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ON AN ADAPTIVE LDG FOR THE P-LAPLACE PROBLEM

DONGJIE LIU, LE ZHOU*, AND XIAOPING ZHANG

Abstract. In this paper we consider the adaptive local discontinuous Galerkin(LDG) method
for the p-Laplace problem in polygonal regions in R2. We present new sharper a posteriori error
estimate for the LDG approximation of the p-Laplacian in the new framework. Several examples
are given to confirm the reliability of the estimate.

Key words. p-Laplace, local discontinuous Galerkin methods, quasi-norm, a posteriori error
estimate.

1. Introduction

Let Q be a bounded polyhedral domain in R? with polygonal boundary I'. We
consider the classical p-Laplace problem
1) —div(|VuP=2Vu) = f in Q
u=¢gp =20 onT’
for 2 < p < oo and given f € L?(Q2) (g conjugate of p). The p-Laplace problem (1)
admits a unique weak solution satisfying [7, 17]

(2) u = argmin E(v) for v € Wy P(Q) := {ve W"P(Q),v|r = 0}.

where
(3) E(v) ::/QW(Vv)dx—/QfU dz.

The energy density function W : R? — R reads W (a) := |a|?/p with the derivative
A(a) := |a|P~2a for all a € R2.
The Euler-Lagrange equation of (2) consists in finding u € W, () with

(4) /Q.A(Vu)-Vvdx—/vadsz Yo e W, P(R).

The embedding of Wy*(Q) into W,* is continuous when 2 < p < oo and Q is
bounded domain (see [5]).

The p-Laplacian occurs in many mathematical models of physical processes such
as glaciology, nonlinear diffusion and filtration, power-law materials, and quasi-
Newtonian flows. Furthermore it is viewed as one of the typical examples of a large
class of difficult problems-degenerate nonlinear systems.

The numerical approximation for p-Laplace problem has been studied extensively
in the literature. The previous analysis of finite element method (FEM) for this kind
of problem was undertaken in [12], where the error estimates have been shown in
the W1P-norm. The results were further improved in [1, 13, 28]. Recently, sharper
error estimates were derived in [2, 4, 20, 23, 24, 26] by developing the quasi-norm
techniques.
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Over the last two decades, there has been an increasing interest in discontinuous
Galerkin (DG) methods for p-Laplace problem; see[6, 7, 17, 22]. Partically, Local
discontinuous Galerkin (LDG) method [11, 14, 15] for p-structure problem was
studied in [17, 22], where the quasi-norm interpolation estimates [18] were applied
in the frame of broken spaces.

This paper aims at deriving a new explicit and reliable a posteriori error estimate
for the LDG applied to the p-Laplacian. We generalize the Helmholtz decomposition
of the gradient of the error [3, 9], derive the reliable a posteriori error estimate in
the new defined distance, and the error of the energy can be presented at the same
time in an easy way.

The remaining parts of this paper are organized as follows. In Section 2 we
describe the LDG formulation and the equivalent minimization problem. In Sec-
tion 3, we introduce the distance ||F(Vu) — F(W)”gm,n to quantify the quality of
approximations via F(a) := |a?/?>"'a,a € R?. The a posteriori error estimators
based on new defined distance is presented in Section 4, Some numerical exper-
iments conclude the paper in Section 5 with empirical evidence of the expected

convergence.
Standard notation applies throughout this paper to Lebesgue and Sobolev spaces
LP(2) and W'P(Q). Denote || - ||rr) == I - [lp.2: || - ey :== || - [[p,r. Denote

the expression ”<” abbreviates an inequality up to some multiplicative generic
constant, i.e. A < B means A < C' B with some generic constant 0 < C < oo,
which depends on the interior angles of the triangles but not their sizes. We write
A~Bif A< Band B < A.

