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Abstract

In this paper, the almost periodic predator-prey-mutualist model with
Holling type II functional response is discussed. A set of sufficient condi-
tions which guarantee the uniform persistence and the global attractivity of
the system are obtained. For the almost periodic case, by constructing a suit-
able Lyapunov function, sufficient conditions which guarantee the existence
of a unique globally attractive positive almost periodic solution of the system
are obtained. An example together with its numerical simulations shows the
feasibility of the main results.
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1 Introduction

As was pointed out by Berryman [1], the dynamic relationship between predator

and prey has long been and will continue to be one of the dominant themes in both

ecology and mathematical ecology due to its universal existence and importance.

Already, the predator-prey model has been studied by several scholars [2-10]. For

example, Das etc. [8] investigated a three species ecosystem consisting of a prey,

predator and a top predator. They derived the criteria for local and global stability

of all the eight equilibrium points using Routh-Hurwitz and Lyapunov function. Wu

and Li [9] studied the permanence and global attractivity of the discrete predator-
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prey system with Hassell-Varley-Holling III type functional response. Chen and

Chen [10] proposed a ratio-dependent predator-prey model incorporating a prey

refuge. They studied the global stability, limit cycle and Hopf bifurcation of the

system.

Though mutualism is one of the most important relationships in the real world,

for instance, ants prevent herbivores from feeding on plants (see [11]) and ants

prevent predators from feeding on aphids (see [12,13]). As was pointed out by

Murray [14]: “this area has not been as widely studied as the others even though its

importance is comparable to that of predator-prey and competition interactions.”

To this end, Rai and Krawcewicz [15] proposed the following three species predator-

prey-mutualist system: 

dx

dt
= αx

(
1− x

K

)
− βxz

1 +my
,

dy

dt
= γy

(
1− y

lx+ L0

)
,

dz

dt
= z

(
− s+

cβx

1 +my

)
,

(1.1)

where x(t), y(t) and z(t) denote the densities of prey, mutualist and predator pop-

ulation at any time t, respectively. They applied the equivariant degree method to

study Hopf bifurcations phenomenon of the system.

Recently, Yang, Xie and Wu [16] argued that due to seasonal effects of weather,

temperature, food supply, mating habits etc, a more appropriate system should be

the non-autonomous case, and they proposed and studied the following system:

ẋ = x
(
a1(t)− b1(t)x− c1(t)z

d1(t) + d2(t)y

)
,

ẏ = y
(
a2(t)−

y

d3(t) + d4(t)x

)
,

ż = z
(
− a3(t) +

k1(t)c1(t)x

d1(t) + d2(t)y
− b2(t)z

)
.

(1.2)

By using the Brouwer fixed pointed theorem and constructing a suitable Lyapunov

function, the authors obtained a set of sufficient conditions for the existence of a

globally asymptotically stable periodic solution of system (1.2).

It brings to our attention that in systems (1.1) and (1.2), the authors did not

consider the functional response of the predator species, which motivates us to study

a suitable predator-prey system incorporating some functional response of the preda-

tor species, and to propose the following three species predator-prey-mutualist sys-

tem:
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

ẋ = x
(
a1(t)− b1(t)x− c1(t)z

d1(t) + x+ d2(t)y

)
,

ẏ = y
(
a2(t)−

y

d3(t) + d4(t)x

)
,

ż = z
(
− a3(t)− b2(t)z +

c2(t)x

d1(t) + x+ d2(t)y

)
,

(1.3)

where x is the density of the prey, y is the density of the mutualist and z is the

density of the predator. The functions ai(t) (i = 1, 2, 3), b1(t), b2(t), c1(t), c2(t),

dj(t) (j = 1, 2, 3, 4) are continuous defined on [0,+∞); ai(t) (i = 1, 2, 3), b1(t), b2(t)

are strictly positive, a1(t) is the intrinsic growth rate of prey specie x, a2(t) is the

intrinsic growth rate of mutualist y, a3(t) is the death rate of the predator specie z.

The functions d4 and d2 reflect the mutualist effect.

