̃n

= −w2uδ0n −
N∑
ℓ=0

λS̃ℓ

−
N∑

i,j,k=0

βiδjnĨkEijkℓ − µu(t)δℓn


−

N∑
ℓ=0

λĨℓ

 N∑
i,j,k=0

βiδjnĨkEijkℓ


= −w2uδ0n + λS̃n

 N∑
i,k=0

βiĨkEinkn + µu(t)

− λĨn

 N∑
i,k=0

βiĨkEinkn


λ̇Ĩn

= −∂H

∂Ĩn
= −2w1Ĩn −

N∑
ℓ=0

λS̃ℓ

−
N∑

i,j,k=0

βiS̃jδknEijkℓ


−

N∑
ℓ=0

λĨℓ

 N∑
i,j,k=0

βiS̃jδknEijkℓ − γδℓn


= −2w1Ĩn − λS̃n

−
N∑

i,j=0

βiS̃jEijnn

− λĨn

 N∑
i,j=0

βiS̃jEijnn − γ


with terminal conditions λS̃n

(T ) = λĨn
(T ) = 0 where

Eijkℓ = E [Φi · Φj · Φk · Φℓ] .

To obtain the formulation of optimal control function u∗, we investigate necessary
optimality condition ∂L

∂u = 0; that is,

∂L

∂u
= w2S̃0 + 2w3u− µ

N∑
ℓ=0

λS̃ℓ
S̃ℓ − v1 + v2 = 0.(18)

Solving for optimal control u∗ we have

u∗ =
1

2w3

[
µ

N∑
ℓ=0

λS̃ℓ
S̃ℓ − w2S̃0 + v1 − v2

]
.

To obtain an explicit formula for optimal control without penalty multipliers v1
and v2, we consider the following three cases:

1. In the set {t|0 < u∗(t) < 1}, we have v1(t) = v2(t) = 0 because of the
condition for penalty multipliers (15). Hence, optimal control is given by

u∗ =
1

2w3

[
µ

N∑
ℓ=0

λS̃ℓ
S̃ℓ − w2S̃0

]
.

2. In the set {t|u∗(t) = 1}, we have v1(t) = 0 because of the condition for penalty
multipliers (15). Hence,

1 = u∗ =
1

2w3

[
µ

N∑
ℓ=0

λS̃ℓ
S̃ℓ − w2S̃0 − v2

]
,
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which implies that

1

2w3

[
µ

N∑
ℓ=0

λS̃ℓ
S̃ℓ − w2S̃0

]
≥ 1,

since v2 ≥ 0.
3. In the set {t|u∗(t) = 0}, we have v2(t) = 0 because of the condition for penalty

multipliers (15). Hence,

0 = u∗ =
1

2w3

[
µ

N∑
ℓ=0

λS̃ℓ
S̃ℓ − w2S̃0 + v1

]
,

which implies that

1

2w3

[
µ

N∑
ℓ=0

λS̃ℓ
S̃ℓ − w2S̃0

]
≤ 0,

since v1 ≥ 0.
Combining these three cases, we finally obtain the explicit formula for u∗ (17).

�

Remark 5.2. The system consisting of the state system (12) with initial conditions,
the adjoint system (16) with terminal conditions, and the optimality condition (17)
is called the optimality system (AOP) for fixed N . Any optimal controls must satisfy
this system.

6. Numerical results

In this section, we describe a numerical algorithm for determining a solution to
approximate optimal control problem (AOP). We point out that the optimality
system is a two-point boundary value problem because initial conditions are spec-
ified for state system (12), whereas terminal conditions are specified for adjoint
system (16). Among many practical approaches to solving the two-point boundary
value problem, we use a gradient-type iterative method. The algorithm proceeds
as follows.

• Randomly choose an initial guess for control.
• Solve state system (12) forward in time by using the control.
• Solve adjoint system (16) backward in time.
• Update the control by using optimality condition (17).
• Continue the iterations until convergence is achieved.

For more information on the gradient method, we refer interested readers to [13].
In numerical simulations, the weight constants are selected as w1 = w2 = 1 and
w3 = 107, and the degree of the orthonormal polynomial is d = 2. The rest of
the parameters are the same as they are in (13). We simulate optimal vaccination
strategies for a 60-day period, with various distributions of random variables z1 and
z2.

Figure 7 shows the optimal vaccination strategy and the 1,000 sample paths of
corresponding states S and I with a uniform distribution (zi ∼ U(0, 1)). As de-
picted in Figure 7 (a), the optimal strategy indicates that in the first few days,
vaccination should be given at the highest rate, and after that, vaccination should
be stopped completely. In Figure 7 (b) and (c), we present the 1,000 sample paths
of the SIR RDE model with an optimal vaccination strategy and without vacci-
nation, respectively, for comparison purposes. Compared with no vaccination, we
can see that the number of infected individuals is well-controlled, and the range of
variation in the 1,000 sample paths for S and I is significantly reduced under the
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(a) Optimal control function.

(b) 1, 000 sample paths of S and
I with the optimal vaccination.

(c) 1, 000 sample paths of S and
I without vaccination.

Figure 7. Optimal control and dynamics of the RDE SIR model
with a uniform distribution.

optimal vaccination strategy. This means that the optimal vaccination strategy not
only effectively controls infectious diseases, but also mitigates, to some extent, the
uncertainty arising in the real world.

