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A WEIGHTED LEAST-SQUARES FINITE ELEMENT METHOD

FOR BIOT’S CONSOLIDATION PROBLEM

HSUEH-CHEN LEE AND HYESUK LEE

Abstract. This paper examines a weighted least-squares method for a poroelastic structure
governed by Biot’s consolidation model. Quasi-static model equations are converted to a first-

order system of four-field, and the least-squares functional is defined for the time discretized
system. We consider two different sets of weights for the functional and show its coercivity and
continuity properties, from which an a priori error estimate for the primal variables is derived.
Numerical experiments are provided to illustrate the performance of the proposed method.
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1. Introduction

Biots consolidation model provides a general description of the mechanical be-
havior of a poroelastic medium and is frequently used in a wide range of applications
in geomechanics, bioengineering, environmental engineering, and various other sci-
ence and engineering areas. The model is based on the equation of linear elasticity
for a solid matrix and Darcys law for the fluid flow through a porous matrix [2, 3].
Generally, solutions of the model are approximated by numerical methods since
the analytical solution can only be derived under the assumption of special condi-
tions [32, 36]. Finite element methods are commonly used in simulations. There
have been various finite element methods proposed for the poroelasticity, includ-
ing mixed finite element methods [15, 26, 28, 31, 35], discontinuous Galerkin finite
element methods [13, 19], least-square methods [20, 21, 33], and hybrid methods
[22, 29, 34] and a decoupling approach [14].

Problems for which solutions are smooth can be solved by standard finite el-
ement discretization. However, a finite element solution may have non-physical
oscillations, known as pressure locking, if it displays some high-pressure gradient
[15, 16, 17]. For example, pressure locking can occur when finite element spaces are
not compatible. Some hybrid finite element methods [29, 35] have been proposed
to overcome this issue. Another locking phenomenon called elasticity locking is
observed when one of the Lamé coefficients becomes large, with the Poisson ratio
approaching 0.5 [30].

The difficulties caused by the incompatibility of the spaces can be avoided by
least-squares finite element methods. One of the main advantages of least-squares
finite element methods is that no inf-sup condition is required between finite ele-
ment spaces. Such flexibility makes the least-squares approach appealing for the
finite element approximation of differential equations with multiple variables. This
work aims to study a weighted least-squares (WLS) functional defined for the time
discretized quasi-static Biot model and compares numerical solutions by the WLS
finite element method with various weights. The WLS functional is defined using
the L2-norm of the equation residuals multiplied by appropriately adjusted weights.
Various developments have been reported for WLS finite element methods applied
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to flow problems. Bochev and Gunzburger [4] developed a mesh-dependent weight
of the WLS functional for Stokes flows based on the Agmon-Douglas-Nirenberg
(ADN) approach. Weighted-norm least-squares methods were considered for prob-
lems with corner or coefficient singularities in [1, 10, 23]. In addition, Lee and Chen
[24] applied a nonlinear weight to least-squares functional for Stokes equations, and
this approach was further developed for non-Newtonian viscoelastic fluids [12, 25].

While extensive work on finite element approximations and analysis have been
devoted to the Biot model, only a few studies of least-squares finite element meth-
ods have been carried out for the model [20, 21, 33]. In [20], Korsawe and Starke
developed a four-field mixed least-squares finite element method for the quasi-static
model with a simplified mass equation and unified modeling parameters. They de-
fined the least-squares functional for the stationary case that arises at each time
step to solve the temporal discretized model and proved the coercivity and conti-
nuity of the functional. In [21], Korsawe et al. numerically studied the Biot model
and compared least-squares results with the standard Galerkin method results. The
authors discussed the accuracy of stress and flux variables approximated directly
in the least-squares method, pointing out that the additional unknowns increase
the degree of freedom of the discretized problem compared to the Galerkin method.
Tchonkova et al. discussed the mixed least-squares method for the poroelasticity
problem of four-field and approximated solutions using linear continuous polyno-
mials for all variables on triangle elements [33]. However, in [21, 33], no weights
were considered for the least-squares functionals.

This work further develops the least-squares approach and analysis presented in
[20] for the full quasi-static model with all modeling parameters. We consider a
WLS finite element method in a similar setting presented in [20]; the least-squares
functional is defined for the four-field modeling equations discretized in time, where
a weight for each term of the functional is appropriately chosen. Some of those
weights need to be dependent on the time step for the analysis of the WLS func-
tional. The choice of different sets of weights is also addressed. The WLS functional
is then analyzed for the coercivity and continuity properties. It is demonstrated
that the use of weights for the functional is helpful for the analysis and improves
the accuracy of numerical solutions. Further, we extend the implementation to the
intracranial pressure simulation [18].

The rest of this paper is organized as follows. Section 2 presents the model
equations and the least-square functional. Section 3 introduces the WLS functional
and the analysis for the functional. Section 4 presents finite element spaces and
error estimation of finite element approximations. Section 5 provides two numerical
examples, where numerical solutions by different sets of weights are compared, and
finally, conclusions follow in Section 6.

2. Model equations and least-squares functional

Let Ω be a bounded, connected domain in RI d , d = 2, 3 with the Lipschitz
boundary ∂Ω. Consider the quasi-static poroelastic system represented by the Biot
model [2]:

∇ · u+
∂

∂t
(csp+ α∇ · η) = fs in Ω,(1)

u+K∇p = 0 in Ω,(2)

−2µ∇ · ε(η)− λ∇(∇ · η) + α∇p = fb in Ω,(3)
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where u denotes the fluid velocity, η denotes the displacement field, p is the pore
pressure of the fluid and ϵ(η) := 0.5(∇η+∇ηT ) is the standard strain rate tensor.
The parameter cs is the constrained specific storage coefficient, α is the BiotCWillis
coefficient, and K = κ/µf is the hydraulic conductivity with κ being the perme-
ability and µf being the fluid viscosity. In (3) µ and λ are the Lamé coefficients,
which is computed by the Youngs modulus E and the Poisson ratio ν :

µ =
E ν

2(1 + ν)
, λ =

E ν

(1 + ν)(1− 2ν)
.

