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A COMPARISON OF REGULARIZATION METHODS FOR

BOUNDARY OPTIMAL CONTROL PROBLEMS

GIORGIO BORNIA, ANDREA CHIERICI, AND SAIKANTH RATNAVALE

Abstract. In this work we propose and compare multiple approaches for the formulation of
boundary optimal control problems constrained by PDEs. In particular, we define a property of
balanced regularity that is not satisfied by traditional approaches. In order to instead guarantee

this property, we consider the use of other regularization terms, one involving fractional Sobolev
norms and the other one based on the introduction of lifting functions. As required by the frac-
tional norm approach, we present a semi-analytical numerical implementation of the fractional
Laplacian operator. All the proposed formulations are also considered in conjunction with con-

straints of inequality type on the control variable. Numerical results are reported to compare all
the presented regularization techniques.
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1. Introduction

Boundary optimal control problems are one of the most interesting classes of
optimal control problems constrained by partial differential equations. In fact,
the possibility of controlling the behavior of a physical system often takes place
only by changing the values of certain quantities on the boundary of its domain,
especially when the interior of the physical system is not accessible or no physical
mechanism can be triggered inside the domain from the outside. Many works have
been published both on the mathematical analysis (see [1, 2]) and the numerical
approximation (see [3] and references therein) of this class of problems.

In this work we turn our attention to the mathematical formulation of boundary
optimal control problems and how it affects the function space setting of optimal
states and controls. Fundamental results about Sobolev spaces imply that the
connection between functions defined on the domain of a PDE and their restriction
to the boundary gives rise to the occurrence of fractional-indexed Sobolev spaces. In
the context of boundary optimal control, this may lead to the presence of fractional
norms and consequently fractional derivatives in the first-order necessary conditions
that characterize optimal solutions.

Due to the challenges in the numerical approximation of fractional derivatives,
simple optimal control techniques have been traditionally chosen in order to circum-
vent their presence. In many works, the control problem is simplified by resorting
to integer-indexed Sobolev spaces (e.g., H1 controls instead of H1/2 controls). This
approach features the drawback of a more restrictive control space than the natu-
ral space that is dictated by the range of the trace operator. In order to overcome
this restriction, still without involving fractional norms, an approach based on the
concept of lifting functions has been studied in the literature [4, 5, 6, 7].

To the best of our knowledge, the present work is a first attempt at encom-
passing multiple boundary control approaches in a unified view. In particular, the
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traditional integer-indexed approach, which is placing unnecessary restrictions on
the function spaces, is compared to two formulations that bypass such limits: on
one hand, the lifting function formulation; on the other, a direct approach based
on a numerical approximation of the fractional Laplacian.

Fractional operators on bounded domains (and, in particular, the fractional
Laplacian) can be seen as nonlocal diffusion operators [8]. For this reason, the
numerical implementation of these operators is not straightforward and represents
a topic of increasing interest in the scientific community. Many works have been
recently published on this subject, and the interested reader can consult [9, 10].
Moreover, several articles including comparisons of the different fractional Lapla-
cians have appeared recently, see [11, 12, 13]. A common approach for the numerical
simulation of the fractional Laplacian, called spectral fractional Laplacian, is based
on the Dunford-Taylor method. In particular, a direct approximation of the inverse
of the fractional operator can be obtained through the so-called Balakrishnan for-
mula and a sinc quadrature scheme. Even though this technique does not allow a
direct implementation of the operator, it is advantageous from the point of view of
the computational costs and the ease of implementation. The interested reader can
consult [14, 15]. A different technique based on the Dunford-Taylor method, and
usually called integral fractional Laplacian, can be defined using the Fourier trans-
form. Similarly to the spectral fractional Laplacian, it relies on a sinc quadrature
scheme. However, this approach allows the numerical representation of the frac-
tional operator, instead of its inverse. The interested reader can consult [16] and
references therein. Lastly, the direct numerical implementation of the real-space
formula for the fractional Laplacian can be performed. This approach is known
as Riesz fractional Laplacian and can be traced back to the nonlocal numerical
simulations [17].

In this paper, we apply the Riesz approach to implement and test the fraction-
al Laplacian operator in a finite element framework. Usually, a standard tech-
nique used for nonlocal simulations, including the Riesz fractional Laplacian im-
plementations, provides the limitation of the interactions to a ball of radius λ > 0.
This approach allows to reduce the computational costs and the sparsity pattern
of the interaction matrix. However, this technique poses many challenges, e.g.
the prescription of nonlocal analogues of boundary conditions and the uncertain-
ty and sparsity of model parameters and data. The interested reader can consult
[18, 19, 20, 21]. In this work, we introduce a semi-analytical technique for a direct
implementation of the double integral, without any limitation on the interaction
domain.

