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Abstract

In this paper, we are concerned with the existence of periodic solutions of
second-order non-autonomous systems. By applying the Schauder’s fixed point
theorem and Miranda’s theorem, a new existence result of periodic solutions
is established.
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1 Introduction

In the past few years, there has been considerable interest in the existence of

periodic solutions of the following second-order periodic boundary value problems

u′′(t) + a(t)u(t) = f(t, u(t)) + c(t),

u(0) = u(T ), u′(0) = u′(T ),

where a, c ∈ L1(0, T ) and f : [0, T ]×R → R is continuous. For more details please

see [1-6] and the references therein. In particular, many authors mentioned above

paid their attention to the non-resonant case, that is, the unique solution of the

following linear problem

u′′(t) + a(t)u(t) = 0, u(0) = u(T ), u′(0) = u′(T ) (1.1)

is the trivial one. To the end, the function a is supposed to satisfy the basic as-

sumption:
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(H0) The Green’s function G(t, s) of the linear problem (1.1) is nonnegative for

every (t, s) ∈ [0, T ]× [0, T ]. See [3] for the details.

It is well known that if (1.1) is non-resonant and h is a L1-function then the

Fredholm’s alternative theorem implies that the nonhomogeneous problem

u′′(t) + a(t)u(t) = h(t), u(0) = u(T ), u′(0) = u′(T )

always has a unique solution, which can be written as

u(t) =

∫ T

0
G(t, s)h(s)ds.

And consequently, the linear problem (1.1) is non-resonant. On the other hand,

several authors have focused their attention to the existence of periodic solutions

of the second-order nonlinear systems. Here we refer the readers to Chu, Torres

and Zhang [7], Franco and Webb [8], Cao and Jiang [9] and Wang [10]. Especially

in [9], Cao and Jiang obtained several existence results of periodic solutions of the

following second order coupled systems{
u′′(t) + a1(t)u(t) = f1(t, v(t)) + e1(t),

v′′(t) + a2(t)v(t) = f2(t, u(t)) + e2(t),
(1.2)

where f, g : (R/TZ)×R×R → R are continuous and ai, ei ∈ C(R/TZ,R), i = 1, 2.

Clearly, the above mentioned papers all dealt with the non-resonant problems,

that is ai(t) ̸≡ 0, i = 1, 2. Now, the natural question is whether or not there is a

periodic solution of (1.2) if ai(t) ≡ 0, i = 1, 2?

In this paper, we shall establish a new existence result of periodic solutions of

the resonant coupled systems{
u′′(t) = f(t, u(t), v(t)) + e1(t),

v′′(t) = g(t, u(t), v(t)) + e2(t).
(1.3)

To the best of our knowledge, the existence results of periodic solutions of the above

systems are relatively little, and our result shall fill this gap.

The main result of this paper is as follows.

Theorem 1.1 Suppose that

(H1) f, g ∈ C((R/TZ)×R×R,R) are bounded. There are two positive constants

l1 and l2 such that for each (t, x, y) ∈ R×R×R,

f(t, x, y)x < 0, |x| ≥ l1,

g(t, x, y)y < 0, |y| ≥ l2;

(H2) ei ∈ C(R/TZ,R) with mean value
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ēi =
1

T

∫ T

0
ei(s)ds = 0, i = 1, 2.

Then (1.3) has a periodic solution.

The Miranda’s theorem below will be crucial in our arguments.

Theorem A[11] Let

G = {x ∈ Rn : |xi| < L, i = 1, 2, · · · , n}.

Suppose that the mapping F = (F1, F2, · · · , Fn) : G → Rn is continuous on the

closure G of G, such that F (x) ̸= θ = (0, 0, · · · , 0) for x on the boundary ∂G of G.

In addition,

(i) Fi(x1, x2, · · · , xi−1,−L, xi+1, · · · , xn) ≥ 0 for 1 ≤ i ≤ n

and

(ii) Fi(x1, x2, · · · , xi−1,+L, xi+1, · · · , xn) ≤ 0 for 1 ≤ i ≤ n.

Then, F (x) = θ has a solution in G.

2 Proof of Theorem 1.1

Define an operator L : D(L) → E by

Lx := x′′,

where E is a Banach space composed of continuous T -periodic functions with the

norm

∥x∥ = sup
t∈[0,T ]

|x(t)|

and

D(L) = {x ∈ C2[0, T ] : x(0) = x(T ), x′(0) = x′(T )}.

Then it is not difficult to check that L is not invertible since Ker(L) = {c}, c ∈ R.

Let V = Ker(L). Then L2(0, T ) = V ⊕ V ⊥, where

V ⊥ =

{
y ∈ L2(0, T ) :

∫ T

0
y(s)ds = 0

}
.

Now, u, v ∈ L2(0, T ) can be rewritten as

u = s+ w, s ∈ V, w ∈ V ⊥,

v = ρ+ ψ, ρ ∈ V, ψ ∈ V ⊥.

