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Abstract

In this paper, we are concerned with the existence and uniqueness of global
solutions of the modified KS-CGL equations for flames governed by a sequential
reaction, where the term |P|?P is replaced with the generalized form |P|?° P,
see [18]. The main novelty compared with [18] in this paper is to control the
norms of the first order of the solutions and extend the global well-posedness
to three dimensional space.
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1 Introduction

This paper is devoted to the existence and uniqueness of global solutions of the
following coupled modified Kuramoto-Sivashinsky-complex Ginzburg-Landau (GKS-

CGL) equations for flames

HP =EP+ (14 ip)AP — (14 iv)|P|* P — VPVQ — 1 PAQ — gra PAQ, (1.1)

0Q = ~AQ - gA*Q + 6A'Q ~ LVQP — y PP,
with the periodic initial conditions
P(x + Le;, t) = P(z,t), Q(z+ Le;,t) = Q(x,t), x€, t>0,
P(z,0) = Py(z), Q(z,0)=Qo(z), =z €,
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where € is a box with length L denoted T™ (n = 1,2,3). The complex function
P(z,t) denotes the rescaled amplitude of the flame oscillations, and the real function
Q(z,t) is the deformation of the first front. The Landau coefficients p, v and the
coupling coefficient n > 0 are real, while r; and 7y are complex parameters of the
form ri = rq,+1iry;, ro = r9,+1ir9;, respectively. The coefficient g > 0 is proportional
to the supercriticality of the oscillatory mode, § > 0 is a constant, L. > 0 is the period
and e; is the standard coordinate vector, and the coefficient £ = £1. The parameter
o, 1, v satisfy

(Al) 1<o < ! ,

1+ (1+457%) —1
/1 2
(A2) o < $
44/1+ p? —4
For 6 = 0, the coupled GKS-CGL equations (1.1) and (1.2) are reduced to the
classical KS-CGL equations [1], which describe the nonlinear interaction between

the monotonic and oscillatory modes of instability of the two uniformly propagating
flame fronts in a sequential reaction. Specifically, they describe both the long-wave
evolution of the oscillatory mode near the oscillatory instability threshold and the
evolution of the monotonic mode. For the background of the uniformly propagating
premixed flame fronts and the derivation of the KS-CGL model, one refer to [1-4]
for details. If there exist no coupling with the monotonic model, then equation (1.1)
is the well-known CGL equation that describes the weakly nonlinear evolution of a
long-scaled instability [5]. For § = 0 and the coupled coefficient = 0 in equation
(1.2), equation (1.2) reduces to the well known KS equation [6], which governs the
flame front’s spatio-temporal evolution and produces monotonic instability. It’s seen
that the coupled GKS-CGL equations (1.1) and (1.2) can better describe the dy-
namical behavior for flames governed by a sequential reaction, since they generalize
the KS equations, the CGL equations, and the KS-CGL equations.

So far, the mathematical analysis and physical study about the CGL equation
and KS equation have been done by many researchers. For example, the existence
of global solutions and the attractor for the CGL equation were studied in [7-11].
For some other results, see [12-15] and reference therein. However, little progress
has been made for the coupled KS-CGL equations which are derived to describe the
nonlinear evolution for flames by A.A. Golovin, et. al. [1], who studied the traveling
waves of the coupled equations numerically and the spiral waves in [16], where new
types of instabilities are exhibited. Meanwhile, there are few works to consider
mathematical analytical properties of the KS-CGL equations and the generalized
KS-CGL equations, even the existence and uniqueness of the solutions.
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In [17], the Littlewood-Paley theory is used to obtain the local solution and
global solution with small initial conditions for the coupled KS-Burgers which are
derived by [1], while in [18] an additional sixth order term is added to control the
nonlinear term estimate through which one can get the global smooth solution of
the generalized GKS-CGL equation. In this paper, via delicate a prior estimates
and the Galerkin method, we consider the global smooth solution of GKS-CGL
equations where the third term is replaced by (1 + iv)|P|?** P, that is, we study
system (1.1)-(1.4) and extend the global well-posedness to the three dimensional
space.