Outline of the paper. In the next Section, we introduce a class of boundary
optimal control problems with particular attention to the regularization term. We
present the definition of balanced regularity and consider different regularization
techniques in terms of how they behave with respect to this property. These lead
to different optimality systems for the proposed techniques that are presented in
Section 3. Since the fractional optimal control problem gives rise to fractional
operators, in Section 4 we introduce a numerical implementation of the fractional
Laplacian operator. The addition of control inequality constraints is described
in Section 5. Lastly, Section 6 is devoted to presenting some numerical results
to compare all the proposed optimal control problems for both two- and three-
dimensional simulations.
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2. Boundary optimal control problems and balanced regularity

In this section, we introduce a class of boundary optimal control problems and we
define the property of balanced regularity that naturally arises with them. Only to
keep the exposition simple, we describe these features with a model problem given
by a Laplace constraint operator, Dirichlet boundary conditions, and a tracking-
type cost functional. We remark that the issues we will be highlighting are also
encountered in boundary optimal control problems with general PDE constraints,
boundary conditions other than Dirichlet (such as Neumann or Robin), and cost
functionals of non-tracking type.

Let us first recall some basic definitions for the symbols that will be used in the
following. Let Ω be a bounded domain with boundary ∂Ω and unit normal vector
field n. For any domain O ⊆ Ω, we denote with Hm(O) the classical Sobolev space
of order m. For any Γ ⊂ ∂O, we denote with γ0 and γ1 the operators

γ0 : Hm(O) → Hm−1/2(Γ)(1)

γ1 : Hm(O) → Hm−3/2(Γ)(2)

corresponding to the trace of a function on Γ and the trace of the normal derivative
of a function on Γ, respectively. These operator is surjective [22]. Also, for any
boundary portion Γ ⊆ ∂O, we use the notation H1(O; Γ) for functions H1(O) with
zero trace on Γ. When Γ = ∂O, we also use the notation H1

0 (O) = H1(O; ∂O).
The symbols ∇Γ and ∆Γ denote the surface gradient and surface Laplacian on ∂Ω,
respectively. In the rest of the paper, the inner product over Hm(O) is denoted
by (f, g)m, whenever m is a non-negative integer. We define, for f g ∈ L1(O) and
u · v ∈ L1(O),

(f, g)O =

∫
O
fgdx , (u,v)O =

∫
O
u · vdx .

We will neglect the domain label when O ≡ Ω.
In order to describe the notion of balanced regularity, we now introduce a class

of model Dirichlet boundary optimal control problems. We denote the control
boundary as Γc ⊆ ∂Ω. On Γc, Dirichlet optimal conditions are sought.

Problem 1. Find a state-control pair (u, q) ∈ H1(Ω)×Q which minimizes the cost
functional

(3) J (u, q) =
1

2
∥u− ud∥2L2(Ωd)

+
α

2
G(q)2 ,

under the constraints

∆u = 0 on Ω ,(4)

u = q on Γc ,(5)

u = 0 on ∂Ωr Γc .(6)

The functional G(q) is a given regularization term and it is multiplied by a
constant α > 0. In the following, various choices of the functional G(q) will be
considered, for all of which the existence of a minimizer is well-established [23].
The desired state function ud is also given, and it may be intended to be achieved on
a subset Ωd ⊆ Ω. Moreover, Q is a Hilbert space on the domain Γc, depending on
the choice of the functional G(q) in (3) and on the Dirichlet boundary conditions
in (5), that can be more precisely written using the trace operator as γ0u = q
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on Γc. This immediately shows that, while H1(Ω) is the space for the optimal
states, the natural space where optimal boundary controls q should be sought is
Q = H1/2(Γc), as dictated by the range of the trace operator (1). Thus, we can
propose the following definition.

Definition 1. An optimal control problem is said to have the balanced regularity
property if the optimal states belong to the Sobolev spaces Ha(Ω) with differentiabil-
ity index a, while the boundary optimal controls belong to the Sobolev spaces Hb(Γ)
with differentiability index b = a− 1

2 , as dictated by the range of the trace operator.

A problem that possesses the balanced regularity property will search for con-
trols in the largest trace space without additional restrictions. In general, the
regularization functional G(q) can be chosen in multiple ways.

H1(Γc) approach. The Sobolev spaceH1(Γc) is the largest integer-indexed Sobolev
space contained in H1/2(Γc). Thus, a simple and immediate choice of G(q) that
guarantees the existence of a minimizer is

G(q) = ∥q∥H1(Γc) .

In literature, many works use this approach to deal with boundary controls. How-
ever, as noted above, in this case the control space is more restrictive than the
natural one and the balanced regularity property is not satisfied.

H1/2(Γc) approach. As noted above, this is the most natural choice of G(q) in
(3) that guarantees the existence of a boundary optimal control. In particular, we
impose

(7) G(q) = ∥q∥H1/2(Γc) .

The balanced regularity property is then clearly satisfied for this problem. The
drawback of this approach is that the differentiation of the fractional norm on q
induces an optimality system that contains the fractional derivatives of q, and the
numerical discretization of fractional derivatives poses considerable difficulties with
respect to standard derivatives.

H1(Ωc) approach (lifting). This formulation is inspired by the method of re-
duction to homogeneous boundary conditions. We consider an arbitrary domain
Ωc ⊆ Ω, such that Γc ⊂ ∂Ωc. Then, we can decompose the state u as u = û + q̃,
with û = 0 on ∂Ω. In this case the control space can be defined as

Q = {q̃ ∈ H1(Ω) such that q̃ = 0 in Ωr Ωc and γ0(q̃) = 0 on ∂Ωc r Γc} .
This problem results in a reformulation of the control Problem 1.