To the best of the authors knowledge, to this day, still no scholars investigate

the almost periodic solution of system (1.3), it is well known that the assumption

of almost periodicity of the coefficients of (1.3) is a way of incorporating the time

dependent variability of the environment, especially when the various components

of the environment are periodic with not necessary commensurate periods (e.g. sea-

sonal effects of weather, food supplies, mating habits, harvesting etc.) [17-20]. We

arrange the rest of this paper as follows: In Section 2, by the differential inequality

theory, sufficient conditions which guarantee the uniform persistence of system (1.3)

are obtained; after that, by constructing a suitable Lyapunov function, some suffi-

cient conditions which ensure the global attractivity of system (1.3) are obtained. In

Section 3, a criterion is established for the existence of a unique globally attractive

positive almost periodic solution of system (1.3). In Section 4, a suitable example

together with its numeric simulations is given to illustrate the main results of this

paper. We end this paper by a briefly discussion.

Throughout this paper, we shall use the following notations:

f l = inf
t∈R

f(t), fu = sup
t∈R

f(t).

2 General Nonautonomous Case

Lemma 2.1 R3
+=

{
(x, y, z)|x≥0, y≥0, z≥0

}
is invariant with respect to (1.3).

Proof Since

x(t) = x(0) exp

∫ t

0

(
a1(s)− b1(s)x(s)−

c1(s)z(s)

d1(s) + x(s) + d2(s)y(s)

)
ds,

y(t) = y(0) exp

∫ t

0

(
a2(s)−

y(s)

d3(s) + d4(s)x(s)

)
ds,

z(t) = z(0) exp

∫ t

0

(
− a3(s) +

c2(s)x(s)

d1(s) + x(s) + d2(s)y(s)
− b2(s)z(s)

)
ds,

(2.1)
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the assertion of the lemma follows immediately for all t ∈ [0,+∞).

It follows from Lemma 2.1 that any solution of (1.3) with a nonnegative initial

condition remains nonnegative.

Lemma 2.2 If m1 > 0 and m3 > 0, then the set S defined by

S =
{
w = (x, y, z) ∈ R3

+|m1 ≤ x ≤M1,m2 ≤ y ≤M2,m3 ≤ z ≤M3

}
is invariant with respect to (1.3), where mi and Mi (i = 1, 2, 3) will be defined below.

Proof From the first equation of system (1.3), we obtain ẋ ≤ x(au1 − bl1x). If

0 < x(0) ≤ au1
bl1

:=M1

holds, then we have

x(t) ≤M1, t ≥ 0. (2.2)

From the second equation of (1.3), it follows that

ẏ ≤ y
(
au2 − y

du3 + du4M1

)
.

This together with 0 < y(0) ≤ au2(d
u
3 + du4M1) :=M2 implies

y(t) ≤M2, t ≥ 0. (2.3)

From the third equation of (1.3), it follows that

ż ≤ z
(
− al3 +

cu2M1

dl1
− bl2z

)
.

If

0 < z(0) ≤ cu2M1 − al3d
l
1

dl1b
l
2

:=M3

holds, then

z(t) ≤M3, t ≥ 0. (2.4)

From the second equation of system (1.3), one has

ẏ ≥ y
(
al2 −

y

dl3

)
,

which implies that if y(0) ≥ al2d
l
3 := m2 holds, then

y(t) ≥ m2, t ≥ 0. (2.5)

(2.5) combining with the first equation of system (1.3) leads to

ẋ ≥ x
(
al1 − bu1x− cu1M3

dl1 + dl2m2

)
.

It implies that if
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x(0) ≥
al1 −

cu1M3

dl1 + dl2m2

bu1
=
al1(d

l
1 + dl2m2)− cu1M3

(dl1 + dl2m2)bu1
:= m1

holds, then

x(t) ≥ m1, t ≥ 0. (2.6)

From (1.3), (2.3) and (2.6), we have

ż ≥ z
(
− au3 +

cl2m1

du1 + du2M2 +M1
− bu2z

)
.

If

z(0) ≥ cl2m1 − au3(d
u
1 + du2M2 +M1)

(du1 + du2M2 +M1)bu2
:= m3

holds, then

z(t) ≥ m3, t ≥ 0. (2.7)

The above analysis shows that

0 < m1 ≤ x(t) ≤M1, 0 < m2 ≤ y(t) ≤M2, 0 < m3 ≤ z(t) ≤M3, t ≥ 0.

This completes the proof of Lemma 2.2.

With a slightly modification of the proof of Lemma 2.2, we could also obtain

following result.

Lemma 2.3 Assume that m1 > 0 and m3 > 0. Let F (t) = (x(t), y(t), z(t)) be

any positive solution of system (1.3), then we have

m1 ≤ lim inf
t→∞

x(t) ≤ lim sup
t→∞

x(t) ≤M1,

m2 ≤ lim inf
t→∞

y(t) ≤ lim sup
t→∞

y(t) ≤M2,

m3 ≤ lim inf
t→∞

z(t) ≤ lim sup
t→∞

z(t) ≤M3.