The rest of this paper is organized as follows. In Section 2, we briefly give some
notations and preliminaries. In Section 3, local solutions are constructed by the
contraction mapping theorem. A prior estimates for the solutions of the periodic
initial value problem (1.1)-(1.4) are obtained in Section 4. In Section 5, we deduce
from the so-called continuity method that the existence and uniqueness of the global
solutions of the periodic initial value problem (1.1)-(1.4).

2 Notaions and Preliminaries

For convenience, we will recall some notations and preliminaries which will be
used in the sequel.

Let L];er and H;fer (k =1,2,---) denote the Sobolev spaces of L-periodic and
complex-valued functions respectively endowed with norms

1/p 2
[ullp = (/Q\de> ol = ( > HDau(w)H) :

la|<k

here we write ||ul| = ||u||z2 = +/(u,u), where the inner product (-,-) is defined by
(u,v) = [, u(z)v(z)dz and T denotes the complex conjugate of v.

Now, we give some useful inequalities.

Lemma 2.1 (Young’s inequality with &) Let a > 0, b > 0, 1 < p,q < oo,

+ = =1. Then

1,1
P g

ab < ea? + C(e)b?,
for C(e) = (ep)~Pq 1.
Lemma 2.2[%(Gagliardo-Nirenberg inequality) Let Q be a bounded domain
with O in C™, and u be any function in W™ N L1(Q), 1 < q,r < co. For any
integer j, 0 < j <m and for any number a in the interval j/m < a <1, set

1—j+a<1—m>+(1—a);-

p n roon
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If m — j — n/r is not nonnegative integer, then
1D ully < Cllullfym.r Jull 77 (2.1)

If m — j —n/r is a nonnegative integer, then (2.1) holds for a = j/m. The constant
C depends only on Q, r, q, j and a.

In the sequel, we will use the following inequalities which are the specific cases
of the Gagliardo-Nirenberg inequality:

ID7ulloe < Cllullgmllull'=?,  ma=j+n/2, (2.2)

1D7ullz < Cllullgpm |ul ', ma = j,

ID7ulls < Cllullgm [[ul '~ ma=j+n/4. (2.4)

3 Local Solution

In this section, we will use the contraction mapping principle to prove the local
solution of system (1.1)-(1.4).
For convenience, we rewrite the system as an abstract form

fg+AP:M@@L (3.1)
E§+BQ:NWQL (3-2)

where A = —(1+ip)A with domain D(A) = HY(Q), M (p, Q) = ¢EP—(1+iv)|P|?*° P—
VPVQ — rPAQ — graPA?Q; B = —6A® with domain D(A) = H?(Q), N(p, Q) =
—AQ — gA%Q — %|VQ\2 —n|P|?. Then operators —A and —B generate uniformly
bounded analytic semigroup S (t) = e~4% and Sy(t) = e~ B for t > 0, respectively.
Therefore, we deduce from (3.1), (3.2) that

t
P:&®%+/SN—QM@QM& (3.3)
0
t
Q:&®%+Asw—$MR@®- (3.4)
Then, define a mapping
R:(P,Q)— (P,0), (3.5)
where
- t
P =Si(H)F + / $i(t - $)M(P,Q)ds, (3.6)
0

Q:&@%+A%ﬂ—@mamw, (3.7)
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and define a normed linear space

3 ={(P.Q) € C([0,T]; H'()) x C((0,T]; H*())| sup [Pl < CllPollgr + 1= R,

)

sup [|Q[| s < Cl|Qoll + 1 = R},
[0, 17
therefore,
t
1Pl < CllPolls + / |AV2e= AN (P, Q)| 2dr
0
< C|[Poll g + T2 M (P, Q)| 2, (3.8)

|M(P, Q)| 2
= ||€P — (1 +iv)|P|* P — VPVQ — r{ PAQ — gryPA%Q)|| 12
< C|P|| 2 + R*||P|l + C|VP| 2| Ql s + Cl| Pl 2@l e + || Pl 2 || A*Q| 4
< C||P||gz + R*||P|| g + C||[V P 2| @l zr+ + CI| Pl 2 |Ql zr+ + | Pl e | Q| a5,

here the Sobolev imbedding theorem H' < L2(27+1) ig ysed, then we obtain
IPllsr < C||Pollgr +CTY?(1 4+ R* + R)R. (3.9)

Therefore, when T is small, 8 maps & into itself. Similarly, we get

t
1Qlls < CllQolls + /0 | 45/6¢~ BTN (P, Q)| 2dr

< C||Qollgs + TY|IN(P, Q)| 2, (3.10)