The right hand side functions fs, fb are the source/sink term and the body force,
respectively. The Biot system describes the fluid flow and elasticity of a saturated
porous medium. In the model above, (1) is the storage equation for the mass con-
servation in the pores of the matrix, (2) is Darcy’s law, and (3) is the momentum
equation for the balance of total forces. Let the boundary of domain, ∂Ω be decom-
posed into two pairs of disjoint sets such that ∂Ω = ΓpD∪ΓpN and ∂Ω = ΓdD∪ΓdN .
Assume that none of ΓpD, ΓpN , ΓdD and ΓdN has measure 0. The Biot model is
completed with the boundary conditions and initial conditions:

p = 0 on ΓpD, u · n = 0 on ΓpN ,(4)

η = 0 on ΓdD, σ · n = 0 on ΓdN ,(5)

(6) p = p0, η = η0 for t = 0,

where we consider homogeneous boundary conditions for simplicity. However, the
formulation of the least-squares functional and related analysis are extendable with-
out additional technical or computational difficulties. In order to formulate the
least-squares functional, we introduce the elastic stiffness tensor C [9]:

(7) Cε(η) = 2µ ε(η) + λ (trε(η))I,

which can be regarded as a symmetric positive linear mapping. Let σ be the stress
tensor from linear elasticity satisfying

(8) σ = Cε(η).

For finite element approximations of the linear elasticity with a large λ > 0 for
nearly incompressible materials, the equation

(9) C−1 σ = ε(η)

is often considered instead of (8) for a locking-free formulation. Here, C−1 is the
compliance tensor given by [9, 26]

(10) C−1σ =
1

2µ
σ − λ

2µ(dλ+ 2µ)
(trσ)I,

where d is the dimension of Ω. Using (7), (8) and the backward Euler method, the
time discretized first order system for (1)-(3) is written as

∇ · u+
1

∆t

(
cs(p− pold) + α(∇ · η −∇ · ηold)

)
= fs in Ω,(11)

u+K∇p = 0 in Ω,(12)

−∇ · (σ − αpI) = fb in Ω,(13)

σ − Cε(η) = 0 in Ω,(14)

where ∆t is the fixed time step size and pold, ηold denote the pressure and displace-
ment fields at the previous time-step, respectively.



WLS FOR BIOT’S CONSOLIDATION PROBLEM 389

Let Hs (Ω), s ≥ 0, be the Sobolev spaces with the standard associated inner
products (·, ·)s and their respective norms ∥ · ∥s. For s = 0, Hs(Ω) coincides with
L2 (Ω) and we use ∥ · ∥ for ∥ · ∥0. Let Hdiv(Ω) = {v ∈ L2(Ω) : ∇ · v ∈ L2(Ω)}
be the Hilbert space equipped with the norm ∥v∥Hdiv(Ω) = (∥v∥2 + ∥∇ · v∥2)1/2.
The corresponding space of vector-valued or tensor-valued functions is written in
boldface.

To consider the least-squares functional, we first introduce the function spaces
for (σ,η,u, p):

S := {τ ∈ Hdiv(Ω) : τij = τji, 1 ≤ i, j ≤ d, τ · n = 0 on ΓdN},
Σ := {ξ ∈ H1(Ω) : ξ = 0 on ΓdD},
X := {v ∈ Hdiv(Ω) : v · n = 0 on ΓpN},
Q := {q ∈ H1(Ω) : q = 0 on ΓpD},

and define the product space Φ = S × Σ × X × Q. The standard least-squares
functional for (11)-(14) is then defined by

L(σ, η, u, p; F) := ∥∇ · u+
1

∆t
(csp+ α∇ · η)− f̂∥2

+∥∇ · (σ − αpI) + fb∥2 + ∥u+K∇p∥2 + ∥σ − Cε(η)∥2,(15)

where f̂ := fs +
1
∆t

(
α∇ · ηold + csp

old
)
and F := (f̂ , fb).

In this work we consider a scaled stress equation instead of (14) for the proper
balance of terms in the WLS functional to be introduced. Being scaled by C−1/2,
(14) can be written in the alternate locking-free formulation for nearly incompress-
ible materials [7, 8, 20]:

(16) C−1/2 σ − C1/2 ε(η) = 0,

where, for τ ∈ S, C1/2τ and C−1/2τ are given by

C1/2τ =
√
2µ τ +

−
√
2µ+

√
2µ+ dλ

d
(trτ )I,(17)

C−1/2τ =
1√
2µ

τ +
1

d

(
− 1√

2µ
+

1√
dλ+ 2µ

)
(trτ ) I,(18)

respectively. The identity in (17) can be easily derived based on

(19) ∥C1/2τ∥2 = (Cτ , τ ) = 2µ∥τ∥2 + λ((tr τ )I, τ ) = 2µ∥τ∥2 + λ∥tr τ∥2.
Similarly, using (10), we see that

(20) ∥C−1/2τ∥2 = (C−1τ , τ ) =
1

2µ
∥τ∥2 − λ

2µ(dτ + 2µ)
∥tr τ∥2,

from which (18) is obtained.
We now define the WLS functional for (11)-(13) and (16):