2. Discontinuous finite element approximation

2.1. Discontinuous finite element space and Local L?-projection. In order
to obtain LDG formulation of (1), we introduce the gradient 8 := Vu and the flux
o := A(0) = |Vu|P~2Vu, then (1) can be reformulated as the follow problem: Find
(u, 8, 0) in appropriate space such that

0 =Vu,o0=A(0),—dive =f in
u=gp =20 onI ~

(5)

Let T, = U{T} be a shape-regular triangulation of 2 such that Q = (J{T : T €
Tr}, where straight triangle 7' has diameter hr and unit outward normal to 9T
given by ny. h:=max{hy : T € T;,}. We denote by I'y, = | {E C 9T : T € Tj,}
the union of all edges of T, and I'; = T',\I' an union of all interior edges of 7p,. The
discontinuous finite element space of scalar function and vector function space are
defined by

Vi={veLP(Q):v|lr eP(T) VT €T},
Y ={0c[LP()]*: 0|7 € [Po(T)]* VT €T}

Pi(T) denotes the polynomial of degree at most k on T. Similarly we have the
piecewise smooth function space on Ty

WHP(T,) = {v € LP(Q) : v|r € WHP(T) VT € Tp}.

Let T7 and T, be two adjacent elements with a common edge E. Denote v; :=
v|gr, the trace of function v restricted to F in element T; with n; := n|gr, on E
pointing exterior to T;. Define jump and average of function v on F,

1
[v] = ving + vany, {v} = 5(111 +v9), FE €Ty
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For vector function T € [W1P(T3)]?,

[fl=71 - my+72-my, {7} =73 (7'1+7'2) Eely.
Particularly, if £ C T,
[l =vn, {o} = H:m {r}:r

We introduce some notation for convenience (f,v) := fQ fo dz, (f,9)E
[ fg ds for E € Ty, V(h) :== Vi, + WHP(Q).
Recall the local L2-projection operator Il : L?(Q) — V}, [§]

(u — Tgu,vp)r =0 Vo, € Pe(T), T € Ty,
it holds that
(6) ||u—Hku||pT < Chr||Vulpr 1<p<oo, YT € Ty,
(7) lu — Mgull, o < Chl[Vullpo Yue WHP(Q).
Recall the trace inequality

_1

®)  ull,or < Che” (lullpr + hr|Vullpr) Yue WH(T), 1 < p < oo,
C is some constants independent of the meshsize.

2.2. Numerical fluxes and LDG formulation. Multiplying the equations in
(5) by Th € Xn, (), € X, and vy, € Vj, shows that

/0 Th dx——/udivhrh dm—&—/aTu(Th-n)ds,
(9) [ o-cuaz= [ a@)-c,a

/0~thh dx:/ fon dx—i—/ vp (o -m)ds.
T T ar

where V- is piecewise gradient. Replacing u, 0,0 with wuy, 0,0, and defining
numerical fluxes 4y, := @(up), &y := 6(up, op) on the boundary show that

/Oh'Th dz:—/uhdithh dx+/ ap, (T, - n) ds,
T T oT

(10) [on-cido= [ 4@1)-¢, an
/To-h~thh dQJ:/TfUh dl’+/8T’Uh(6’h~n)dS.

(11) i (up) == { ({)uh} 22 ?1 ,

. A(hgz'[un]) onTy

12 = { {ond=n

(12) G (un, on) { o —nA (h 1uhn) onl' ~’

the penalty coefficient > 0 is some constant. The fluxes & and & are consistent,
since i(u) = u, and 6(u,0) = o for regular functions v and o satisfying the

boundary conditions. The fluxes are also conservative since they are single-valued.
Denote S : V(h) x £, — R be the bilinear form defined by

(13) S, Xp):= | {mn} [v] ds+ / vTy -1 ds,
r; r
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and S : V(h) — X5 be the linear and bounded operator induced by the bilinear
form S, that is, given v € V(h), S(v) is the unique element in ¥, such that

(14) Sw) -7 de =S, T) VT,
Q

Similarly, let Vpgv be the unique element in 35 such that
(15) (Vbav, 7)) = (Vpv,mh) — (S(W), 7)) V7h € Zp,
then the following pointwise identity holds for v € V' (h)

(16) Vpev = Vv — S(v).

Particularly, Vpgv = Vv when v € Wol’p(Q).
A straightforward computation shows that for all (g,7) € Vj, x Xy,

(17) 3 /a g7 nde = (g} [rDr, + {[al. (T},

TETh

Inserting (11) and (12) into (10), summing the result over T' € 7, and using (17)
lead to

(On, ) = — (un, diva 7)) + ({unt, [Ta])r,
(on:Cr) =(A(0n),Ch),
(on, Vior) = (f,on) + {on}, [on])r, + (on, vin)r
— n{A(hg' [un]), [oal)r, — n(A(hg unn), van)r.
The integration by part implies that
(On, mn) =(Vrup, 7n) = ([un], {Tr})r, — (unn, mn)r,
(on,€r) =(A(6r),Ch),
(on, Vion) = (f,on) + {on}, [vn])r, + (o, vn - n)r
— n{A(hg' [unl), [val)r, — n(A(hg unn), van)p.