Problem 2. Find a state-control pair (û, q̃) ∈ H1(Ω)×Q which minimizes the cost
functional

J (û, q̃) =
1

2
∥û+ q̃ − ud∥2L2(Ωd)

+
α

2
∥q̃∥2H1(Ωc)

,

under the constraints

∆(û+ q̃) = 0 on Ω ,

û = 0 on ∂Ω .

Thus, this method consists of a distributed control approach, where the optimal
Dirichlet boundary control is obtained via trace restriction as γ0(u) = γ0(û+ q̃) =
γ0(q̃). In this way, the boundary controls belong to the natural trace space.
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3. First-order necessary conditions and optimality systems

The formal Lagrange method is used to derive the first-order necessary condi-
tions and the optimality systems. For additional details, see [24]. The solution of
the optimality systems arising as first-order necessary conditions for the proposed
optimal control problems yields candidate optimal solutions.

H1(Γc) control. We define the Lagrange functional for the standard Dirichlet
problem without inequality constraints as

L(u, q, λ1, λ2) =
1

2

∫
Ωd

|u− ud|2 dΩ+
α

2

(∫
Γc

q2 dS +

∫
Γc

|∇q|2 dS
)

−
∫
Ω

λ1(−∆u) dΩ−
∫
Γc

λ2(u− q) dS .

Here, λ1 and λ2 are Lagrangian multipliers defined on Ω and Γc respectively. By
setting λ = λ1 and λ2 = −γ1(λ), the optimality system for all variations δu ∈
H1(Ω; ∂Ωr Γc), δq ∈ H1(Γc) and δλ ∈ H1(Ω; ∂Ω) is given by the adjoint, control,
state equations with the boundary conditions as below.

((u− ud), δu)Ωd
− (∇λ,∇(δu))Ω +

(
∂λ

∂n
, δu

)
Γc

= 0 ,

α[(q, δq)Γc + (∇q,∇(δq))Γc ]−
(
∂λ

∂n
, δq

)
Γc

= 0 ,

− (∇u,∇(δλ))Ω = 0 ,

u = q on Γc, u = 0 on ∂Ωr Γc, λ = 0 on ∂Ω .

As noted above, this system implies the numerical implementation of the fraction-
al Laplacian operator. Therefore, in the next section we introduce a numerical
approximation of it.

H1/2(Γc) control. The only difference with respect to the previous case is the
presence of the fractional norm in the objective functional and hence in the corre-
sponding Lagrange functional.

The resulting optimality system is given by

((u− ud), δu)Ωd
− (∇λ,∇(δu))Ω +

(
∂λ

∂n
, δu

)
Γc

= 0 ,

α(−∆
1
2

Γc
q, δq)Γc −

(
∂λ

∂n
, δq

)
Γc

= 0 ,

− (∇u,∇(δλ))Ω = 0 ,

u = q on Γc, u = 0 on ∂Ωr Γc, λ = 0 on ∂Ω .

H1(Ωc) control (lifting). The first-order necessary conditions for the lifting prob-
lem can be derived from the Lagrange functional

L(û, q̃, λ) =1

2

∫
Ωd

|û+ q̃ − ud|2 dΩ+
α

2

(∫
Ωc

q̃2 dS +

∫
Ωc

|∇q̃|2 dS
)

−
∫
Ω

λ(−∆(û+ q̃)) dΩ .
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The optimality system reads, for all variations δû ∈ H1(Ω; ∂Ω) , δq̃ ∈ H1(Ω; ∂Ω r
Γc) and δλ ∈ H1(Ω; ∂Ω),

((û+ q̃ − ud), δû)Ωd
− (∇λ,∇(δû))Ω = 0 ,

((û+ q̃ − ud), δq̃)Ωd
+ α[(q̃, δq̃)Ωc + (∇q̃,∇(δq̃))Ωc ]− (∇λ,∇(δq̃))Ω = 0 ,

− (∇(û+ q̃),∇(δλ))Ω = 0 ,

û = 0 on ∂Ω, q̃ = 0 on ∂Ωr Γc, λ = 0 on ∂Ω .

4. The Riesz fractional Laplacian and its numerical approximation

In this work, the numerical approximation of the fractional Laplacian operator
on bounded domains is obtained through the Riesz fractional Laplacian. In order to
correctly define it, we first introduce some basic definitions of the fractional Sobolev
spaces.

Definition 2. Given the open set in Ω ∈ Rn, the fractional Sobolev space W s,p(Ω)
is defined as

(8) W s,p(Ω) =

{
u ∈ Lp(Ω) :

|u(x)− u(y)|
|x− y|

n
p +s

∈ L2(Ω× Ω)

}
,

for any p ∈ [1,+∞) and with a fractional exponent s ∈ (0, 1).

Definition 3. The natural norm in W s,p(Ω) is defined as

∥u∥W s,p(Ω) =

(∫
Ω

|u|pdx+

∫
Ω

∫
Ω

|u(x)− u(y)|p

|x− y|n+sp
dx dy

) 1
p

.

We also define the so-called Gagliardo semi-norm as

[u]W s,p(Ω) =

(∫
Ω

∫
Ω

|u(x)− u(y)|p

|x− y|n+sp
dx dy

) 1
p

.

In this work we will only consider the case p = 2, so that W s,p(Ω) = Hs(Ω) is a
Hilbert space. In such case it holds

W 1,p(Ω) = H1(Ω) ⊂ Hs(Ω) .