INP.Q)lx = 1AQ +9A%Q — 5 [VQP — [ PP]|.2
< ClAQ| 2 + CA%Q|I2 + ClIVQ| L= VRl 2 + C|| P74,
then we have
Qs < C||Qoll s + CTYS(1 + R)R. (3.11)

Therefore, when T is small,  maps <& into itself.
Now, we prove R is a contractive mapping on &, since

t
IR(Py) — R(P2)|| g < / |AY2e AT M (Py — Py, Q1 — Q)| 2d7,  (3.12)
0

IM(Py — P2, Q1 — Q2)|l 12 < IE(PL = Po) — (L + i) ([P Py — | P2 )
—(VPAVQ1 — VRVQ2) — 11 (PIAQ1 — P2AQ2)
—g?"Q(PlAQQl — PQAQQQ)HL2, (313)
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where

(L +av)(|PL* Py — |Po|* Ry) || 2 < CR* || Py — Pyl 2 < CR* || Py — Pof| 1,

IVPIVQ1 — VPVQ2l12 = ||VPAVQL — VPIVQ2 + VPIVQy — VPV Q|| 12
<|VQ1 = VQ2| 1= IVPi| 2 + [VPL = VPl 12| VQ2| Lo
< COR(|Pr — Poflgn + [|Q1 — Q2llms),

[r1(PIAQ1 — P2AQ2)| 12 = [[m1(PIAQ1 — RAQL + PAQ1 — P2AQ2)| 12
< CPy = Pof|12[|AQ1 | + ClAQL — AQ2 || ||V 2| 2
< COR(|Pr — Poflgn + [|Q1 — Q2llms),

lgra(PLA?Q1 — PaA?Qa)| 2 = [lgra(PIA?Q1 — PaA*Q1 + P A’Q1 — PaAQo)| 2
< C||Pi—P2| 14| AQu[| L4 +C | A’ Q1= A Q2| ]| Pal 1
< C[P1 = Pof i 1@l 15 + CllQ1 — Q2ll s || Pall
< CR(||Py — Poflgn + [|@Q1 — Q2l|m5),

then we have
IR(PL) = R(P) | i < CTY?[(R+ R*)|[Py = Pally + BR[| Q1 — Qallps]. (3.14)
Similarly, we get
IR(Q1) — R(Q2)llgrs < CTY2R(||Pr — Pallgn + Q1 — Qallrs)- (3.15)

Adding the above two inequalities, we finally deduce

IR(PL) — R(P2)l| g + [R(Q1) — R(Q2) | ars
< CT'?[(R+ R¥)||P1 — P2l + RIQ1 — Q2] r5)- (3.16)

By taking T so small that CTY?(R + R%) < 1, then R is a contraction on I. We
deduce from the contraction mapping principle that there exists a fixed point of
on S, that is, there exists a unique local solution of system (1.1)-(1.4) such that

(P,Q) € C([0, T} HY () x C([0,T]; H(9)), (3.17)
where T' depends on || Py||g1(q) and [|Qol| 5 (q)-

4 A Priori Estimates

In this section, we will derive the a priori estimates for the solutions of problem
(1.1)-(1.4). Firstly, we have:
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Lemma 4.1 Let Py(z) € L2..(Q), Qo(z) € H).,.(Q) and suppose that o > 1

and Q is a bounded domain with 0 in C™. Then
I1P|? < e“ (|1 Po]* + IVQolI”> + Ct),  [IVQII* < e (| R|1* + [[VQoll* + Ct), (4.1)

for C'is a positive constant.
Proof Firstly we differentiate equation (1.2) with respect to  once and set

W =VaQ, (4.2)
then equations (1.1) and (1.2) can be rewritten as

OP =EP + (1 +ip) AP — (1 +iv)| PP = VPW — 11 PYW — graPVAW, (4.3)
QW = —AW — gA2W + SAPW — WYW — 5V (|P|?).