As a direct corollary of Lemma 2.3, we have:

Theorem 2.1 Under the assumptions m1 > 0 and m3 > 0, system (1.3) is

uniformly persistent.

Theorem 2.2 If the coefficients of system (1.3) satisfy the following conditions:

(I) m1 > 0, m3 > 0;

(II) there exist positive constants µ1, µ2, µ3 and δ such that

min
t∈R

{φ(t), ψ(t), ϕ(t)} > δ,

where

φ(t) = µ1b1(t)−
µ1c1(t)M3

d21(t)
− µ2d4(t)M2

d23(t)
− µ3c2(t)

d1(t)
; ϕ(t) = µ3b2(t)−

µ1c1(t)

d1(t)
;
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ψ(t) =
µ2

d3(t) + d4(t)M1
− µ1c1(t)d2(t)M3

d21(t)
− µ3c2(t)d2(t)M1

d21(t)
.

Then system (1.3) is globally attractive.

Proof Let W (t) = (x(t), y(t), z(t)) and F (t) = (x∗(t), y∗(t), z∗(t)) be any two

positive solutions of (1.3).

Set V (t) = V1(t) + V2(t) + V3(t), where

V1(t)=µ1| lnx(t)−lnx∗(t)|, V2(t)=µ2| ln y(t)−ln y∗(t)|, V3(t)=µ3| ln z(t)−ln z∗(t)|.

By simple computation, one has

D+V1(t) ≤ −µ1
[
b1(t)−

c1(t)z(t)

d21(t)

]
|x∗(t)− x(t)|+ µ1c1(t)d2(t)z(t)

d21(t)
|y∗(t)− y(t)|

+
µ1c1(t)

d1(t)
|z∗(t)− z(t)|,

D+V2(t) ≤
µ2d4(t)y(t)

d23(t)
|x∗(t)− x(t)| − µ2

d3(t) + d4(t)x∗(t)
|y∗(t)− y(t)|,

D+V3(t) ≤
c2(t)µ3
d1(t)

|x∗(t)−x(t)|+µ3c2(t)d2(t)x(t)
d21(t)

|y∗(t)−y(t)|−µ3b2(t)|z∗(t)−z(t)|.

From Lemma 2.3 it follows that there exist a T1 > 0 large enough and an ε small

enough such that for all t > T1, one has

m1 − ε ≤ x(t), x∗(t) ≤M1 + ε,

m2 − ε ≤ y(t), y∗(t) ≤M2 + ε,

m3 − ε ≤ z(t), z∗(t) ≤M3 + ε.

(2.8)

Therefore, for t ≥ T1, it follows from (2.8) that

D+V (t) ≤ −
[
µ1b1(t)−

µ1c1(t)z(t)

d21(t)
− µ2d4(t)y(t)

d23(t)
− µ3c2(t)

d1(t)

]
|x∗(t)− x(t)|

−
[
− µ1c1(t)d2(t)z(t)

d21(t)
+

µ2
d3(t)+d4(t)x∗(t)

−µ3c2(t)d2(t)x(t)
d21(t)

]
|y∗(t)−y(t)|

−
[
µ3b2(t)−

µ1c1(t)

d1(t)

]
|z∗(t)− z(t)|

≤ −
[
µ1b1(t)−

µ1c1(t)(M3 + ε)

d21(t)
− µ2d4(t)(M2 + ε)

d23(t)
− µ3c2(t)

d1(t)

]
|x∗(t)− x(t)|

−
[
− µ1c1(t)d2(t)(M3+ε)

d21(t)
+

µ2
d3(t)+d4(t)(M1+ε)

− µ3c2(t)d2(t)(M1+ε)

d21(t)

]
·|y∗(t)− y(t)| −

[
µ3b2(t)−

µ1c1(t)

d1(t)

]
|z∗(t)− z(t)|

≤ −δ
[
|x∗(t)− x(t)|+ |y∗(t)− y(t)|+ |z∗(t)− z(t)|

]
.
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Integrating the above inequality, we have that

V (t) + δ

∫ t

T1

[
|x∗(t)− x(t)|+ |y∗(t)− y(t)|+ |z∗(t)− z(t)|

]
ds ≤ V (T1) < +∞.

Therefore,

lim sup
t→∞

∫ t

T1

[
|x∗(t)− x(t)|+ |y∗(t)− y(t)|+ |z∗(t)− z(t)|

]
ds <

V (T1)

δ
< +∞.