From (8) we define the function space Hs(Ω) as

Hs(Ω) =

{
u ∈ L2(Ω) :

|u(x)− u(y)|
|x− y|n2 +s

∈ L2(Ω× Ω)

}
.

For more information on fractional Sobolev spaces and norms, the interested reader
can see [10].

We can now define the fractional Laplacian operator. First, we consider the
generic Schwartz space S of rapidly decaying C∞ functions in Rn. Then, for any
u ∈ S and s ∈ (0, 1), the fractional Laplacian (−∆)s is defined as

(9) (−∆)su(x) = cn,s P.V.

∫
Rn

u(x)− u(y)

|x− y|n+2s
dy, 0 < s < 1 ,

where P.V. means “in the principal value sense”. cn,s depends only on s and on
the dimensionality of the problem n. Its value can be written as

cn,s = C(n, s) = s 22s
Γ(n+2s

2 )

πn/2 Γ(1− s)
,
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where Γ(k) =
∫∞
0

tk−1e−tdt is the well-known Gamma function. As introduced
above, the Riesz fractional Laplacian is based on a direct implementation of the
real space formula (9).

Note that the fractional operator can be seen as a special case of a nonlocal
diffusion operator L applied on the function u(x) : Ω → R as

(10) Lu(x) = 2

∫
Rn

(u(y)− u(x))γ(x,y)dy , ∀x ∈ Ω ⊆ Rn ,

where the kernel γ(x,y) : Ω × Ω → R is a non-negative, symmetric mapping [8],
defined as

γ(x,y) =
cn,s

2|x− y|n+2s
∀x,y ∈ Rn .

4.1. Weak formulation. To illustrate the numerical implementation of the Riesz
fractional Laplacian, we consider the simple steady-state nonlocal diffusion problem{

(−∆)su(x) = f(x) on Ω ,

u(x) = 0 on Γ ,

where Γ is the boundary of the domain Ω. Thus, the weak formulation of the
considered problem reads as follows. Given the following spaces,

V = {v ∈ L2(Ω ∪ Γ) : |||v||| < ∞ and v|RnrΩ = 0} ,
V0 = {v ∈ V : v|Γ = 0},

for f ∈ V ′, find u ∈ V such that

(11) A(u, v) = F(v) , ∀v ∈ V0 , subject to u = 0 on Γ ,

where

(12)

A(u, v) =
cn,s
2

∫
Rn

∫
Rn

u(y)− u(x)

|x− y|n+2s

(
v(y)− v(x)

)
dy dx ,

F(v) =

∫
Ω

fv dx .

Here, the energy semi-norm ||| · ||| is defined as

|||v|||2 = A(v, v),

and the space V ′ is the dual space of V .
The restriction of (12) on the domain Ω is obtained by imposing

(13) u(x) = 0, v(x) = 0 ∀x ∈ Rn r Ω .

In this work we use a semi-analytical technique instead of the interaction radius
method. In particular, to simplify the notation we introduce

X (x,y) =
cn,s
2

u(y)− u(x)

|x− y|n+2s

(
v(y)− v(x)

)
.

We now split the double integral in (12) as

A(u, v) =

∫
Ω

∫
Ω

X (x,y) dydx+

∫
RnrΩ

∫
Ω

X (x,y) dydx

+

∫
Ω

∫
RnrΩ

X (x,y) dydx+

∫
RnrΩ

∫
RnrΩ

X (x,y) dydx .
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Now, by applying the restriction (13) we have∫
RnrΩ

∫
RnrΩ

X (x,y) dydx = 0 .

Therefore, the numerical implementation of the fractional Laplacian can be split
into a bounded contribution B(u, v) =

∫
Ω

∫
Ω
X (x,y) dydx, and an unbounded

contribution, represented by the two integrals C(u, v) =
∫
RnrΩ

∫
Ω
X (x,y) dydx

and
∫
Ω

∫
RnrΩ

X (x,y) dydx. Moreover, since X (x,y) = X (y,x), it holds

(14) A(u, v) = B(u, v)+C(u, v) =
∫
Ω

∫
Ω

X (x,y)dydx+2

∫
Ω

∫
RnrΩ

X (x,y)dydx ,

subject to (13). We now introduce a simple semi-analytical model to approximate
the integral over Rn r Ω in the unbounded term.

4.2. A semi-analytical approach to the unbounded integral. We now con-
sider the unbounded term under the condition (13), obtaining

C(u, v) = cn,s

∫
Ω

u(x)v(x)

∫
RnrΩ

1

|x− y|n+2s
dy dx .

We describe how to perform the integration on one- and two-dimensional do-
mains, since in this work we are interested in handling the fractional Laplacian on
boundaries of two- and three-dimensional domains.

If we consider a one-dimensional domain, the inner integral can be evaluated
analytically. In fact, if we consider Ω = [a, b], a, b ∈ R, a > b, we have ∀x ∈]a, b[∫

RnrΩ

1

|x− y|n+2s
dy =

∫ a

−∞

1

|x− y|n+2s
dy +

∫ ∞

b

1

|x− y|n+2s
dy

=
1

n+ 2s− 1

([
1

|x− y|n+2s−1

]a
−∞

+

[
1

|x− y|n+2s−1

]∞
b

)
=

1

n+ 2s− 1

(
1

(x− a)n+2s−1
+

1

(b− x)n+2s−1

)
.