And from (H2) it follows that (1.3) is equivalent to the following equations
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w′′(t) = f(t, s+ w(t), ρ+ ψ(t)) + e1(t), t ∈ (0, T ), (2.1)

Φ1(s, ρ, w, ψ) :=

∫ T

0
f(τ, s+ w(τ), ρ+ ψ(τ))dτ = 0; (2.2)

ψ′′(t) = g(t, s+ w(t), ρ+ ψ(t)) + e2(t), t ∈ (0, T ), (2.3)

Φ2(s, ρ, w, ψ) :=

∫ T

0
g(τ, s+ w(τ), ρ+ ψ(τ))dτ = 0. (2.4)

By (2.1) and (2.3), we get

w(t) = (L
∣∣
V ⊥)

−1
(
f(t, s+ w(t), ρ+ ψ(t)) + e1(t)

)
=: Ts,ρ,ψ(w(t)), (2.5)

ψ(t) = (L
∣∣
V ⊥)

−1
(
g(t, s+ w(t), ρ+ ψ(t)) + e2(t)

)
=: Ts,ρ,w(ψ(t)). (2.6)

Moreover, (H1) implies there exist M1 > 0, M2 > 0 such that

f(t, x, y) ≤M1, g(t, x, y) ≤M2, (t, x, y) ∈ R×R×R.

Thus, by Schauder’s fixed point theorem, equations (2.5) and (2.6) have solutions

w̃(t) and ψ̃(t), respectively. Furthermore, each possible solution w of (2.5) is bound-

ed, so there is a constant L1 > 0 such that ∥w∥ ≤ L1. Similarly, each possible

solution ψ of (2.6) satisfies ∥ψ∥ ≤ L2 for some constant L2 > 0.

Substituting w̃(t) and ψ̃(t) into (2.2) and (2.4), respectively. Then it is not

difficult to see the proof will be completed, if we could find some real numbers s0
and ρ0 such that

Φ1(s0, ρ0, w̃(t), ψ̃(t)) = 0, (2.7)

and

Φ2(s0, ρ0, w̃(t), ψ̃(t)) = 0. (2.8)

Clearly, it follows from (H1) that there exists a constant s1 > 0 sufficiently large

such that

s1 + w̃(t) ≥ l1,

therefore

f(t, s1 + w̃(t), ρ+ ψ̃(t)) < 0, t, ρ ∈ R. (2.9)

On the other hand, there exists a constant s2 < 0 with |s2| large enough such that

s2 + w̃(t) ≤ −l1,

therefore

f(t, s2 + w̃(t), ρ+ ψ̃(t)) > 0, t, ρ ∈ R. (2.10)

Similarly, we may choose ρ1 > 0 and ρ2 < 0 with ρ1 and |ρ2| sufficiently large such

that
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ρ1 + ψ̃(t) ≥ l2, ρ2 + ψ̃(t) ≤ −l2,

and accordingly,

g(t, s+ w̃(t), ρ1 + ψ̃(t)) < 0, t, s ∈ R, (2.11)

g(t, s+ w̃(t), ρ2 + ψ̃(t)) > 0, t, s ∈ R. (2.12)

Let

L := max
{
max{s1, |s2|}, max{ρ1, |ρ2|}

}
and

G = {(s, ρ) ∈ R2 : |s| < L, |ρ| < L}.

Define

F1(s, ρ) := Φ1(s, ρ, w̃(t), ψ̃(t)), F2(s, ρ) := Φ2(s, ρ, w̃(t), ψ̃(t)).

Then (H1) implies F = (F1, F2) : G → R2 is continuous on the closure G of G. In

addition, (2.9)-(2.12) and the definition of G yield

F ((s, ρ)) ̸= θ = (0, 0) for (s, ρ) ∈ ∂G.

Finally, let us show that assumptions (i) and (ii) of Theorem A are also satisfied.

To prove Theorem A (i), it is equivalent to prove

F1(−L, ρ) = Φ1(−L, ρ, w̃(t), ψ̃(t)) =
∫ T

0
f(τ,−L+ w̃(τ), ρ+ ψ̃(τ))dτ ≥ 0, (2.13)

F2(s,−L) = Φ2(s,−L, w̃(t), ψ̃(t)) =
∫ T

0
f(τ, s+ w̃(τ),−L+ ψ̃(τ))dτ ≥ 0. (2.14)

Since

−L+ w̃(τ) ≤ s2 + w̃(τ) ≤ −l1,

the first inequality in (H1) implies (2.13) holds. On the other hand, the second

inequality in (H1) and the fact

−L+ ψ̃(τ) ≤ ρ2 + ψ̃(τ) ≤ −l2

yield (2.14) is also satisfied.

To prove Theorem A (ii), it is equivalent to prove

F1(L, ρ) = Φ1(L, ρ, w̃(t), ψ̃(t)) =

∫ T

0
f(τ, L+ w̃(τ), ρ+ ψ̃(τ))dτ ≤ 0, (2.15)

F2(s, L) = Φ2(s, L, w̃(t), ψ̃(t)) =

∫ T

0
f(τ, s+ w̃(τ), L+ ψ̃(τ))dτ ≤ 0. (2.16)
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By the similar arguments as in the proof of (2.13) and (2.14), we can show that

(2.15) and (2.16) are also satisfied.

Consequently, Theorem A implies there exists an (s0, ρ0) ∈ G such that

F ((s0, ρ0)) = θ.

Therefore, (2.7) and (2.8) hold, and the proof is completed.
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