Multiplying (4.3) by P, integrating with respect to z over Q and taking the real
part, we obtain

1d

P|? = P,P
5 5iIPI? =Re | PP

— ¢|P|?— VP2 - / P24z — Re / VPPWds
Q Q
—m/ ]P]QVWda:—grgr/ |P*VAWdz, (4.5)
Q Q

where ]
—Re/ VPPWdz = 2/ |PPVWdz. (4.6)
Q Q

On the other hand, multiplying (4.4) by W and integrating over 2, we have

1d
——||W? :/Wde
2dt” | W
_ HVW||2—gHAW||2—6||VAW|2—/QW2Vde—n /QV(|P|2)Wd1:, (@7)
where 1
/ WAVWdz = - / VW3dz =0, (4.8)
Q 3 Ja
and
—17/ V(P> )Wdzx :n/ |P>’V(W)dz. (4.9)
Q Q

Adding (4.5) and (4.7) together, and noticing (4.6), (4.8) and (4.9), we deduce
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d ag
a(HPH2 +[[W*) = 2¢||P||* - 2|V P||” - 2/Q | P[> 2dz + 2| VW2
—2g||AW||2—25HVAW||2+(1+2n—2r177«)/|P|2Vde
Q
—2gra; / |P*VAW dz. (4.10)
Q

According to Young’s inequality (2.2) and Hoélder’s inequality, we have
<|1+2n =2, (/ \P\“dx) VWi
Q

1 1+2
<5 [ Pl B2
2 Ja

1 142
§2/]P]2"+2dx+0+’ 2
Q

D=

(1—1—277—27'1”/ |P*VWdz
Q

— 27y, ]2
2l o

—2r1,[?

L W, (41

and

2
< rzgm( / |P\4dx) Ivaw]|
Q

29T2r 2
HVAWH2+7| 55 | /|P\4dx
Q

‘—ng/ |PPVAW dx
Q

<

<

NS N

1
||VAW!2+2/ PP 2de +C. (4.12)
Q

Combining (4.10)-(4.12) and |¢| = 1, we have

N |1+ 2n—2r |2
2

3
- /Q [PP7 2z — 2g | AP — SSIVAW|? + C. (413)

d
SUPI2+ W) < 2)1P? + (1 NIV 2 = 2| v P2

Using Gagliardo-Nirenberg inequality (2.3), we deduce

1499 — o0 |2 1+ 27— 2,2
<1+| + 772 "l )\|VW||2§<1+| T n2 ats )IIVAWH%HVVHg

o
< SIVAWE 4+ Cl . (4.14)
By (4.13) and (4.14), we obtain

d ag
dt(HPII2+HWH2)+/Q | P[P 2dz +2g|| AW ||* + 6| VAW|? < C(||P|* + [W*) + C,
(4.15)
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then we deduce from Gronwall’s inequality that
1P + W1 < e““ (| Poll* + [Woll* + Ct). (4.16)

Lemma 4.2 Under the assumptions of Lemma 3.1, we have

P20’+2d /P40'+2
sz f, P g 1P

< _4/|P|202[(1+2U)W|P| 240V |P[? - i(PVP—PVP)+|PVP-PVP|?
Q

1 1
+§HAPH2+ §5HVA2W\|2+C, (4.17)

where C is a positive constant.
Proof Since

PPtz = €| P|* T + R / 1 P> PAPd / p|lotag
s L PP e = €IPIF +Re [ (il PP PAPA — [ [P+

—Re /Q |P[>** PVPWdx + 71, /Q |P|2 2 W da
+gro /Q |P|? T2V AW dz, (4.18)
for the second term of RSH of (4.18), we have
Re/(l—irz,u)\P\Q"PAPda: = —1/ P27 2[(1 + 20)|V|P]?|
—2u0V|P* - i(PVP—PVP)+|PVP—-PVP]?, (4.19)

for the remaining four terms, using Young’s and Gagliargo-Nirenberg inequalities,
we have

Re / |P|* PV PWdx
Q

1

< / |P|4U+2+o/ VPRI Pda
4 Jo 0
1 g

<5 [P+ CIVPIIWIE

1 ag
<3 [P +clapyplva?