For a two-dimensional case, the integral over Rn r Ω cannot be analytically eval-
uated. Thus, we introduce now a semi-analytical technique to approximate the
unbounded integral.

x

∆ϑk

∂Ω

χk

A(χk)

x

ỹ
k

Figure 1. Area of numerical integration (left) and integration line
(right) for one of the subdivisions of ∂Ω.
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Similarly to the technique presented in [17], a technique based on a mapping
of the unbounded integral over the boundary ∂Ω is presented. In particular, we
split each boundary element into nsub subdivisions. Then, the whole boundary is
divided into Nsub subdivisions χk, k ∈ [1, Nsub]. Each subdivision intercepts an
area A(χk), such that

∪
k A(χk) = {Rn r Ω}, as reported in Figure 1 on the left.

So we obtain

∫
RnrΩ

1

|x− y|n+2s
dy =

Nsub∑
k=1

∫
A(χk)

1

|x− y|n+2s
dy .

The integrals over A(χk) are approximated along the line connecting x and ỹk,
that is the midpoint of the segment χk. Therefore, considering d = |x − ỹk| the
approximate integral becomes

∫
A(χk)

1

|x− y|n+2s
dy ≃ ∆ϑk

∫ +∞

d

1

tn+2s
dt =

∆ϑk

1− n− 2s

[
1

tn+2s−1

]+∞

d

=
∆ϑk

(n+ 2s− 1)|x− ỹk|n+2s−1
.

4.3. The fractional Laplacian FEM formulation. To introduce the FE dis-
cretization of the presented problem, let Th be a shape-regular triangulation of
Ω into NL finite elements {El}NL

l=1. The finite elements can either be triangles or
quadrilaterals in two dimensions and tetrahedra or hexaheadra in three dimension-
s. The parameter h represents the size of the triangulation and corresponds to the
larger element diameter. Also, let V Nh

0 be a finite dimensional subspace of V0 of

dimension Nh, proportional to h−1, and let {vi}Nh
i=1 be a basis for V Nh

0 . In this
work we consider Lagrange basis functions over the triangulation Th. Thus, we

can write the FE solution uh of equation (11) as uh(x) =
∑Nh

i=1 Uivi(x). By using

this expression and v ∈ {vi}Nh
i=1, and considering the split (14), the equation (11)

reduces to the algebraic system

AU = (B + C)U = F ,

where U ∈ RNh is the vector whose components are the degrees of freedom of the
numerical solution uh, B is the stiffness matrix with entries

(15) Bij =

∫
Ω

∫
Ω

(φi(x)− φi(y)) (φj(x)− φj(y)) γ(x,y)dy dx ,

and C is the stiffness matrix with entries

Cij = cn,s

∫
Ω

φi(x)φj(x)

Nsub∑
k=1

∆ϑk

(n+ 2s− 1)|x− ỹk|n+2s−1
dx .
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For implementation purposes, it is convenient to rewrite the matrix (15) as Bij =
B11

ij +B12
ij +B21

ij +B22
ij , where

B11
ij =

∫
Ω

∫
Ω

φi(x)φj(x)γ(x,y)dy dx ,

B12
ij = −

∫
Ω

∫
Ω

φi(x)φj(y)γ(x,y)dy dx ,

B21
ij = −

∫
Ω

∫
Ω

φi(y)φj(x)γ(x,y)dy dx ,

B22
ij =

∫
Ω

∫
Ω

φi(y)φj(y)γ(x,y)dy dx .

As noted in [21], since the kernel γ(x,y) is symmetrical, we can simplify the nu-
merical implementation of Bij considering Bij = 2B11

ij + 2B12
ij = 2B21

ij + 2B22
ij .

Note that the resulting Bij matrix is a dense matrix. This implies higher com-
putational cost in the numerical resolution of an optimal boundary control prob-
lem with fractional regularization. However, the portion of the domain where the
fractional operator is calculated is a boundary by construction, so the increase of
computational cost is limited (e.g. for n = 3 the fractional operator shall be cal-
culated on a two-dimensional boundary, with a mild effect on the overall sparsity
pattern of the matrix).

5. The addition of control inequality constraints

All the proposed boundary optimal control formulations can be considered in
conjunction with inequality constraints on the control variable:

qmin ≤ q ≤ qmax a.e. on Γc ,

where qmin, qmax ∈ L∞(Γc).
Constraints of inequality type play an important role, in particular when the con-

trol variable - which is the input that can steer the behavior of the system - must be
bound between certain maximum and minimum values for practical considerations.

In the following, we briefly describe how control inequality constraints were en-
forced in this work. For simplicity, we do so for the discretization of the optimality
system arising from the H1/2(Γc) approach, thus from Problem 1 under the condi-
tion (7). Similar descriptions hold for the other optimality systems.