J (σ,η,u, p;F) := W1∥∇ · u+
1

∆t
(csp+ α∇ · η)− f̂∥2

+W2∥∇ · (σ − αpI) + fb∥2 +W3∥u+K∇p∥2 +W4∥C−1/2σ − C1/2ε(η)∥2,(21)

where Wi for i = 1, 2, 3, 4 are positive constants. Some of those weights will be
chosen in terms of the time step as in [19, 20]. Consider (21) with the choice of
(W1,W2,W3,W4) = (∆t, 1,∆t, 1):

J 1
∆t(σ,η,u, p;F) := ∆t ∥∇ · u+

1

∆t
(csp+ α∇ · η)− f̂∥2

+∥∇ · (σ − αpI) + fb∥2 +∆t ∥u+K∇p∥2 + ∥C−1/2σ − C1/2ε(η)∥2.(22)
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The corresponding homogeneous functional of J 1
∆t was analyzed in [20] for the re-

duced model with cs = 0 and α = K = 1. We also consider (21) with (W1,W2,W3,W4) =
(1, 1,∆t, 1):

J 2
∆t(σ,η,u, p;F) := ∥∇ · u+

1

∆t
(csp+ α∇ · η)− f̂∥2

+∥∇ · (σ − αpI) + fb∥2 +∆t ∥u+K∇p∥2 + ∥C−1/2σ − C1/2ε(η)∥2.(23)

3. Analysis of LS functional

In this section we will show that the homogeneous functionals of J i
∆t for i = 1,

2 are coercive and continuous. For the analysis purpose, we assume that ∆t ≤ 1
throughout this paper without loss of generality. First, we introduce new variables
needed for the analysis. Let

(24) σ̃ := σ − αpI, ũ := u+ α
1

∆t
η.

To determine appropriate function spaces for the new variables, assume that ΓpD =
ΓdN =: Γa and ΓdD = ΓpN =: Γb, which allows σ̃, ũ to be in S and X, respectively.
Define the scaled norm

∥(τ , ξ,v, q)∥2∆t = ∥∇ · τ∥2 + ∥C−1/2τ∥2 + ∥C1/2ϵ(ξ)∥2

+(∆t)2 ∥∇ · v∥2 +∆t ∥v∥2 +∆t ∥∇q∥2 + ∥q∥2(25)

for all (τ , ξ,v, q) ∈ Φ. In the analyses followed, we will use Korn’s inequality for
the scaled strain tensor:

(26) ∥ξ∥2 + ∥∇ξ∥2 ≤ CK∥C1/2ε(ξ)∥2.

In the following Lemma we show that the scaled norm of new variables is equivalent
to the scaled norm of the original unknown variables.

Lemma 3.1. There is a constant C > 0 such that

(27)
1

C
∥(τ , ξ,v, q)∥2∆t ≤ ∥(τ̃ , ξ, ṽ, q)∥2∆t ≤ C∥(τ , ξ,v, q)∥2∆t,

for all (τ , ξ,v, q), (τ̃ , ξ, ṽ, q) ∈ Φ.

Proof. Using (a+ b)2 ≤ 2(a2 + b2), we can have ∥(τ , ξ,v, q)∥2∆t bounded as

∥(τ , ξ,v, q)∥2∆t = ∥(τ̃ + αqI, ξ, ṽ − α

∆t
ξ, q)∥2∆t

= ∥∇ · (τ̃ + αqI)∥2 + ∥C−1/2(τ̃ + αqI)∥2 + ∥C1/2ϵ(ξ)∥2

+(∆t)2∥∇ · (ṽ +
α

∆t
ξ)∥2 +∆t∥ṽ +

α

∆t
ξ∥2 +∆t∥∇q∥2 + ∥q∥2

≤ 2∥∇ · τ̃∥2 + 2∥C−1/2τ̃∥2 + ∥C1/2ϵ(ξ)∥2 + 2α2∥∇ · ξ∥2 + 2α2

∆t
∥ξ∥2

+2(∆t)2∥∇ · ṽ∥2 + 2∆t∥ṽ∥2

+(2α2 +∆t)∥∇q∥2 + ∥q∥2 + 2α2∥C−1/2(qI)∥2.

Poincaré-Friedrichs inequality and C−1 in (10) yield

(28) ∥C−1/2(qI)∥2 = (qI, C−1(qI)) =
d

dλ+ 2µ
∥q∥2 ≤ dC2

PF

dλ+ 2µ
∥∇q∥2.
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Therefore, by (26),

∥(τ , ξ,v, q)∥2∆t ≤ 2(∥∇ · τ̃∥2 + ∥C−1/2τ̃∥2) +
(
1 +

4α2CK

∆t

)
∥C1/2ϵ(ξ)∥2

+2(∆t)2∥∇ · ṽ∥2 + 2∆t∥ṽ∥2

+

(
1 +

2α2

∆t
+

2α2dC2
PF

∆t(dλ+ 2µ)

)
∆t∥∇q∥2 + ∥q∥2,(29)

where CK , CPF are constants for Korn’s and Poincaré-Friedrichs inequalities, re-

spectively. If we choose C = max
{
2, 1 + 4α2CK

∆t , 1 + 2α2

∆t +
2α2dC2

PF

∆t(dλ+2µ)

}
, the first in-

equality in (27) follows from (29). As ∥(τ̃ , ξ, ṽ, q)∥2∆t = ∥(τ−αqI, ξ,v+ α
∆tξ, q)∥

2
∆t,

the second inequality is also obtained by the same argument. �

Remark 3.1. To analyze the WLS functionals (22) and (23), the divergence term
∥∇ · v∥ in (25) needs to be scaled by (∆t)2, unlike the scaled norm introduced for
the Biot model with cs = 0 in [20].