The flux formulation of (1) reads: Given data f € LI(Q), find (up,0,0) €
Vi, x 3 X ¥j, such that for all (Uh7Th7Ch) € Vhp X Xp X Xp

(18)

(19)

(O, Th) = (Vbaun, Th)
(20) (on,Cn) =(A(6r).¢h),
(1, Voaun) =(f,vn) = n{A(hg" [un], [onl)r, — n(A(hg upn), van)r.
Note that (20) implies that
(21) 0y, = Vpgup, on = A(Vpgup).

The last equation of (20) and (21) lead to the system only in terms of uy,
(22)
(A(Vpgun), Voaun) =(f,vn) = n(A(hg' [ur]), [nl)r, — n{A(hg upn), vpn)r.

2.3. The equivalent discrete variational formulation. Define the discrete
energy on the DG space

(23) Epg(v) :=/QW(VD(;U) dz+ Z 1 /EW([[U]]) ds—/ﬁfv dz Vv eV,

p—1
EeTy, hE

DG approximation uy to (2) minimizes the energy E in V}, , written
(24) up € arg min EDg(Vh).

The discrete minimizer uy, exists and unique [7].
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The discrete Euler-Lagrange equations of (24) consists in finding uy, € V}, for all
vp € Vi
(25)

/S;,A(VDGuh) -Vpagv, do + Z n/E‘A(hEI [[u;J]) . [[Uhﬂ ds = /vah dx.

Eely,
3. Distance

In this section, we generalize the definition quasi-norm [4, 19] to adaptive LDG
method on the p-Laplacian. Define

(26) F(a) :=[a["/*"'a VaeR?,

let a := A(a), B := A(b) for a,b € R?, then it satisfies that [16]
1P _ A2

(27) () — (o) ~ 12 il

(Jal+1b)»=2 ~ (Ja]r=2 + [b[»-2)
Define the distance
la — B
(28) /Q de = HF(a) — F(b)”%’p’Q Va,b S Rz.

Lemma 3.1[24]. Given 2 < p < oo and the conjugate ¢, there exists positive
constants c; (p) and co(p) such that for any a,b € R?, a := A(a), 3 := A(b)
(29)

Cl(p)/Q(W(b)—W(a)—w(b—a)) dz < |[F(a)-F(b)[3,q

< ea(p) / (W(b)-W(a)-a- (b—a)) dr.

The need for such an error concept comes from the nonlinear behavior of the
residual, which is not reflected by standard Sobolev norms. The new defined dis-
tance concept permits us to prove a best approximation property for Galerkin
solutions as well as optimal interpolation estimates, which are crucial ingredients
in a posteriori finite element analysis.

4. A posteriori error estimate of LDG

Let Ny, : V(h) — V(h)" be the pure nonlinear operator

[Nn (w), v] ::/QA(VDGw) - (Vpgv) dx

(30)

:/ A(Viw —S(w)) - (Vv —S(v)) dz Yw,v € V(h).
Q

Since A satisfies the assumption (H.4) in [8] and the operator S is bounded, we

deduce that A}, is Gateaux differentiable at each z € V' (h), and its derivative can
be interpreted as the bounded bilinear form DN} (2) : V(h) x V(h) — R,

(31) DNp(2)(w,v) := /QDA(E) (Vv =S()) - (Vyw — S(w))dz  Yw,v € V(h)

where  := V;,z — S(z) is the Jacobian matrix of A at ¢.
The DA is symmetric for all z € V(h) and the DA, is hemicontinuous, mean
value theorem leads to the existence of @ € V(h),

(32) DNy (@) (u — up,v) = Np(u) = Nj, (up) , 0] Yo € V(h).
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In this section, we will propose a posteriori error estimate under new distance
frame. The key technique are the convexity of energy density function W and the
Helmholtz decomposition for the term Vpg(u — up).

Denote curl x := (fa—x 8—X) for any y € WHP(Q), then the following lemma

Oy’ Ox
holds.