1
~4
1

1 1
< 4/ [P 4 API? + S VAP 4 €, (420)

/\

1 n
[ 1P SIAPIE + VAW ¥
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Tl / |P\2‘T+2de
Q

1
< / |P|4U+2+O/ |PI2|W|?da
4 /o Q

1
<7 [P+ ClIPIIWIE

1 n —n
<5 [P v AT WS
Q

1 1
< 4/ [P 4 SSIVATW? + C, (4.21)
Q

1
grg,r/ |P|* VAW dz| < 4/ |P\4”+2+C/ |PP’ VAW |?dz
Q Q Q

1 loa

< 1 [P PV AW,
1

<3 [P clvawik
4 Ja

n+ 4—n

1 - 6
< 1 [P cpvatw s wy s

(n<4) 1 1
< 4/|P\4"+2+9(5!VA2WHQ+C, (4.22)
Q

and .
ElPIF 2 < g [ P (1.23)
Q

Combing the above estimates, we complete the proof.
Lemma 4.3 Let Py(z) € H).,.(Q) N L22(Q), Qo(x) € Hyy.,. () and suppose

per

that o > 1 and Q) is a bounded domain with 02 in C™. Then

IV P2 < e“(IVPoll2 + |AQoll2 + [VAQo]2 + || Poll5515 + Ct), (4.24)
1AQ2 + [VAQ|l2 < e“(|[VPoll2 + |AQo]l2 + [VAQo|l2 + [ Poll3513 + Ct), (4.25)
1PII35 15 < e“ IV Pollz + [AQoll2 + VAQoll2 + [ Poll35 15 + C1), (4.26)

where C' is a positive constant.
Proof Multiplying (4.3) by —AP, integrating with respect to x over Q and
taking the real part, we obtain

1d

§ay\vp|12 =¢|VP|? - |AP|? - Re/(l +iv)|P|* PAPdx + Re/ VPAPWdz
Q Q

+Re/ rlPAPVde—i—Re/grgPAPVAWda:. (4.27)
Q Q

Multiplying (4.4) by —AW and —A2W, and integrating over  respectively, we
deduce
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2CMHVWH2 AW | = g VAW ||? — 5| AW ||?
+/ WVWAdeJrn/ V(P> )AWdz, (4.28)
Q Q

LS NAWIR = (VAW — g AW — 5|V ATW?

—/ WVWAQWda:—n/ V(|P*)A*Wdz. (4.29)
Q Q

Adding (4.27), (4.28) and (4.29), we get

d 1
< (GIVPI + S IVW)? + Slaw]?)

=&[[VP|? = |[AP|? + [|AW]? = (9 = DIVAW? = (6 + g)[|A*W | — 5| VA*W|?
+Re / (1 +iv)|P|* PAPdz + Re / VPAPWdz + Re / ri PAPVWdx
Q Q Q

+Re / graPAPVAW dz + / WYWAWdz + 7 / V(IP[*)AWdx
Q Q Q
—/ WVWA2de—n/ V(|P)?)A2Wdz. (4.30)
Q Q

Now we need to control the right hand side of (4.30). Firstly, for the seventh term,
we obtain

1
Re/(1+w)\P20PAde_—/ |P[27=2[(1 + 20) |V | P]2|?
—2v0V|P|* - i(PVP—PVP)+|PVP—-PVP*. (4.31)

Meanwhile, according to Young’ inequality and Gagliardo-Nirenberg inequality, we
obtain the following estimates

2|AW ]2 —2(g — 1)||[VAW || + 2Re/ VPAPWdx + 2Re/ ri PAPVWdzx
Q Q

+Re/gr2PAPVAde+2/ WVWAWdx
Q Q

3 1
<2 AW |2 +2|g = LIV W2 [WI|Z +2/|W [|oo [V PI | AP +2|r [ VW [l | Pl AP
+2[ra|[VAW oo [ P AP + 2 VWV [|oo [WI[[ AW

5+
<20aw|* + ||V4WH2+C+2CHV4WHSHWH “|v2P|2||P 2 HAPII

+n/

+2[r [[| Pl HAPH v

S 2| PlIA PV W]

6+g

1
<20aw|* + |AW |2 + CllAP|>* 55 +C + gIIAP||2+CIIV5W||2%



12 ANN. OF APPL. MATH. Vol.32

]. L 24n
+ AP+ CIVP W5 ||AW||2+CHV5WH

5+g

(n<t)
S AP + L AT 4 oI VAT 4 JIAWIP +C. (432)