From the above inequality one could easily deduce that

lim
t→+∞

|x∗(t)− x(t)| = 0, lim
t→+∞

|y∗(t)− y(t)| = 0, lim
t→+∞

|z∗(t)− z(t)| = 0.

This shows that system (1.3) is globally attractive. We complete the proof.

3 Almost Periodic Solution

This section deals with the almost periodic solution of system (1.3). To do so,

we further assume that:

(H) a1(t), a2(t), a3(t), b1(t), b2(t), c1(t), c2(t), d1(t), d2(t), d3(t) and d4(t) are all

continuous nonnegative almost periodic functions defined on [0,+∞), a1(t), a2(t),

a3(t), b1(t), b2(t) are strictly positive.

Let x(t) = ex̄(t), y(t) = eȳ(t), z(t) = ez̄(t). Then system (1.3) can be revised as

˙̄x(t) = a1(t)− b1(t)e
x̄(t) − c1(t)e

z̄(t)

d1(t) + ex̄(t) + d2(t)eȳ(t)
,

˙̄y(t) = a2(t)−
eȳ(t)

d3(t) + d4(t)ex̄(t)
,

˙̄z(t) = −a3(t)− b2(t)e
z̄(t) +

c2(t)e
x̄(t)

d1(t) + ex̄(t) + d2(t)eȳ(t)
.

(3.1)

By the relationship of systems (1.3) and (3.1), one could easily obtain following

results from Lemmas 2.2 and 2.3.

Lemma 3.1 If m1 > 0 and m3 > 0, then the set S1 defined by

S1={F =(x, y, z)∈R3| lnm1≤ x̄(t)≤ lnM1, lnm2≤ ȳ(t)≤ lnM2, lnm3≤ z̄(t)≤ lnM3}

is invariant with respect to (3.1).

Lemma 3.2 Assume that m1 > 0 and m3 > 0. Let W (t) = (x̄(t), ȳ(t), z̄(t)) be

any solution of system (3.1), then we have

lnm1 ≤ lim inf
t→∞

x̄(t) ≤ lim sup
t→∞

x̄(t) ≤ lnM1,

lnm2 ≤ lim inf
t→∞

ȳ(t) ≤ lim sup
t→∞

ȳ(t) ≤ lnM2,

lnm3 ≤ lim inf
t→∞

z̄(t) ≤ lim sup
t→∞

z̄(t) ≤ lnM3.
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It is obvious that the existence of almost periodic solution of system (3.1) is

equivalent to that of system (1.3).

Consider the following ordinary differential equation:

Ẋ = f(t,X), f(t,X) ∈ C(R×D,Rn), (3.2)

where D is an open set in Rn, f(t,X) is almost periodic in t uniformly with respect

to x ∈ D.

Lemma 3.3[21] Suppose that there exists a Lyapunov function V (t, x, y) defined

on [0,+∞)×D ×D, which satisfies the following conditions:

(1) α(∥x − y∥) ≤ V (t, x, y) ≤ β(∥x − y∥), where α(γ) and β(γ) are continuous,

increasing and positive definite;

(2) |V (t, x1, y1) − V (t, x2, y2)| ≤ K{∥ x1 − x2∥+ ∥ y1 − y2∥}, where K > 0 is a

constant;

(3) V̇ (t, x, y) ≤ −µV (|x− y|), where µ > 0 is a constant.

Moreover, suppose that system (3.2) has a solution that remains in a compact set

S ⊂ D for all t ≥ t0 ≥ 0. Then system (3.2) has a unique almost periodic solution

in S, which is uniformly asymptotically stable in D.

Theorem 3.1 In addition to assumption (H), assume further that the conditions

of Theorem 2.2 hold. Then system (1.3) admits a unique globally attractive strictly

positive almost periodic solution.