Korsawe and Starke [20] derived coercivity and continuity estimates for the ho-
mogeneous functional of (22) with cs = 0 and established the a priori estimate.
In this work, we analyze (22) and (23) for the full quasi-static Biot model with a
nonzero storage coefficient, i.e., cs ̸= 0.

Theorem 3.1. For all (σ,η,u, p), (σ̃,η, ũ, p) ∈ Φ and i = 1, 2, there are positive
constants C1, C2 satisfying

(30) C1∥(σ̃,η, ũ, p)∥2∆t ≤ J i
∆t(σ,η,u, p;0) ≤ C2∥(σ̃,η, ũ, p)∥2∆t,

where C1 is independent of the time step ∆t, while C2 depends on ∆t.

Proof. We will first consider J1
∆t(σ,η,u, p;0) and show its lower bound. Let M , A

and B be positive constants to be specified later. The functional (22) is bounded
in terms of the variables defined in (24) as

max{M,A,K +B} J1
∆t(σ,η,u, p;0)

= max{M,A,K +B} J∆t(σ̃ + αpI,η, ũ− α
1

∆t
η, p;0)

≥ M ∆t ∥∇ · ũ+
cs
∆t

p∥2 +A∥∇ · σ̃∥2

+∆t ∥ũ+K∇p− α

∆t
η∥2 + (K +B)∥C−1/2(σ̃ + αpI)− C1/2ε(η)∥2

= M∆t ∥∇ · ũ+
cs
∆t

p∥2 +A∥∇ · σ̃∥2 +∆t ∥ũ+K∇p∥20 +
α2

∆t
∥η∥2

+B∥C−1/2(σ̃ + αpI)− C1/2ε(η)∥2 +K ∥C−1/2σ̃ − C1/2ε(η)∥2

+α2K ∥C−1/2(pI)∥2 + 2αK (tr(C−1σ̃)−∇ · η, p)− 2α(ũ+K∇p,η),

where the second equality follows from the identity

(C−1/2σ̃ − C1/2ε(η), C−1/2(pI)) = (C−1σ̃ − ε(η), pI) = (tr(C−1σ̃)−∇ · η, p).

Next, we use the result from Lemma 4.2 in [20]:

(31) ∥as σ̃∥2 ≤ 2µ ∥C−1/2(σ̃ + αpI)− C1/2ε(η)∥2,

where as σ̃ is the antisymmetric part of σ̃ define by as σ̃ = (σ̃ − σ̃T )/2. In [20],
(31) was proved for α = 1. However, since the diagonal elements of as σ̃ are zero,
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the estimate holds for any α. Now, using (31), (10), (28), we have

max{M,A,K +B} J1
∆t(σ,η,u, p;0)

≥ M ∆t ∥∇ · ũ+
cs
∆t

p∥2 +A∥∇ · σ̃∥2 +∆t ∥ũ+K∇p∥2 + α2

∆t
∥η∥2

+
B

2µ
∥as σ̃∥2 +K ∥C−1/2σ̃ − C1/2ε(η)∥2

+
α2Kd

dλ+ 2µ
∥p∥2 + 2αK

(
1

dλ+ 2µ
tr σ̃, p

)
− 2α(ũ,η).(32)

By Young’s inequality the last two terms in (32) are bounded as

2αK

(
1

dλ+ 2µ
tr σ̃, p

)
≥ − ϵ1

d(dλ+ 2µ)
∥tr σ̃∥2 − α2K2d

ϵ1(dλ+ 2µ)
∥p∥2,

−2α(ũ,η) ≥ − α2

ϵ2 ∆t
∥η∥2 − ϵ2 ∆t ∥ũ∥2

for ϵ1, ϵ2 > 0. Thus, we have

max{M,A,K +B}J1
∆t(σ,η,u, p;0)

≥
[
A∥∇ · σ̃∥2 + B

2µ
∥as σ̃∥2 +K ∥C−1/2σ̃ − C1/2ε(η)∥2

− ϵ1
d(dλ+ 2µ)

∥tr σ̃∥2 + α2

∆t

(
1− 1

ϵ2

)
∥η∥2

]
+
[
M ∆t ∥∇ · ũ+

cs
∆t

p∥2 +∆t ∥ũ+K∇p∥2 − ϵ2 ∆t ∥ũ∥2

−α2d

(
K 2

ϵ1
−K

)
1

dλ+ 2µ
∥p∥2

]
:= L1(σ̃,η) + L2(ũ, p).

The L1(σ̃,η) term is similar to the corresponding term in [20] (see p329) and
estimated by a similar way, however, L2(σ̃,η) includes an additional term that
requires special care.

We first consider L1(σ̃,η). Note that ∥σ̃∥2 ≥ 1
d∥tr σ̃∥

2 by Young’s inequality.
Thus,

∥C−1/2σ̃∥2 = (C−1σ̃, σ̃) =
1

2µ
∥σ̃∥2 − λ

2µ(dλ+ 2µ)
∥tr σ̃∥2

=
1

2µ
(∥σ̃∥2 − 1

d
∥tr σ̃∥2) + 1

d(dλ+ 2µ)
∥tr σ̃∥2 ≥ 1

d(dλ+ 2µ)
∥tr σ̃∥2,

which implies

− ϵ1
d(dλ+ 2µ)

∥tr σ̃∥2 ≥ −ϵ1∥C−1/2σ̃∥2.
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Using this estimate and (26), and assuming ϵ2 < 1, we obtain

L1(σ̃,η) ≥ A∥∇ · σ̃∥2 + B

2µ
∥as σ̃∥2 +K ∥C−1/2σ̃ − C1/2ε(η)∥2 − ϵ1∥C−1/2σ̃∥2

+
α2CK

∆t

(
1− 1

ϵ2

)
∥C1/2ε(η)∥2

≥ A∥∇ · σ̃∥2 + B

2µ
∥as σ̃∥2 + (K − ϵ1)∥C−1/2σ̃∥2

−2K(σ̃, ε(η)) +

(
K − α2CK

∆t

(
1

ϵ2
− 1

))
∥C1/2ε(η)∥2.