Next, for the remaining two terms, we obtam

< 2| VAW|[|| P|I3

277/ V(PR AW dz| =
Q

217/ |PPVAW dz
Q

3 2 n 8-—n

< C|VW |5 |W |5 (|V2P||%||P| "
1 n

< %HVAQWHQ +C||V2P|| <7

(n<28/5) 1 21 4 )
< GOIVATWIE + HAPH +C, (4.33)

and

|—2/ WVWA2de—217/ V(|P|*)A2Wdz
Q Q

IN

2 /WVWAQde + 27 /V(|P|2)A2de
Q Q

IN

1
GOIVATWIZ 4+ C(IW 1 + [ Pll2)

(n<4) 1
< §<5||VA2WH2

1 n n 8—n
< SolIvarwiE+ (vt T | VPP|E )P )

5
+g\|A2W|]2 HAPH2 +C (4.34)

Combing the above estimates, we have

5+g

d 1
S IVPIF+ VWP + [AWE) + S AP[* + 1AW ]1* + 5HVA2WH2

1
< _4/ PP=2[(1 + 20)|V| PP —2uaV|P|2-z’(PVP—PVP)
Q

+|PVP — PVP]? |+ C(|[VP|? + |[VW|? + |AW|?) + C, (4.35)
Adding (4.17 )and (4.35), we have

d 1
P 2 2 - A 2 / P20'+2d
dt( R N
1 5+g -
JrzHAPHZ 1AW (> + 5||VA2WH2 /QP!4 2

1 _ _
< _4/ \p\%—?[zu +20)|V|P]?]* - 2(v — p)oV|P|* - i(PVP — PVP)
Q

+2|PVP — PVP)?|dz + C(|VP|? + |[VW|? + |AW|?) + C. (4.36)
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Note that if assumption (A1) holds, then the term |P|?>?~2[2(1 +20) ’V\PHQ —2(v—
w)oV|P|? - i(PVP — PVP) + 2|PVP — PVP|? is positive, therefore we can omit
this term and then integrating with respect to ¢ to get the final estimate

IVP| + VW + AW [* + || P37
< IV R + VW[ + AW || + [| PolI3553 + Ct). (4.37)

The following lemma was proved in [18], we omit the proof here.
Lemma 4.4 Under the assumptions of Lemma 3.3, we have

1P, <C, V@ <C, (4.38)

per

where C' is a positive constant.

/ 2
Lemma 4.5 Let s < %, then
2

1P < C, (4.39)

where C' is a positive constant.
Proof By replacing the exponent ¢ + 2 in Lemma 4.2 by s, we have

1d 1
/ P|8d33—|—/ |P|s+20
Sdt Q 8 0

1 —
< —4/ IPI*~4[(s — V)|VIPP|? - 2u(s — 2)V|P|> - i(PVP — PVP)
Q
= 1 1
+|PVP — PVP)?|dz + gHAPH? + g<5||VA2WH2 +C. (4.40)

. . 24/ 14p2 s—4 212
< = — —
Note that if the assumption s < o1 holds, then the term |P|*~*[(s—1)|V|P?|
2u(s — 2)V|P|? - i(PVP — PVP) + |PVP — PVP?] is positive, therefore we can

omit this term. By (4.40), (4.36) and Gronwall’s inequality, we complete the proof.
Lemma 4.6 Let Py(z) € H2,,.(9), Qo(z) € H,,,.(Q) and suppose that o > 1
and Q is a bounded domain with 9Q in C™. Then

IAP? +A%Q)* < T (|AR 1 + | A% Q2| + ct), (4.41)

where C' is a positive constant.
Proof Multiplying (4.3) by AP, integrating over 2 and taking the real part,
we obtain
1d

thHAPH? = gyAPH2—HVAPH?—Re/(1+z'u)yPPUPNde—Re/ VPA*PWdx
Q Q

—Re / r1PA*PVWdz — Re / graPA’PVAW dz. (4.42)
Q Q



14 ANN. OF APPL. MATH. Vol.32

Multiplying (4.4) by —A3W and integrating over Q, we deduce

1d

5 VAW = A2 |2 — g VAW |2 — 5 AW

+/ WVWA3Wdz + 77/ V(P A3Wdz. (4.43)
Q Q
Adding the above two equalities yields

d
a(IIAPII2 + VAW
= 2[|AP[]* —2[[VAP|? + 2| A*W|* — 2g||[ VA*W||? — 26| A°W||?
—2Re / (1 +iv)|P|* PA*Pdx — 2Re / VPA?*PWdx
Q Q