Proof For (X,Y, Z) ∈ R3
+, we define ∥X,Y, Z∥ = |X| + |Y | + |Z|. We first

shows that system (3.1) has a unique almost periodic solution that is uniformly

asymptotically stable in S1. Consider the product system of system (3.1):

˙̄x(t) = a1(t)− b1(t)e
x̄(t) − c1(t)e

z̄(t)

d1(t) + ex̄(t) + d2(t)eȳ(t)
,

˙̄y(t) = a2(t)−
eȳ(t)

d3(t) + d4(t)ex̄(t)
,

˙̄z(t) = −a3(t)− b2(t)e
z̄(t) +

c2(t)e
x̄(t)

d1(t) + ex̄(t) + d2(t)eȳ(t)
;

˙̄x∗(t) = a1(t)− b1(t)e
x̄∗(t) − c1(t)e

z̄∗(t)

d1(t) + ex̄∗(t) + d2(t)eȳ
∗(t)

,

˙̄y∗(t) = a2(t)−
eȳ

∗(t)

d3(t) + d4(t)ex̄
∗(t)

,

˙̄z∗(t) = −a3(t)− b2(t)e
z̄∗(t) +

c2(t)e
x̄∗(t)

d1(t) + ex̄∗(t) + d2(t)eȳ
∗(t)

.

(3.3)

Suppose that W (t) = (x̄(t), ȳ(t), z̄(t)), Q(t) = (x̄∗(t), ȳ∗(t), z̄∗(t)) are any two so-

lutions of system (3.1) defined on [0,+∞) × S1 × S1 × S1. Consider a Lyapunov
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function defined on [0,+∞)× S1 × S1 × S1 as follows:

V (t,W (t), Q(t)) = µ1|x̄1(t)− x̄∗1(t)|+ µ2|ȳ1(t)− ȳ∗2(t)|+ µ3|z̄3(t)− z̄∗3(t)|.

It then follows

A∥W (t)−Q(t)∥ ≤ V (t,W (t), Q(t)) ≤ B∥W (t)−Q(t)∥,

where A = min{µ1, µ2, µ3}, B = max{µ1, µ2, µ3}, thus condition (1) of Lemma 3.3

is satisfied.

In addition

|V (t,W 1(t), Q1(t))− V (t,W 2(t), Q2(t))|
=

∣∣(µ1|x̄1(t)− x̄∗1(t)|+ µ2|ȳ1(t)− ȳ∗1(t)|+ µ3|z̄1(t)− z̄∗1(t)|)
−(µ1|x̄2(t)− x̄∗2(t)|+ µ2|ȳ2(t)− ȳ∗2(t)|+ µ3|z̄2(t)− z̄∗2(t)|)
−(µ1|x̄3(t)− x̄∗3(t)|+ µ2|ȳ3(t)− ȳ∗3(t)|+ µ3|z̄3(t)− z̄∗3(t)|)

∣∣
≤ µ1|x̄1(t)− x̄∗1(t)|+ µ1|x̄2(t)− x̄∗2(t)|+ µ1|x̄3(t)− x̄∗3(t)|

+µ2|ȳ1(t)− ȳ∗1(t)|+ µ2|ȳ2(t)− ȳ∗2(t)|+ µ2|ȳ3(t)− ȳ∗3(t)|
+µ3|z̄1(t)− z̄∗1(t)|+ µ3|z̄2(t)− z̄∗2(t)|+ µ3|z̄3(t)− z̄∗3(t)|

≤ B{∥W 1(t)−W 2(t)∥+ ∥Q1(t)−Q2(t)∥},

where B = max{µ1, µ2, µ3}, thus condition (2) of Lemma 3.3 is also satisfied.

Finally, calculating the right derivative D+V (t) of V (t) along the solutions of

system (3.3), using Lemma 3.2, similar to the analysis of Theorem 2.1, we can obtain:

D+V (t) ≤ −
[
µ1b1(t)−

µ2c1(t)M3

d21(t)
− µ2d4(t)M2

d23(t)
− µ3c2(t)

d1(t)

]
|ex̄∗(t) − ex̄(t)|

−
[
− µ1c1(t)d2(t)M3

d21(t)
+

µ2
d3(t) + d4(t)M1

− µ3c2(t)d2(t)M1

d21(t)

]
|eȳ∗(t) − eȳ(t)|

−
[
µ3b2(t)−

µ1c1(t)

d1(t)

]
|ez̄∗(t) − ez̄(t)|

≤ −δ
[
|ex̄∗(t) − ex̄(t)|+ |eȳ∗(t) − eȳ(t)|+ |ez̄∗(t) − ez̄(t)|

]
.

Note that

ex̄
∗(t) − ex̄(t) = eζ̄1(x̄∗(t)− x̄(t)),

eȳ
∗(t) − eȳ(t) = eζ̄2(ȳ∗(t)− ȳ(t)),

ez̄
∗(t) − ez̄(t) = eζ̄3(z̄∗(t)− z̄(t)).