Lemma 4.1(Helmholtz decomposition) There exists ¢» € W, ?(Q) and x €
W1P(Q) such that

(33) Vpa(u —up) = Vi + (D.A(8)) Lcurl .

Here, D.A(8) is a symmetric positive definite matrix. Furthermore, there exists a
constant C' > 0 independent of h, satisfies

(34) IVYllp,a + [leutlx|p,o < Cl[Vpa(u — up)|pa-

Proof. Let ¢ € Wy?(Q) be the unique weak solution of the boundary value
problem:

(35) { —div (DA(@)V;[;) = —div (DA(é)VDG (u— uh)> in
=0 on I'.

Since div (DA(@)VDG (u—up) — DA(é)Vzﬁ) = 0 in the sense of distributions,
and  is simply connected, Theorem 3.1 in Chapter I of [21] shows that
(36) DA(0)Vpe(u—up) = DA()VY + curl x.
A simple transformation leads to
(37) Vpa(u —up) = Vi + (D.A(0)) eurl y.
According to the Theorem 1.4 in [27], stability estimate can be obtained,
(38) 194l + | (DA@) curlylpa < CI V6 (@ - un)llp.o-

The coefficients matrix D.A(é) is pointwise symmetric uniformly positive definite,
there exists 0 < u < M < oo such that for all y € R?

(39) pulyl* <y-DAB)y < My|*.

and

[[eurlx|[ Q:/ lcurly|? 2 dz
' Q

(40) hS / (curlX . (D.A(é))*chrlx) ® de
Q
= [[(DA(8)) eurlx|? o
The combination of (38) and (40) leads to the (34). O

Lemma 4.2 Let @, € WHP(Q) N C(Q) be an auxiliary function of the uy, and it
satisfies,

(1) ﬁh‘T S Pl(T) VT € Tp.

(2) 4p(x) :=u(x) =0 for each x € T.

(3) for each node x of T, not lying on the boundary T, @ (X) is the average of
the values of uy(X) on all the triangles T' € T, to which x belongs, i.e., @;(X) =

1
— > up|r(X), where n is the number of elements T' adjacent to X.
" xeT



ADAPTIVE LDG FOR P-LAPLACE PROBLEM 321

Then it holds

(41) Z /(Vu — Vpguy) - curl y doz = / (Vniin, — Vpgus) - curl x da.
reT, /T Q

Proof. Integral by parts and div(curly) = 0 lead to

/ (Vu — Vpguy) - curl x dz
Q

= Z / V(u —ap, + ap — Vpguyp) - curl x da
TeT, /T

= / (Vytup — Vpguy) - curl x do + Z / (u—up)curl x - np ds
Q Tt Jor

= / (Vytp — Vpguy) - curl x dz + /(u —ap) curl x - np ds.
Q r

tp|r = u|r = 0 concludes the proof. O
Lemma 4.3[24] For any u € Wy 7 (Q)

(42) [[Vullp.o < (0CF| fllg0) 7T,

WhereC'Fgmh(Q)7 1—|—1:1.
T

p q
Theorem 4.4 Let uy, be a approximated solution of problem (24), it holds that

(43) IF(Vu) = F(Vocun)l3 0 S Y nr,
TeTh
nr = hipll (f + divA(Vpeun)) 12 ¢
(44) T hell6 - np — ABh) x| .  + [ Viin — O]l -

Proof. The choice a := Vu,b := Vpgup, and « := A(Vu) in Lemma 3.1 and
Euler-Lagrange equations (4) and (25) lead to

I (V) = F(Vpaun)l3 .0 + c2(p) (E(u) — Epc (un))

<ca(p) [/Q fup, dz —/qu dz — Egh hf}Z—l /EW([[uh}]) ds
(45) - /Q A(Vu) - (Vpgun — Vu) dx]

<es(p) { /g (A(Vgun) — A(VW) - Viguy, dz

>

Eely

Lo [ Al T = W () ds].

W
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The choice a := Vpguyp, b := Vu, and « := A(Vpguy) lead to

I (V) = F(Vpaun)l3 .0 + c2(p) (Epc(un) — E(u))

- u T Ui m s
=t Vaf“ o [ g t e, Wil d
(46) - /Q A(Vpgun) - (Vu— Vpaun) dx}

<ea(p) { /g (V1) = A(Vogur)) - Vu da

3

Eely

The (45)-(46) shows that

Lo [ Al T = W) ds].