The discrete optimality systems arising from all the presented regularization
methods can be cast as algebraic systems that exhibit a block structure. First we
present the block structure without inequality constraints. We have

MΩd
0 −∆Ω +

∂

∂n

∣∣∣∣
Γc

0 αFΓc − ∂

∂n

∣∣∣∣
Γc

−∆Ω 0 0


uh

qh
λh

 =

MΩd
ud

0
0

 ,

where uh, qh and λh denote the discretized state, control and adjoint variables, re-

spectively. The blocks MO, −∆O and
∂

∂n

∣∣∣
O
denote the mass matrix, the Laplacian

matrix and boundary Neumann matrix with integration over the generic domain O,
respectively. Moreover, FO represents the matrix corresponding to the numerical
implementation of the fractional Laplacian on O.
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The enforcement of the inequality constraints can be achieved using the Primal-
Dual Active Set (PDAS) method, which was first proposed in [25]. Each iteration
of the method consists in the solution of a linear system

Mkδuk+1 = f(uk) ,

where Mk can be written as a 4× 4 block structure. The upper-left 3× 3 block is
the same as before, while one block row and one block column are added, together
with the variable µ:

Mk =


MΩd

0 −∆Ω +
∂

∂n

∣∣∣∣
Γc

0

0 αFΓc − ∂

∂n

∣∣∣∣
Γc

IΓc

−∆Ω 0 0 0
0 cΠAk

0 ΠIk

 .

The terms δuk+1 and f(uk) read

δuk+1 =


δuk+1

δqk+1

δλk+1

δµk+1

 =


uk+1 − uk

qk+1 − qk
λk+1 − λk

µk+1 − µk

 ,

f(uk) = −


MΩd

(uk − ud)−∆Ωλk +
∂λk

∂n

∣∣∣
Γc

αFΓcqk − ∂λk

∂n

∣∣∣
Γc

+ IΓcµk

−∆Ωuk

cΠAk
qk +ΠIkµk − c(ΠAb

k
qmax +ΠAa

k
qmin)

 .

For a complete definition of all the additional blocks, such as ΠAk
, ΠIk and IΓc ,

the interested reader can consult [24].

6. Numerical results

In this section, we compare the numerical solution of the optimality systems
associated to the various formulations of boundary optimal control problems pre-
sented above. We consider both two-dimensional and three-dimensional domains,
as well as the absence or presence of inequality constraints.

6.1. Cases without inequality constraint. We first aim to solve the optimal
control problems presented in section 2 without inequality constraints. We consider
both a two-dimensional and a three-dimensional domain, as reported in Figure
6.1. In particular, in the two-dimensional case we consider a domain Ω = {x ∈
[0, 1], y ∈ [0, 1]}, a control domain Γc = {x ∈ [0.25, 0.75], y = 0}, and a target
domain Ωd = {x ∈ [0, 1], y ∈ [0, 0.5]}. For the lifting control approach, we choose
a domain for the lifting function Ωc = {x ∈ [0.25, 0.75], y ∈ [0, 1]}.

In the three-dimensional case, we consider a domain Ω = {x ∈ [0, 1], y ∈
[0, 1], z ∈ [0, 1]}, a control surface Γc = {x ∈ [0.25, 0.75], y ∈ [0, 1], z = 0},
and Ωd = {x ∈ [0, 1], y ∈ [0.5, 1], z ∈ [0, 1]}. For the lifting control, we choose
Ωc = {x ∈ [0.25, 0.75], y ∈ [0, 1], z ∈ [0, 1]}.

At the coarse level, the 2D domain is discretized with a 2 × 2 uniform grid of
quadrilaterals, while the 3D domain is discretized with a 4 × 2 × 1 uniform grid
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of hexahedra. In the following, results will be reported for various refinements of
these coarse meshes. All variables of the optimality systems are discretized with
piecewise-continuous biquadratic (in 2D) or triquadratic (in 3D) Lagrange finite
element families. All the numerical tests were obtain using a GMRES solver with
ILU preconditioner.

Ω

Γc

Ωd

Γc

Ω

Ωd

Figure 2. Two-dimensional (left) and three-dimensional (right)
domain used for the presented numerical simulations. The domain
of Γc and Ωd are highlighted.

Two-dimensional case. We first consider the two-dimensional control problems,
and we compare the numerical results of all the regularization techniques introduced
above. In particular, we consider ud = 1, and we evaluate the effectiveness of the
implemented control algorithm through the distance from the objective 0.5

∫
Ωd

(u−
ud)

2dx.

Table 1. Two-dimensional case: distance from the objective for
different mesh refinements Nlev and regularization parameter α for
fractional regularization (s = 0.5), H1 regularization (s = 1), and
lifting function approach (lift.).

0.5
∫
Ωd

(u− ud)
2dx

Nlev = 4 Nlev = 5

α s = 0.5 s = 1 lift. s = 0.5 s = 1 lift.

10−1 0.247733 0.249751 0.248430 0.247708 0.249751 0.248401
10−2 0.229612 0.247544 0.235424 0.229410 0.247539 0.235178
10−3 0.152829 0.228103 0.167513 0.152410 0.228059 0.166781
10−4 0.112894 0.149903 0.114396 0.112854 0.149821 0.114340
10−5 0.111212 0.112843 0.111306 0.111196 0.112838 0.111321
10−6 0.110343 0.111431 0.110784 0.110286 0.111430 0.110577
10−7 0.105704 0.111024 0.107450 0.105543 0.111013 0.106354

In Table 1 we report the distance from the objective for the fractional regular-
ization, the H1 regularization and the lifting function approach. We investigated
different values of the regularization parameter α and different mesh refinements.
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For all the tested cases, the distance from the objective decreases as the value of
α decreases, consistently with the expectations. In fact, lower values of the regu-
larization parameter imply that the tracking term is predominant in the functional
J in (3). Moreover, the results obtained with the fractional regularization show a
slightly lower distance from the objective in comparison with the H1 regularization,
as expected from the theoretical results: in fact, as noted above, the H1 regulariza-
tion imposes the solution in a more restrictive function space than the natural one.
The results obtained with the lifting function approach show a behavior similar to
the fractional results, as expected. Moreover, the refinement of the mesh does not
affect significantly the numerical solution of the algorithm.
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Figure 3. Two-dimensional test case: control variable on Γc with
Nlev = 5 for α = 10−3, 10−4, 10−5 and 10−6, with fractional (top
left), lifting (top right) and H1 (bottom) regularization.