As (as σ̃, ε(η)) = 0 and σ̃ − as σ̃ is symmetric,

(σ̃, ε(η)) = (σ̃ − as σ̃, ε(η)) = (σ̃ − as σ̃,∇η) = −(∇ · σ̃,η)− (as σ̃,∇η).

Therefore, Young’s and Korn’s inequalities and the identity a2+2ab = (a+ b)2− b2

yield

L1(σ̃,η) ≥ A∥∇ · σ̃∥2 + B

2µ
∥as σ̃∥2 + (K − ϵ1)∥C−1/2σ̃∥2 + 2K(∇ · σ̃,η)

+2K(as σ̃,∇η) +

(
K − α2CK

∆t

(
1

ϵ2
− 1

))
∥C1/2ε(η)∥2

≥
(
A− 1

ϵ3

)
∥∇ · σ̃∥2 + (K − ϵ1)∥C−1/2σ̃∥2

+

(
K − α2CK

∆t

(
1

ϵ2
− 1

))
∥C1/2ε(η)∥2 −K2ϵ3∥η∥2

+∥
(

B

2µ

)1/2

as σ̃ +K

(
2µ

B

)1/2

∇η∥2 −K 2 2µ

B
∥∇η∥2

≥
(
A− 1

ϵ3

)
∥∇ · σ̃∥2 + (K − ϵ1)∥C−1/2σ̃∥2

+

(
K − α2CK

∆t

(
1

ϵ2
− 1

)
− CKK2 max

{
ϵ3,

2µ

B

})
∥C1/2ε(η)∥2(33)

for some ϵ3 > 0. Therefore, by choosing ϵ2 = 1
1+ ∆tK

4α2CK

, ϵ3 = 1
4KCK

, A = 8KCK ,

B = 2µ
ϵ3

= 8µKCK , the estimate for L1(σ̃,η) is obtained:

L1(σ̃,η) ≥ 4KCK∥∇ · σ̃∥2 + (K − ϵ1)∥C−1/2σ̃∥2 + K

2
∥C1/2ε(η)∥2.(34)

Note that ϵ1 in (34) should be less than K to ensure that the right hand side is
positive.



394 H.C. LEE AND H. LEE

Now we estimate L2(ũ, p). Using Poincaré-Friedrichs inequality and Young’s
inequality, the L2(ũ, p) term is bounded as

L2(ũ, p) = M ∆t ∥∇ · ũ+
cs
∆t

p∥2 +∆t ∥ũ+K∇p∥2 − ϵ2∆t∥ũ∥2

−α2d

(
K2

ϵ1
−K

)
1

dλ+ 2µ
∥p∥2

≥ M ∆t ∥∇ · ũ∥2 +M
c2s
∆t

∥p∥2 + 2Mcs(∇ · ũ, p) + ∆t(1− ϵ2)∥ũ∥2

+∆tK2∥∇p∥2 + 2∆tK(ũ,∇p)− α2dC2
PF

(
K2

ϵ1
−K

)
1

dλ+ 2µ
∥∇p||2

≥ M ∆t ∥∇ · ũ∥2 +M
c2s
∆t

∥p∥2 +∆t(1− ϵ2)∥ũ∥2 + 2(Mcs −∆tK)(∇ · ũ, p)

+

(
∆tK2 − α2dC2

PF

(
K2

ϵ1
−K

)
1

dλ+ 2µ

)
∥∇p∥2.(35)

If M is a constant satisfying M > ∆tK
cs

, we have the term 2(Mcs −∆tK)(∇ · ũ, q)
bounded as

2(Mcs −∆tK)(∇ · ũ, p) = 2(M −∆t
K

cs
)(∇ · ũ, cs p)

≥ −∆t (M −∆t
K

cs
)∥∇ · ũ∥2 − Mc2s −∆t cs K

∆t
∥p∥2,(36)

which yields

L2(σ̃,η) ≥ ∆t2
K

cs
∥∇ · ũ∥2 +∆t(1− ϵ2)∥ũ∥2

+cs K∥p∥2 +
(
∆tK2 − α2dC2

PF

(
K2

ϵ1
−K

)
1

dλ+ 2µ

)
∥∇p∥2.(37)

If ϵ1 is chose as ϵ1 = K

1+
∆tK(dλ+2µ)

2α2dC2
PF

(< K),

L2(σ̃,η) ≥ ∆t2
K

cs
∥∇ · ũ∥20 +∆t(1− ϵ2)∥ũ∥2

+cs K∥p∥2 + ∆tK2

2
∥∇p∥2,(38)

where ϵ2 previously chosen for (33) is less than 1. Finally, combining (34) and (38),
we have

max{M,A,K +B}J1
∆t(σ,η,u, p;0)

≥ 4KCK∥∇ · σ̃∥2 + (K − ϵ1)∥C−1/2σ̃∥2 + K

2
∥C1/2ε(η)∥2

+∆t2
K

cs
∥∇ · ũ∥2 +∆t(1− ϵ2)∥ũ∥2 +

∆tK2

2
∥∇p∥2 + cs K∥p∥2,(39)

where ϵ1 < K and ϵ2 < 1. Therefore, the first inequality in (30) follows from
(39). Note that the constant C1 is independent of ∆t. The second inequality is
obtained in the standard manner by the triangular inequality and Cauchy-Schwarz
inequality. Note that the constant C2 is dependent on ∆t, i.e., C2 ∼ O( 1

∆t ).