"
(@7) 1P(Va) = F(VpcunlE o S [ (A(V0) = A(Voau) - (Vu = Vogus) da.
Helmholtz decomposition from Lemma 4.1 shows that

/Q (A(Vu) — A(Vpgus)) - (Vu— Vpauy) da
= /Q (A(Vu) — A(Vpgup)) - (Vi + DA(B) Leurl x) dz
_ /Q (A(Vu) — A(Vpgun)) - Vi da

+ /Q (A(Vu) — A(Vpgus)) - DAO) teurl x dz,

where 0 := Vpaii = Vii — S(a).
Let IIp be a modified piecewise constant projection from W1P(Q) onto L?(1),

1
so that for all 2 € WHP(Q), (Ilp2)|r = 7| Jpz da for each T with 0T NT = 0,
and (ITpz)|r := 0 on each T € T}, with an edge on I'. We can obtain

/ (A(Va) — A(Vpgun)) - Vi da

Q
_ /T (A(Va) — A(Vpaun)) - Va(® — Hop) da

TeTh

= Z {—/Tdiv (A(Vu) — A(Vpgus)) - (¢ — oyp) dz

TETh

(49)
+/ (v — o) (A(Vu) — A(Vpgug)) - nr ds}
oT

= 5 { [ ¢+ avAocu) (0 - M) ds

TETh

+/ (¢ —1py) (@ - nr — A(0y) -nr) ds} )
oT\I"
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The property of Il
(50) 16 = Moty S hrl Vel
and the Holder inequality show that

/T (f + divA(Vpaun)) (i — o) do

(51) <|| (f + divA(Voaun)) gzl — Tow|p.r
Sher| (f + divA(Vpcun)) g,z VO|lp,1-

The Holder inequality and the trace inequality (8) imply that

/ (¢ — TIow) (& - ng — A(6)) -nr) ds
T\
(52) <l — oe|

por\rllo - nr — A(0y) - nr|lg o
-1
Shy "|le - nr — A1) - nrllgor el V|1

Now, it comes to the estimate of the second term of (48), the Lemma 4.2 shows
that

/Q (A(Vu) — A(Vpgus)) - DAG) teurl x da
(53) :/QDA(é) (Vu — Vpgus) - DA(0) eurl y da
:/Q(Vﬂh — Vbguy) - curl y dz.

The Holder inequality leads to

(54) /(Vﬂh — Vpgup) - curl x de < ||Va, — O4|lg.all curl x|l p.0-
Q
The equivalent property of quasi-norm shows that
[Vu — Vpgunlly ¢ 2/ Vb (u —up)|” dz
Q

= S/ Voa(u—un)* (|Vul + [Voa(u —up))P 2 de
Q
=|Vpe(u = un)|(wp ~ [F(Vu) = F(Vocun)|3,.0:
where | - |(, ) is the quasi-norm in [25]. More details can be refered to Proposition

3.1 in [25].
The combination of above estimates and Lemma 4.1 yields

IV — Vpgun %

(56) S Z {hTH (f + divA(Vbgun))

TETh
—A(0y) -nrllgorr + [ Vin — 0nllgr}

-1
.7 + hp "[|o - nr
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and
IVu — Vpgunll, o
. =2
<> {hT (f + divA(Vpgun)) g + by "o - nr
TETh
—A(0r) - nrllg o\ + [IVan — Onllgr} 7"
<y {thn f +divA(Vpgup)) |2 7 + hr|& - nr
TETh
—AO) 02 g+ [V~ 0l }
This concludes the proof. ([
Theorem 4.5 Let uy, be a approximated solution of problem (24), it holds that
(57) |IF(Vu) — F(Vpaun)|3 5.0 + [E(w) — Epa(un)| < Z nr,
TETh

it = nr + hy 7|l (nA(hyy F[un]) — {A( Vbgun)}) - nrlger

(58) +hrllf = Tof o + | s / A[un]) - [un] - W([un]) ds
oT oT

Proof. The (45)-(46) shows that
IF(Vu) = F(Voaun)|l3 5.0 + c2(p) | E(w) — Ep(u)]

<ca(p) [ /Q (A(Vu) — A(Vpgup)) - (Vu — Vpguy) do

|

We already have an estimate of I; from Theorem 4.4. Now we deal with term I5,
(Vpaun)|r € [Po(T)]? implies that
(60)

I :/ (.A(VD(;,U) - A(VDGuh)) -Vu dz
Q

(59) + ‘/ (A(Vu) — A(Vpgup)) - Vu dz

nhy e / A([un]) - [un] — W ([un]) ds

Eely,
i=ca(p) (1| + [I2] + |I5]) -

- / Fu da — / A(Voeun) - Vi () da
/f (u —Tu) do — Z /{A Vpaup)} - [Tiu] d

Eel'y,

+Z</Ah U[un]) [Myu] d >

EEF;

= [ fu=mmw a3 ( | @A D) ~ (AT beun)}) -nr T ds).