—2Re / rPA*PVWdz — 2Re / groPA’PVAW dz
Q Q
+2 / WVWASWdz + 2n / V(|P|?)A3Wdz. (4.44)
Q Q

According to Gagliardo-Nirenberg inequality, Lemmas 4.1, 4.3 and 4.5 and assump-
tion (A2), we have

‘ — 2Re / (1 +iv)|P|* PA*Pdx
Q

561+z‘y\/ |P|**|VP||VAP|dx
Q

IN

IVAP|? + ClIPP7I3I VP13

IVAP|? + C|VAP||% VP

IN
WIN W] =W =

IN

IVAP|? + C, (4.45)
and

‘— 2Re/ VPA*PWdzx 2Re/ VPVAPVde+2Re/ APVAPWdx
Q Q Q

<2|VWlo[VPIVAP| + 2[[W o [AP[[VAP]
1 0 n
<IIVAP|* + CvAW]2 VW72 + CllAP|?

(n<4) 1
< §HVAPH2 + C|[VAW|? + C||AP|? +C.  (4.46)

For the remaining terms of the RHS of (4.44), we have
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2|A2W |2 — 2Re / riPA*PVWdx — 2Re / groPA PV AW dz
Q Q

< 2| AW + |2Re / r(PYAPAW + VPVAPYW)dz
Q

_l’_

2Re / gra(PVAPA?W + VPVAPVAW)dx
Q

< 2| A°W2 + 2| [[|PIIVAPIAW |[oo + 2[r| [ VP VAP [ VW |
+2g|r2| | PIHIVAP[ [ AW [0 + 29172| [V P [ VAPV AW ]|

1 24n 4—n n 4n
<2AMWP + SIVAPIP + CIVWI| 5 [VWI + CIVIV o[ VW]
64n P Hn £
HCIVWI 5 IV + CIIVW g [V
1 5
< SIIVAP|? + g VA*W* 4+ ZIAW|* + C[VAW* + C, (4.47)

and

2/ WVWA3de+2n/ V(|P*)A3Wdz
Q Q

<2 W oo [ VW[ AW + 47| Plloo [V P[| AW |
J
< 5HA?’WH + C. (4.48)
Then combining (4.44)-(4.48) and noticing || = 1, we have
d
3 APIP + [VAW[®) < CIAP|* + VAW ) + C. (4.49)

Lemma 4.7 Let Py(x) € HZ,.(), Qo(z) € H,,,.(Q) and suppose that o > 1
and § is a bounded domain with 02 in C™. Then

[Plec <C, [|AQ|o0 < C, (4.50)

where C' is a positive constant.
Lemma 4.8 Let Py(z) € H2.,.(), Qo(x) € H,,,(Q) and suppose that o > 1 be
a bounded domain with 02 in C™. Then

1Plaz, <C; [1@Qllng,, <C, (4.51)

per

for C is a positive constant.

For the proof of Lemmas 4.7 and 4.8 in detail, one can refer to [18].

Lemma 4.9 Let Py(x) € H}.(), Qo(z) € H..(Q) and suppose that o > 1
and §2 is a bounded domain with 02 in C™. Then
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IVAP|| + [|[VA2Q| < e“*(|VAR|| + |[VA2Qo|| + Ct), (4.52)

where C' is a positive constant.
Proof Multiplying (4.3) by —A3P, integrating over € and taking the real part,

we obtain
1d _
§&||VAP||2 =¢||[VAP|? — |A%P|? - Re/(l + iv)|P|* PA3Pdz
Q
—Re / VPA*PWdz — Re / r PASPYVWdx
Q Q

—Re / groPA*PV AW dz, (4.53)
Q

Multiplying (4.4) by A*W and integrating over 2, we deduce
1d

S IAWIP = [IVAPW — g|| AW || = s AW

/ WVYWAWdz — 77/ V(|P?)A*Wdz. (4.54)
Q Q
Adding the above two equalities arrives at
d
G (IVAPIE + (| A%W]?)
= 2£|VAP|? = 2| A*P|* + 2| VAW — 2g | AW || — 25| A°W||2
—2Re / (1+iv)|P|* PA3Pdz — 2Re / VPAPWdz
Q Q
—2Re / rPA*PVWdz — 2Re / groPASPVAW dz
Q Q
—2/ WVWAWdz — 2n/ V(|P* AW dz, (4.55)
Q Q
In order to control the RHS of (4.44), using the previous lemmas, we have