The upper and lower bounds in (30) for J 2
∆t are shown in a similar manner.

All steps are the same as before except for the part to obtain (37). The identical
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estimate (37) can be obtained for W1 = 1 by proceeding similarly to (35) and (36).
Without ∆t in the M term we have

L2(σ̃,η) ≥ M ∥∇ · ũ∥2 +M
c2s

(∆t)2
∥p∥2 +∆t(1− ϵ2)∥ũ∥2

+2(
M

∆t
cs −∆tK)(∇ · ũ, p)

+

(
∆tK2 − α2dC2

PF

(
K2

ϵ1
−K

)
1

dλ+ 2µ

)
∥∇p∥2

and

2(
M

∆t
cs −∆tK)(∇ · ũ, p) = 2(

M

∆t
−∆t

K

cs
)(∇ · ũ, cs p)

≥ −∆t (
M

∆t
−∆t

K

cs
)∥∇ · ũ∥2 − (M/∆t)c2s −∆t cs K

∆t
∥p∥2,

from which (37) follows. �

We now have the following result from Lemma 3.1 and Theorem 3.1. Note that
the constant C in (27) is dependent on ∆t. Thus, the coercivity and continuity
properties in the following theorem are valid with the fixed ∆t as assumed.

Theorem 3.2. There are positive constants C1, C2 dependent on ∆t satisfying

(40) C1∥(τ , ξ,v, q)∥2∆t ≤ J i
∆t(τ , ξ,v, q;0) ≤ C2∥(τ , ξ,v, q)∥2∆t,

for i = 1, 2 and ∀ (τ , ξ,v, q) ∈ Φ.

Remark 3.2. The constant C1 in (30) is independent of ∆t and C ∼ O( 1
∆t ) in (27)

for a small ∆t. Thus, in (40), C1 ∼ O(∆t), C2 ∼ O( 1
∆t2 ) for J

1
∆t and C1 ∼ O(∆t),

C2 ∼ O( 1
∆t3 ) for J2

∆t. However, the difference of how C2 depends on ∆t between

J1
∆t and J2

∆t does not affect numerical solutions. It will be demonstrated in Section
5 that both weights in (22) and (23) yield equally good numerical solutions.

4. Finite element approximation

For the finite element approximation of (1)-(3), we assume that the domain Ω
is a polygon and that Th is a collection of finite elements such that Ω =

∪
T∈Th

T .
Assume that the triangulation Th is shape-regular and satisfies the assumption for
inverse estimates [5]. For the stress and the fluid velocity in Hdiv(Ω) we use the
RaviartCThomas elements. Define finite element spaces for the approximate of
(σ,η,u, p):

Sh = {τh : τh ∈ S, τh |T ∈ RTr(T )
d×d ∀T ∈ Th},(41)

Σh = {ξh : ξh ∈ Σ ∩ C0(Ω)d, ηh |T ∈ Pr+1(T )
d ∀T ∈ Th},(42)

Xh = {vh : vh ∈ X, vh |T ∈ RTr(T )
d ∀T ∈ Th},(43)

Qh = {qh | qh ∈ Q ∩ C0(Ω), qh |T ∈ Pr(T ) ∀T ∈ Th},(44)

where RTr, Pr denote the RaviartCThomas element of order r and the piecewise
polynomial space of order r, respectively. In the above, the space for η is chosen
so that the error estimate for the displacement variable is optimal in a higher
norm. The equal order polynomials for η and p will also be considered in numerical
experiments. We assume the following standard approximation properties with the
interpolation operators Îh and Ǐh [5, 6]:

(45) ∥ϕ− Îhϕ∥+ ∥∇ · (ϕ− Îhϕ)∥ ≤ Ĉhm(∥ϕ∥m + ∥∇ · ϕ∥m)
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∀ϕ ∈ Hm(Ω) with ∇ · ϕ ∈ Hm(Ω) and

(46) ∥φ− Ǐhφ∥l ≤ Čhm∥φ∥m+l ∀φ ∈ Hm+l(Ω)

for m ≤ r + 1 and l = 0, 1. Let Φh := Sh ×Σh ×Xh × Qh be the finite element
subspace of Φ and consider the discrete least-squares problem for the Biot model:
compute (σh,ηh,uh, ph) ∈ Φh such that

J i
∆t(σ

h,ηh,uh, ph;F) = inf
(τ h,ξh

,vh,qh)∈Φh
J i
∆t(τ

h, ξh,vh, qh;F)(47)

for i = 1 or 2.
An a priori error estimate for the primal variables p and η can be derived using

Theorem 3.1 and the approximation properties, (45) and (46). First, note from
(30) that

J i
∆t(σ,η,u, p;0) ≥ C1

(
∥∇ · σ̃∥2 + ∥C−1/2σ̃∥2 + ∥C1/2ϵ(η)∥2

+(∆t)2 ∥∇ · ũ∥2 +∆t ∥ũ∥2 +∆t ∥∇p∥2 + ∥p∥2
)