Here, ζ̄1 is a bounded function between x̄∗(t) and x̄(t), ζ̄2 is a bounded function

between ȳ∗(t) and ȳ(t) and ζ̄3 is a bounded function between z̄∗(t) and z̄(t). Then

we have
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D+V (t) ≤ −δ[m1|x∗(t)− x(t)|+m2|y∗(t)− y(t)|+m3|z∗(t)− z(t)|]
≤ −mδ{|x∗(t)− x(t)|+ |y∗(t)− y(t)|+ |z∗(t)− z(t)|}

≤ −mδ
B

V (t,W 1,W 2),

where m = min{m1,m2,m3}, B = max{µ1, µ2, µ3}. Hence, condition (3) of Lemma

3.3 is also satisfied.

The above analysis shows that all the conditions of Lemma 3.3 hold. Thus,

system (3.1) has a unique almost periodic solution (x̃∗, ỹ∗, z̃∗) which is uniformly

asymptotically stable in S1. Hence, system (1.3) has a unique positive almost peri-

odic solution (ex̃
∗
, eỹ

∗
, ez̃

∗
), which is uniformly asymptotically stable in S. The proof

is complete.

4 Example

In this section, we shall give an example to illustrate the feasibility of the main

result.

Example 4.1 Considering the following predator-prey-mutualist system:

ẋ = x
((

0.9 + 0.1 cos(3
√
3t)

)
− 1.5x− 0.5z

3 + x+ 1.4y

)
;

ẏ = y
((

0.9 + 0.1 sin(5
√
5t)

)
− y

0.2 + 0.5x

)
;

ż = z
(
−

(
0.03 + 0.01 cos(7

√
3t)

)
−

(
0.19 + 0.1 cos(6

√
5t)

)
z +

0.4x

3 + x+ 1.4y

)
.

(4.1)

Comparing with system (1.3), we have a1(t) = 0.9 + 0.1 cos(
√
3t), b1(t) = 1.5,

c1(t) = 0.5, c2(t) = 0.4, a2(t) = 0.9 + 0.1 sin(
√
5t), a3(t) = 0.03 + 0.01 cos(

√
7t),

b2(t) = 0.19 + 0.1 cos(
√
11t), d1(t) = 3, d2(t) = 1.4, d3(t) = 0.2, d4(t) = 0.5.

Let (x(t), y(t), z(t)) be any positive solution of system (4.1), then by simple

computation, we have

0.4652 ≤ lim inf
t→∞

x(t) ≤ lim sup
t→∞

x(t) ≤ 0.6667,

0.16 ≤ lim inf
t→∞

y(t) ≤ lim sup
t→∞

y(t) ≤ 0.5334,

0.0075 ≤ lim inf
t→∞

z(t) ≤ lim sup
t→∞

z(t) ≤ 0.7655.

From the above inequality, we also note that condition (I) of Theorem 2.2 holds.

Letting µ1 = 8, µ2 = 1, µ3 = 15, δ = 1
100 , one could easily verify that

φ(t) = µ1b1(t)−
µ1c1(t)M3

d21(t)
− µ2d4(t)M2

d23(t)
− µ3c2(t)

d1(t)
= 2.354 >

1

100
;
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ψ(t) =
µ2

d3(t) + d4(t)M1
− µ1c1(t)d2(t)M3

d21(t)
− µ3c2(t)d2(t)M1

d21(t)
= 0.7779 >

1

100
;

ϕ(t) = µ3b2(t)−
µ1c1(t)

d1(t)
= 0.0164 >

1

100
.

The above three inequalities show that condition (II) of Theorem 2.2 holds. Thus,

from Theorem 3.1, system (4.1) admits a unique globally attractive positive almost

periodic solution (x∗(t), y∗(t), z∗(t)).

Numerical simulation (Figure 1) strongly supports our main result.

0 50 100 150
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y
z

Figure 1: Dynamic behavior of solutions (x(t), y(t), z(t)) of system
(4.1) with the initial conditions

(
x(0), y(0), z(0)

)
= (0.2,

0.6, 0.8), (0.5, 0.3, 0.4) and (0.7, 0.1, 0.12), respectively.

5 Conclusion

In this paper, we study an almost periodic predator-prey-mutualist system. Some

sufficient conditions which guarantee the existence of the unique globally attractive

positive almost periodic solution of system (1.3). Example shows the feasibility of

our main result. Our result indicates that if the death rate of the predator specie z

is small enough, the density restriction of z is large enough and the cooperate effect

between species x and y is very strong, then there exists a unique globally attractive

positive almost periodic solution of system (1.3).
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