T€ETh
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Applying Lemma 4.3 and local L? projection property we introduced in Section
2, we obtain

(o1 [ S 1h) de $ S hrlf ~ ol

TeTh

On the other hand, The Lemma 4.1 and the Lemma 4.3 imply that

Z (/8T (nA(hgp[un]) — {A(Vpcun)}) - ny Iu ds)

TETh
-> (] G D ~ 14T b)) -nr (0= i) as)
62) < > I (nAMazlun]) — {A(Vpcun)}) - nrllgor u—ulpor
TeTh
< 3 1 (AG un]) — {A(VpGun)}) - nellyor by [Vl
TETh
<hy * 3 | (A lun]) — {A(Vocun)}) -nrl,or-
TETh

I3 is computable. The combination of above estimates verifies the assertion of
the theorem. (]

5. Numerical experiments

This section is devoted to the numerical investigation of the lowest-order schemes
of LDG for the p-Laplace problem on square domain. The numerical experiments
concern the practical application of Theorem 4.5. Denote the left-hand side of the
estimates by LHS = ||[F(Vu) — F(Vpgun)|3,.0 + |E(u) — Epa(us)|. The global

upper bounds read GUB = Y .
TeTh
The triangulations are either uniform refinement or with an adaptive mesh-

refinement algorithm with initial mesh 7o and then, for any triangle T" of a trian-
gulation 7; at level [ = 0,1,2,3... . Given all those contributions, mark some set
T’ € My of triangles in T of minimal cardinality with the bulk criterion

123 (1)< Y (1),

TeT, T'e My

The refinement of all triangles in M, plus minimal further refinements to avoid
hanging nodes lead to the triangulation Ty, within the newest-vertex bisection.
The choice of the refinement-indicator 7(7") is motivated by the convergence theory
of adaptive mesh-refining algorithms e.g. in the review article [10] with further
details on the mesh-refinement. The convergence history plots displays the left-
hand sides and the upper bounds as function of the number of degrees of freedom
(ndof) in a log-log scale.

5.1. Example 1. Consider the p-Laplace problem on the square domain € :=
(0,1)? with the exact solution u = sin(7z)sin(7y) and the right-hand side term
f = —div(|Vu[P~2Vu) for p = 3.

Figure 1 displays the triangulations generated by ALDG for Theorem 4.5. Fig-
ure 2 displays the global upper bounds and the corresponding error terms of the
estimates for uniform and adaptive mesh-refinement.
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LDG apdative,dof=27273 LDG,dof=27273
4MEWM%‘MMWHMW

S

10% g T T .

N - Adpative GUB
KA —5-- Adpative LHS

% 4 Uniform GUB

10t ke A - Uniform LHS

F1GURE 2. Convergence history of LDG method for p = 3.

5.2. Example 2. Consider the p-Laplace problem on the square domain 2 :=
(0,1)? with the exact solution

u = 0.00052%(z — 1)2y>(y — 1)2e102"+10v

and the right-hand side term f = —div(|Vu|P~2Vu) for p = 3.

Figure 3 displays the triangulations generated by ALDG for Theorem 4.5. Fig-
ure 4 displays the global upper bounds and the corresponding error terms of the
estimates for uniform and adaptive mesh-refinement.

5.3. Conclusions. We consider the adaptive LDG method based on the new de-
fined distance. The main features of our technique is that the a posteriori error
estimates provide reliability upper bounds with discretization error, and the error
of the energy can be presented at the same time. The numerical examples show
that the convergence results are consistent with the theoretical analysis. Further-
more, the associated adaptive method is shown to be much more efficient than a
uniform refinement to compute the discrete solutions. In particular, the experi-
ments illustrate the ability of the adaptive algorithm to localize the singularities of
each problem.
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