(48)

for i = 1, 2, with C1 independent of ∆t. For the upper bound we only consider
J1
∆t here. The estimate for J2

∆t is obtained by the same way. By Cauchy-Schwarz
inequality, J1

∆t is bounded above as

J1
∆t(σ,η,u, p;0) ≤ C̃2

(
∥∇ · σ̃∥2 + ∥C−1/2σ̃∥2 + ∥C1/2ϵ(η)∥2 + 1

∆t
∥η∥2

+∆t ∥∇ · ũ∥2 +∆t ∥ũ∥2 +∆t ∥∇p∥2 + 1

∆t
∥p∥2

)
,(49)

where C̃2 is independent of ∆t. Now, (45), (46), (49) and the orthogonality property
of J1

∆t yield

J1
∆t(σ

h,ηh,uh, ph;F) = J1
∆t(σ − σh,η − ηh,u− uh, p− ph;0)

≤ J1
∆t(σ − Îhσ,η − Ǐhη,u− Îhu, p− Ǐhp;0)

≤ max{Ĉ, Č} C̃2h
2m
(
∥∇ · σ̃∥2m + ∥C−1/2σ̃∥2m + ∥C1/2ϵ(η)∥2m

+
1

∆t
∥η∥2m +∆t ∥∇ · ũ∥2m +∆t ∥ũ∥2m +∆t ∥∇p∥2m +

1

∆t
∥p∥2m

)
≤ K1h

2m

(
∥∇ · σ∥2m + ∥σ∥2m + ∥η∥2m+1 +

1

∆t
∥η∥2m

+∆t ∥∇ · u∥2m +∆t ∥u∥2m + ∥p∥2m+1 +
1

∆t
∥p∥2m

)
.(50)

for some K1 > 0 independent of ∆t. Using this estimate and (48), we get

∥∇ · (σ̃ − σ̃h)∥2 + ∥C−1/2(σ̃ − σ̃h)∥2 + ∥C1/2ϵ(η − ηh)∥2

+(∆t)2 ∥∇ · (ũ− ũh)∥2 +∆t ∥ũ− ũh∥2 +∆t ∥∇(p− ph)∥2 + ∥p− ph∥2

≤ K1

C1
h2m

(
∥∇ · σ∥2m + ∥σ∥2m + ∥η∥2m+1 +

1

∆t
∥η∥2m

+∆t ∥∇ · u∥2m +∆t ∥u∥2m + ∥p∥2m+1 +
1

∆t
∥p∥2m

)
,(51)
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which implies the following estimate for the primal variables:

∥∇(η − ηh)∥+ (∆t)1/2 ∥∇(p− ph)∥+ ∥p− ph∥

≤ K2h
m

(
∥∇ · σ∥m + ∥σ∥m + ∥η∥m+1 +

(
1

∆t

)1/2

∥η∥m

+(∆t)1/2 ∥∇ · u∥m + (∆t)1/2 ∥u∥m + ∥p∥m+1 +

(
1

∆t

)1/2

∥p∥m

)
,(52)

where K2 > 0 is a constant independent of ∆t.

Remark 4.1. If ∆t is treated as a fixed constant as assumed, Theorem 3.2 yields
the spatial error estimate for all variables: there exists K3 > 0 depends on ∆t such
that

∥∇ · (σ − σh)∥+ ∥∇(η − ηh)∥+ ∥u− uh∥Hdiv(Ω) + ∥∇(p− ph)∥
≤ K3h

m (∥∇ · σ∥m + ∥σ∥m + ∥η∥m+1 + ∥∇ · u∥m + ∥u∥m + ∥p∥m+1) .(53)

5. Numerical implementation

5.1. Test problem 1. The main goal of this test is to compare the accuracy and
convergence of WLS finite element solutions, minimizing the functional (21) with
different weights. We also compare numerical solutions approximated in various
combinations of finite element spaces, including nonconforming finite elements s-
paces for σ and u. To investigate the convergence of the proposed WLS method,
we perform numerical experiments using the non-physical example reported in [11].
Let Ω = (0, 1)× (0, 1) for the domain of model equations. The physical parameters
are chosen as µ = α = λ = K = cs = 1. The right-hand side functions fs, fb are
chosen so that the exact solution is

u = [−x(sin(y)e+ 2(y − 1))e−t , (− cos(y)e+ (y − 1)2)e−t],

p = (− sin(y)e+ cos(x)ey + y2 − 2y + 1)e−t,

η = [
√
2 cos(

√
2x) cos(y)e−t , sin(

√
2x) sin(y)e−t].

Conforming finite element spaces were introduced for u, σ in the previous section.
However, for the chosen smooth solution above, we also consider nonconforming
spaces for those Hdiv functions to compare the performance of the WLS method
with or without weights. Since the inf-sup condition is not needed between fi-
nite element spaces, P1 elements for all variables are also used for convenience
as tested in [33]. We consider four different combinations of finite element spaces
for numerical approximations: (P1, P1, P1, P1), (RT1, P1, P1, P1), (RT1, P1, RT1, P1)
and (RT1, P1, RT1, P2) for (u, p, σ, η) with the refinement step lengths h = 1

8 ,
1
16 and 1

32 . The time step ∆t = 0.001 is chosen for temporal discretization.
First, we compute WLS solutions minimizing (21) with weights (W1, W2, W3,
W4)=(∆t, 1, ∆t, 1). Figures 1 shows errors and convergence rates of the WLS
solutions for t = 0.005. We see that the convergence rate for u is lower if P1 is
used for the variable u instead of RT1, while the approximation of σ by P1 im-
proves errors and convergence. It is also noticeable that the use of P2 polynomial
for η significantly improves the convergence of other variables as well as the con-
vergence of η. Very similar results were obtained with weights (W1, W2, W3, W4)=
(1, 1, ∆t, 1). Figure 2 compares convergence rates of the LS solutions computed
with or without weights on different combinations of finite elements. We observe
from Figure 2 that the use of weights does improve the convergence of all variables,
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and the optimal orders of accuracy are preserved for the primal variables with either
choice of weight combination.
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Figure 1. Convergence rates of the WLS solutions in different
finite element spaces for (u, p, σ, η) with (W1, W2, W3, W4) =
(∆t, 1, ∆t, 1) in (21).