2Re / (1+iv)|P|* PA3Pdz
Q

<201 +iv / (6|VP|*|P| + 3| P|*|AP|)|P|?*? 2| A?P|dz
Q

1A2P[* + C(IIVPRIIIPIZ + IIAPPIIPIS)IP

IN

IN
0|l woo|l — ool ool

IA2P|[* + C(I[VPIs + | APIIZ)

n 8—n n 8—n
|A%P|? + C(|A*VP|2[|[VP| 2" + |A?P||5[|AP|™5)

IA

IN

|A%P|* + C, (4.56)
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2Re / VPAPWdz
Q

= [2Re / (AWVP +2APVW + WVAP)A?Pdx
Q

< 2(|AW IV Plloo + 2| API[VW oo + VAP [[W |[oo) | AP
|A2P|? + C||VAP| 3 |[P| = + C|VAP|? + C

IN

1
8
1
8

IN

|A%P|? + C|VAP|? + C, (4.57)

and

2Re / riPAPYWdz
Q

= [2Re / (APVW +2AWVP + PYAW)A?Pdx
Q

< 2([|APIVW]o + 2IIAWIIHVPHoo + VAW Pll)| AP
1
< SlIA?P| + CIVAP|E|P||Z* + C||VAP|? + C

_1
||A2P||2+C||VAPH2 +C. (4.58)

For the remaining terms, using Gagliardo-Nirenberg inequality and the previous
estimates, we obtain

2| VA2 ||? + 2Re / groPA*PV AW dx
Q

= 2| VAW +

2Re / gro(VA2WP + 2A*WVP + VAWAP)A*Pdx
Q

< 2| VAW |2 42g|ro|(| VAW || Plloo+2] VP | A2W ||+ | VAW ||| AP]) | AP
1

< SIAPPIP 4+ 2 VAW 4 ClAP W 3 W5
+CHA3W|| HAW| T 4 O VAW | v

< §||A2P|]2 + g||A3W | + C|| AW ||? + C. (4.59)

Combing the above estimates yields that

d
G (IVAPI? + [A*W[) < C(IVAPI? + [|A*W|%) + C. (4.60)
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Therefore, from the above lemmas, we get the following lemma.
Lemma 4.10 Let Py(x) € Hp,,(Q), Qo(z) € H},. () and suppose that o > 1
and Q is a bounded domain with 0Q in C™. Then

[Pz + [|Qll s < C, (4.61)

where C' is a positive constant.

5 The Local Solutions and Global Solutions

In this section, we will obtain the existence and uniqueness of the local solutions
and global solutions of the periodic initial value problem (1.1)-(1.4). From the
lemmas in Section 3, we deduce our main result:

Theorem 5.1(Local existence) Assume that Py(z) € H,,.(€), Qo(x) € Hp,,.(Q)
and the parameter o, u,v satisfy assumptions (A1) and (A2). Then there exist local
solutions P(x,t) and Q(z,t) to the periodic initial value problem (1.1)-(1.4), satis-
fying

Pa,t) € C((0,10) HE (), Qa,t) € C((0,10); F,, (),

per per

where ty depends on HPOHHSET and HQOHH?,ET'
Finally, we are able to deduce from this local existence theorem combined with
the a priori estimates that the solutions exist globally in time.

Theorem 5.2(Global existence) Assume that Py(z) € H,,(2), Qo(z) € H})

(€2)
per
and the parameter o, u, v satisfy assumptions (A1) and (A2). Then there exist global
solutions P(x,t) and Q(z,t) to the periodic initial value problem (1.1)-(1.4), satis-
Tying

Pla.t) € C((0,00): S, (@), Q1) € C((0,00): Hlur (),

where the periodic initial value problem (1.1)-(1.4).

Proof From Theorem 5.1, there exist local solutions P(z,t) and Q(x,t) of
the periodic initial value problem (1.1)-(1.4) and the existence time ¢y depends on
[P0 (@)l 13

per

the so-called continuity method, we complete the proof.

and ||Qo(z)]] H3,,- According to the priori estimates in Section 4 and
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