In Figure 3 we report the control q fields on Γc for the two-dimensional case
with Nlev = 5 for various α values, for both fractional, H1 regularization and
lifting function approach. Note that the used regularization parameter strongly
affects the control field. The general trend of the fractional and the lifting controls
is qualitatively similar. This can be taken as an indication that the two methods
are in good agreement and they search for optimal boundary controls in the same
trace space.
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Three-dimensional case. We now consider the three-dimensional case of the op-
timal control problems, to extend the investigation carried out for two-dimensional
domains. The numerical domain was depicted in Figure 6.1.

Table 2. Three-dimensional case: distance from the objective for
different mesh refinements Nlev and regularization parameter α for
fractional regularization (s = 0.5), H1 regularization (s = 1), and
lifting function approach (lifting).

0.5
∫
Ωd

(u− ud)
2dx

Nlev = 2 Nlev = 3

α s = 0.5 s = 1 lift. s = 0.5 s = 1 lift.

10−1 0.249689 0.249968 0.248904 0.249666 0.249966 0.248533
10−2 0.246949 0.249685 0.239601 0.246732 0.249657 0.236313
10−3 0.224625 0.246913 0.182321 0.223201 0.246644 0.170258
10−4 0.162464 0.224386 0.116851 0.161762 0.222628 0.114594
10−5 0.146361 0.162361 0.111321 0.146895 0.161462 0.111162
10−6 0.146019 0.146602 0.111238 0.144712 0.147245 0.111045
10−7 0.146903 0.146319 0.111237 0.137633 0.145645 0.110388

In Table 2 we report the distance from the objective for all the tested cases.
Similarly to the two-dimensional case, we report the results depending on the reg-
ularization parameter α and on the refinement level Nlev. Differently from the
two-dimensional case, the lifting function approach shows numerical results closer
to the objective in comparison with the numerical results obtained using both the
fractional and the H1 regularization. Thus, the lifting function proves to be the
best performing regularization technique in terms of distance from the objective.
The numerical results obtained with the finer mesh are closer to the objective with
a coarser mesh.

Comparison of assembly and solver times. In Tables 3 and 4 we report some
results to assess the performance of the proposed methods in terms of computational
time for a two- or three-dimensional case, respectively. Here, the two-dimensional
mesh was generated from 5 mesh refinements of the coarse grid, while the three-
dimensional one was obtained with 3 refinements.

First of all, we notice for all cases that both assembly time (the time to build
the linear system resulting from the finite element discretization of the optimality
system) and solver time (the time to perform the numerical solution) are basically
independent of α.

We also observe that assembly times are shorter for H1(Γc) boundary controls,
then slightly longer for the lifting approach and they are significantly longer for
the H1/2(Γc) formulation. This is clearly attributed to the presence of the double
integral in the fractional Laplacian. Concerning solver times, they appear to be
comparable for the lifting case as well as for the H1(Γc) case, while they are longer
for the H1/2(Γc) case. These results suggest that the lifting approach is a viable
alternative to a pure fractional formulation, as it yields similar results in terms of
optimization with smaller computational times.
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Table 3. Two-dimensional case: assembly times and solver times
(in seconds) for different regularization parameters α for fractional
regularization (s = 0.5), H1 regularization (s = 1), and lifting
function approach (lift.)

Assembly time Solver time

α s = 0.5 s = 1 lift. s = 0.5 s = 1 lift.

10−1 0.55721 0.116872 0.134791 0.885629 0.565865 0.514959
10−2 0.565082 0.119016 0.13571 0.911642 0.56159 0.513302
10−3 0.547106 0.117627 0.136169 0.879698 0.568431 0.513778
10−4 0.544492 0.117966 0.135277 0.875263 0.574497 0.511519
10−5 0.550626 0.116844 0.140617 0.889002 0.564336 0.522148
10−6 0.550696 0.116792 0.135128 0.877142 0.565352 0.520729
10−7 0.572248 0.117626 0.136023 0.910968 0.571587 0.522958

Table 4. Three-dimensional case: assembly times and solver
times (in seconds) for different regularization parameters α for
fractional regularization (s = 0.5), H1 regularization (s = 1), and
lifting function approach (lift.)

Assembly time Solver time

α s = 0.5 s = 1 lift. s = 0.5 s = 1 lift.