5.2. Applications in brain intracranial pressure simulation. We apply the
WLS method to the benchmark problem reported in [18], where intracranial pres-
sure (ICP) is simulated using the Biot model. In this brain edema problem, in-
tracranial pressure (ICP) is the growing pressure exerted by fluids or brain swelling
inside the skull. The Biot model is reformulated as a three-field system of displace-
ment, total stress, and pressure in their work. The system is then approximated by
the Galerkin finite element method with (P2, P1, P1) polynomials, using a coupled
or decoupled algorithm.

We conduct numerical simulations based on the physical parameters and bound-
ary conditions used in [18] and compare simulation results using different weights.
The following boundary conditions are considered. On the wall of brain tissue, Γ1,
the displacement is zero, i.e., η = 0 on Γ1, and (K∇p) · n = cb(pSAS − p) on Γ1,
where cb is the value of conductance and pSAS is the pressure of subarachnoid s-
pace of the brain. The balance of flow rate naturally imposes the second condition.
On the ventricle wall Γ2, the total normal force from the tissue part needs to be
balanced with the fluid pressure from the ventricle, that is, (σ − αp) · n = −p · n
on Γ2, and the pressure at the ventricle wall is 1100 pa on Γ2 as in [18, 27]. The
numerical simulation is performed using relevant physical parameters for the brain
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Figure 2. Convergence rates of the WLS solutions in different
finite element spaces for (u, p, σ, η): L2 rates of (a) u, (b) p, (c)
σ and (d) H1 rates of η.

Table 1. Parameter values.

Parameters Values Parameters Values
cs 4.5× 10−7Pa−1 κ 1.4× 10−9mm2

cb 3× 10−5mm/(Pa ·min) α 1
pSAS 1070 Pa ν 0.35
µf 1.48× 10−5Pa ·min E 9010 Pa

model listed in Table 1, and the body force and the source terms are set to zero,
i.e., fb = 0 and fs = 0.

The geometric model presented in Figure 3 (left) is a two-dimensional cross-
section of a three-dimensional model generated from the MRI brain atlas [37].
After extracting the geometric model, which is 125 mm high and 106 mm wide, we
discretize the computation domain by the finite element mesh of 6462 quasi-uniform
triangular elements shown in Figure 3 (right). The Biot system is approximated
using the element (RT1, P1, RT1, P1) for (u, p, σ, η) with the degree of free-
dom DOF=174477, and the time step ∆t = 0.01. Figure 4 shows the pressure
distribution in the brain for t = 0.1 by the WLS method with weights (W1, W2,
W3, W4)=(∆t, 1, ∆t, 1), (1, 1, ∆t, 1), and (1, 1, 1, 1), and Figure 5 shows
its expanded view around the ventricle wall Γ2. We see that the pressure profile
agrees with that in the normal brain in [18] if the functional (21) is weighted by
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Figure 3. An MRI slice of a human brain [37] (left) and its compu-
tational domain and FE mesh (right).

(a) (∆t, 1, ∆t, 1) (b) (1, 1, ∆t, 1) (c) (1, 1, 1, 1)

Figure 4. Pressure distribution computed by different weights.

(a) (∆t, 1, ∆t, 1) (b) (1, 1, ∆t, 1) (c) (1, 1, 1, 1)

Figure 5. Pressure distribution around the ventricle wall Γ2.

either (∆t, 1, ∆t, 1) or (1, 1, ∆t, 1). Also, Figures 5 (a) and (b) show almost
identical zoomed-in pressure profiles around the ventricle wall. However, Figure
5 (c) presents higher pressure distribution around the ventricle wall Γ2 when no
weigh is used, i.e., (W1, W2, W3, W4)= (1, 1, 1, 1). Also, in this case, the lower
pressure distribution is observed in the lower right part of the brain in Figure 4 (c).
The differences between results in Figure 4 (a)-(c) can be more clearly verified by
Figure 6 that presents the pressure along the line segment from G2 on Γ2 to G1 on
Γ1 (see Figure 3 (right)). The pressure profiles seem to be in agreement for (W1,
W2, W3, W4)=(∆t, 1, ∆t, 1), (1, 1, ∆t, 1), and lower pressure is observed near
the wall of brain tissue Γ1 if no weights are used.
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Figure 6. Plots of pressure along the line segment from G2 to G1.

6. Conclusion

We studied a WLS finite element method for the full quasi-static model with
all modeling parameters. The WLS functional was defined by the L2 residuals of
temporal discretized equations and weighted by the time step. The WLS functional
was analyzed for coercivity and continuous properties, and an error estimate was
derived for the primal solution variables approximated in conforming finite element
spaces. For numerical experiments, we first considered a non-physical example to
illustrate our theoretical results. For the non-physical problem, we observed that
the WLS solutions exhibit the optimal convergence rates. Finally, we extended
the implementation of this method to a benchmark problem for brain pressure
simulations [18]. The WLS solution agreed with the published work, which further
validates the effectiveness of our approach.
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