We explore how the distribution type of random variables affects the optimal
vaccination strategy. Figure 8, 9, and 11, shows the optimal vaccination strate-
gies and the 1,000 sample paths of corresponding states S and I with a normal
distribution (zi ∼ N(0, 1)), a beta distribution (zi ∼ B(0.5, 0.5)), and a gamma
distribution (zi ∼ Γ(9, 0.5)), respectively. Observe that the overall results are simi-
lar to the case with a uniform distribution. This means that vaccination strategies
are insensitive to uncertainties that depend on measurement methods and errors,
on differences in the actual population sample sizes used, and on other factors that
are difficult to account for.

Figure 10 and 12 show the histograms of β(z) and S0(z) with a beta distribution
and a gamma distribution, respectively. With the beta distribution, we set the
random parameters as follows:

β(z) = β0 + σβ · z1 and S0(z) = S0,0 + σS0 · z2,

where

β0 = 0.95β, S0,0 = 0.95S0, σβ = 0.1β, and σS0 = 0.1S0.

It is assumed that random variables z1 and z2 have a beta distribution, B(0.5, 0.5)
in [0, 1], so then, β(z) ∈ [0.95β, 1.05β], and S0(z) ∈ [0.95S0, 1.05S0]. And the
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(a) Optimal control function.

(b) 1, 000 sample paths of S and
I with the optimal vaccination.

(c) 1, 000 sample paths of S and
I without vaccination.

Figure 8. Optimal control and dynamics of the RDE SIR model
with a normal distribution.

orthonormal basis polynomials {Φi} up to the second order are given by

Φ0(z) = 1.0

Φ1(z) = 2.83 · z2 − 1.41

Φ2(z) = 2.83 · z1 − 1.41

Φ3(z) = 11.31 · z22 − 11.31 · z2 + 1.41

Φ4(z) = 8.0 · z1 · z2 − 4.0 · z1 − 4l0 · z2 + 2.0

Φ5(z) = 11.31 · z21 − 11.31 · z1 + 1.41.

With the gamma distribution, the random inputs are defined by

β(z) = β0 + σβ · z1 and S0(z) = S0,0 + σS0 · z2,

where

β0 = 0.95β, S0,0 = 0.95S0, σβ = 0.1β/10, and σS0 = 0.1S0/10.

It is assumed that random variables z1 and z2 have a gamma distribution, Γ(9, 0.5)
in [0, 1], so then, β(z) ∈ [0.95β, 1.05β], and S0(z) ∈ [0.95S0, 1.05S0]. And the
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(a) Optimal control function.

(b) 1, 000 sample paths of S and
I with the optimal vaccination.

(c) 1, 000 sample paths of S and
I without vaccination.

Figure 9. Optimal control and dynamics of the RDE SIR model
with a beta distribution.

(a) Histogram of β(z) (b) Histogram of S0(z)

Figure 10. 1,000 samples of β(z) and S0(z) where z = (z1, z2)
such that zi ∼ B(0.5, 0.5).

orthonormal basis polynomials for a gamma distribution are as follows:

Φ0(z) = 1.0

Φ1(z) = 0.67 · z2 − 3.0

Φ2(z) = 0.67 · z1 − 3.0

Φ3(z) = 0.30 · z22 − 2.99 · z2 + 6.70

Φ4(z) = 0.44 · z1 · z2 − 2.0 · z1 − 2.0 · z2 + 9.0

Φ5(z) = 0.30 · z21 − 2.99 · z1 + 6.70.
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(a) Optimal control function.

(b) 1, 000 sample paths of S and
I with the optimal vaccination.

(c) 1, 000 sample paths of S and
I without vaccination.

Figure 11. Optimal control and dynamics of the RDE SIR model
with a gamma distribution.

(a) Histogram of β(z) (b) Histogram of S0(z)

Figure 12. 1,000 samples of β(z) and S0(z) where z = (z1, z2)
such that zi ∼ Γ(9, 0.5).

7. Conclusion

We presented the generalized polynomial chaos Galerkin method to solve an
optimal control problem of the SIR epidemic model with random inputs. The
gPC expansion and the stochastic Galerkin procedure allow us to employ standard
numerical techniques and control theory by converting the RDE to a system of
ODEs. The solution of the SIR RDE obtained by the gPC Galerkin method was
compared by using Monte-Carlo simulations to verify accuracy. A low-degree gPC
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provides a reasonable estimate of the mean, but a higher order basis is required for
good approximation of complete distributions of the state variables.

Pontryagin’s principle was used to derive an optimality system from which the
optimal control was determined. While the perturbations of inputs greatly vary
the dynamics without vaccination, optimal control and the resulting states are very
robust to the uncertainty of parameters β and S0. In addition, the optimal vacci-
nation strategies suggested from simulations are similar to each other regardless of
the type of distributions for the random inputs. As a result, the deterministic SIR
model can be a simple and acceptable alternative if the optimal solution is one’s
only concern.

In this study, we considered the source of uncertainties which were independent
of each other for the SIR model. The proposed approach can be extended to
a more practical problem assuming a correlated random source such as a multi-
normal distribution with non-zero covariance or an arbitrary distribution. For this
extension, more generalized tools to represent the random variables, for example
arbitrary polynomial chaos, are needed [29]. We may also apply the proposed
scheme to various disease models with random inputs other than the SIR model.
HIV [1, 15] is an interesting example for investigating the impact of randomness,
and to design individual therapy regimens, because the experimental data exhibit
significant variability among patients and their responses to therapy.
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