10−1 5.653254 1.003316 1.752929 4.258652 2.641471 2.673116
10−2 5.643262 1.001714 1.757769 4.266891 2.666312 2.700669
10−3 5.654477 1.003768 1.754325 4.258153 2.640889 2.703094
10−4 5.664297 1.002984 1.748731 4.266532 2.642459 2.807016
10−5 5.660745 1.022653 1.756247 4.260642 2.711065 2.819473
10−6 5.655265 1.055839 1.750449 4.261726 2.728984 2.85426
10−7 5.648923 1.004636 1.771234 5.344629 2.738823 2.906721

6.2. Cases with inequality constraint. We now show that the presence of con-
trol inequality constraints yields solutions that are more distant from the desired
target. Also, the inequality bound limits the norms of the control, for all pro-
posed formulations. We solve the numerical system introduced in section 5, and we
consider two different maximum values of the control variable q.

In particular, in Table 5 we report the numerical results considering qmax = 5.
As can be noted from Figure 3, the results are basically locked by the imposed limit,
depending on the value of α. Since a decrease in α implies an increase of the norm
of q calculated on Γc, the distance from the objective for low α values is the same in
all these cases. In the Table we also report in parentheses the number of iterations
needed by the algorithm to find the solution with the inequality constraint. As a
general behavior, it can be noted that the H1 regularization needs fewer iterations
to find the solution, followed by the fractional regularization, and by the lifting
function approach.

In Table 6, we report the results obtained with qmax = 0.01. The distance from
the objective is the same in all the tested cases, meaning that the inequality bound
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Table 5. Two-dimensional case: distance from the objective and
iterations of the algorithm (shown in brackets) for different mesh
refinements Nlev and regularization parameters α for fractional
regularization (s = 0.5), H1 regularization (s = 1), and lifting
function approach (lift.) with an inequality constraint of qmax = 5.

0.5
∫
Ωd

(u − ud)
2dx

Nlev = 4 Nlev = 5

α s = 0.5 s = 1 lift. s = 0.5 s = 1 lift.

10−1 0.24773(2) 0.24975(2) 0.24839(2) 0.24771(2) 0.24975(2) 0.24839(2)

10−2 0.22961(2) 0.24754(2) 0.23520(2) 0.22941(2) 0.24754(2) 0.23509(2)

10−3 0.16545(5) 0.22810(2) 0.17145(4) 0.16518(5) 0.22806(2) 0.17140(4)

10−4 0.15881(3) 0.17235(5) 0.15881(6) 0.15765(4) 0.17236(7) 0.15793(5)

10−5 0.15881(3) 0.16145(3) 0.15881(5) 0.15765(4) 0.16144(4) 0.15765(6)

10−6 0.15881(4) 0.15881(4) 0.15881(6) 0.15765(4) 0.15765(4) 0.15765(6)

10−7 0.15881(5) 0.15881(3) 0.15881(7) 0.15765(4) 0.15765(4) 0.15765(8)

Table 6. Two-dimensional case: distance from the objective and
iterations of the algorithm (shown in brackets) for different mesh
refinements Nlev and regularization parameters α for fractional
regularization (s = 0.5), H1 regularization (s = 1), and lifting
function approach (lift.) with an inequality constraint of qmax =
0.01.

0.5
∫
Ωd

(u − ud)
2dx

Nlev = 4 Nlev = 5

α s = 0.5 s = 1 lift. s = 0.5 s = 1 lift.

10−1 0.24977(3) 0.24982(6) 0.24977(5) 0.24977(3) 0.24982(9) 0.24977(5)

10−2 0.24977(3) 0.24978(4) 0.24977(5) 0.24977(3) 0.24978(7) 0.24977(5)

10−3 0.24977(3) 0.24977(3) 0.24977(5) 0.24977(3) 0.24977(4) 0.24977(5)

10−4 0.24977(3) 0.24977(3) 0.24977(5) 0.24977(3) 0.24977(3) 0.24977(5)

10−5 0.24977(3) 0.24977(3) 0.24977(5) 0.24977(3) 0.24977(3) 0.24977(5)

10−6 0.24977(3) 0.24977(3) 0.24977(5) 0.24977(3) 0.24977(3) 0.24977(5)

10−7 0.24977(4) 0.24977(3) 0.24977(7) 0.24977(4) 0.24977(3) 0.24977(7)

works properly. The tests show a different number of iterations, with the same
trend as for the case with qmax = 5.

7. Conclusions

In this work we presented and compared several regularization methods for the
treatment of boundary optimal control problems constrained by PDEs and with
control inequality constraints. We proposed two formulations that avoid a mis-
match between the boundary regularity of optimal states and that of boundary
optimal controls. In particular, the first formulation is based on the direct pres-
ence of fractional Sobolev boundary control norms in the objective functional. The
resulting optimality system is then characterized by the presence of a fraction-
al Laplacian operator, whose numerical discretization has been dealt with by a
semi-analytical method. The second formulation is based on the introduction of
lifting functions. We investigated their numerical performance on two- and three-
dimensional test cases. Both the lifting function and the fractional approach
show a similar distance from the objective for two-dimensional simulations, while
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the lifting function approach shows a smaller distance from the objective in three-
dimensional tests. More importantly, the lifting function approach exhibits smaller
assembly and solver times. These results lead to the observation that the lifting
function approach is a valuable method for boundary optimal control computa-
tions. Additional numerical results show that all the proposed formulations can be
easily integrated with control inequality constraints. Multiple directions of further
investigation may stem from the model setup considered here. In particular, the
comparison of the proposed methods to the case of other constraint equations is
subject of current research.
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