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An Analogue-difference Method and Application
to Induction Motor Models∗
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Abstract The paper established a so-called analogue-difference method (AD-
M) to compute the numerical solutions for boundary value problems of higher-
order differential equations, which can be a fundamental method and performs
much better than the finite difference method (FDM), even for second-order
boundary value problems. Numerical examples and results illustrate the sim-
plicity, efficiency and applicability of the method, which also show that the
proposed method has obvious advantages over the methods presented by recent
state-of-the-art work for induction motor models.
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1. Introduction

The difference method (FDM) is a fundamental method to find numerical solutions
for boundary value problems of ordinary differential equations. Since the simplicity
and effectiveness, FDM has been applied to solve numerical solutions for second-
order boundary value problems of ordinary differential equations and partial differ-
ential equations (see [3]- [11]), and this method can be found in many text books
and papers related to numerical methods, see [2], [4], [7], [11] and references there-
in. In particular, [4] present the difference method for the classical second-order
boundary value problem in details. However, this method is not satisfied, and it is
even invalid in some situation for higher-order boundary value problems. On the
other hand, biologically inspired intelligent computing approach, based on artificial
neural networks (ANN) models, the authors of [1] established some methods by op-
timising efficient local search methods so-called sequential quadratic programming
(SQP), interior point technique (IPT) and active set technique (AST), they applied
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the methods to solve some fifth-order boundary value problems arisen in induction
motor. The authors show that their proposed technique is state-of-the-art, which is
good in accuracy. In [7] and [6], the authors developed the so-called new finite dif-
ference method to solve a second-order boundary value problem, and a eighth-order
boundary value problem respectively. However, the methods are only fourth-order
accurate. In this paper, we devote ourselves to improving the accuracy and efficien-
cy of FDE by using the higher-order derivative substitution formulation based on
Taylor expansion. Our new method can not only be applied to second-order bound-
ary value problems, but also higher-order boundary value problems especially, and
it also can be applied to all models of [1], which shows that the method has higher
accuracy than those of [1].

To self completeness and clearness, we introduce some basic knowledge for FDM
(see [4] and references therein). Consider the following second-order BVP{

Lu ≡ −u′′ + q(t)u = f(t), a < t < b,

u(a) = α, u(b) = β,
(1.1)

where q(t), f(t) ∈ C[a, b], q(t) ≥ 0 for t ∈ [a, b]. Assumed that the problem (1.1)
has a unique solution. The process of numerical solution using classical difference
method as follows.

We divide the interval [a, b] into N equal parts, and take the grid points as
follows:

a = t0 < t1 < · · · < ti < · · · < tN = b, (1.2)

where ti = a + ih, step length h = b−a
N . Choose the second-order center difference

quotient formula at node ti

u′′(ti) ≈
1

h2
[u(ti−1)− 2u(ti) + u(ti+1)], (1.3)

then the following system obtained{
Lhui = − 1

h2 (ui−1 − 2ui + ui+1) + qiui = fi, i = 1, 2, · · · , N − 1,

u0 = α, uN = β,
(1.4)

where qi = q(ti), fi = f(ti), i = 0, 1, · · · , N . The truncation error of this method is

Ri(u) = Lu(ti)− Lhu(ti) =
h2

12
u(4)(ξi), ξi ∈ (ti−1, ti+1), (1.5)

where L is the derivative operator defined by Lu := u′′. The algebraic system (1.4)
can be written in matrix form

− 1
h2

2
h2 + q1 − 1

h2

− 1
h2

2
h2 + q2 − 1

h2

. . .
. . .

. . .

− 1
h2

2
h2 + qN−1 − 1

h2

1 0 . . . . . . . . . . . . 0 0

0 0 . . . . . . . . . . . . 0 1





u0

u1

...

...

...

uN


=



f1

f2

...

fN−1

α

β


, (1.6)
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which can be simplified into

AU = F (1.7)

with

A =

A1

A2

 , U =


u0

u1

...

uN

 , F =

F1

F2

 , (1.8)

where

A1 =


− 1
h2

2
h2 + q1 − 1

h2

− 1
h2

2
h2 + q2 − 1

h2

. . .
. . .

. . .

− 1
h2

2
h2 + qN−1 − 1

h2

 , (1.9)

A2 =

 1 0 · · · 0 0

0 0 · · · 0 1

 , (1.10)

F1 =


f1

f2

...

fN−1

 , F2 =

α

β

 . (1.11)

This paper is organized as follows: In Section 2, we establish the general pth-
order q-point method so-called analogue-difference method (ADM for short). In
Section 3, ADM is used to solve second-order BVP, which shows that AMD behav-
iors are better than the classical finite difference method. Section 4 develops AMD
for higher-order BVPs, and some numerical experiments are given to demonstrate
the advantage of our method. The final section is a brief conclusion.

2. Establishment of the method

Let u(t) be a function sufficiently smooth on [a, b]. We take the partition (1.2),
q (q is a positive integer) points near the point t = ti consecutively denoted by
tj , tj+1, · · · , tj+q−1 and expand Taylor formula of u(tj), u(tj+1), · · · , u(tj+q−1) at
point t = ti respectively. Then, the pth-order q-point analogue-difference formula
obtained. The details shall be shown next.

To begin with, we shall choose the substitution formula of higher order deriva-
tive. The Taylor expansion of u(ti + nh) at the node ti is

u(ti + nh) = u(ti) + nhu′(ti) + · · ·+ nk

k!
hku(k)(ti) +Rk,n, (2.1)
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where Rk,n = o((nh)k) or Rk,n = (nh)k+1

(k+1)! u
(k+1)(ξ), ξ ∈ (a, b). We take q points near

the point t = ti consecutively and denoted by tj , tj+1, · · · , tj+q−1, where q and j
are positive integer, i = 1, 2, · · · , N − 1 and obtain

u(tj) = u(ti) + (j − i)hu′(ti) + · · ·+ (j − i)q−1

(q − 1)!
hq−1u(q−1)(ti) +R0,

u(tj+1) = u(ti) + (j − i+ 1)hu′(ti) + · · ·+ (j − i+ 1)q−1

(q − 1)!
hq−1u(q−1)(ti) +R1,

(2.2)

· · ·

u(tj+q−1) = u(ti) + (j − i+ q − 1)hu′(ti) + · · ·+ (j − i+ q − 1)q−1

(q − 1)!
hq−1u(q−1)(ti)+

(2.3)

Rq−1,

where Rm = (j−i+m)q

q! hqu(q)(ξ) (ξ ∈ (a, b),m ∈ Z, 0 ≤ m ≤ q − 1).

Omit all residues in (2.2), one can choose some numbers Ck, (k = 0, 1, 2, · · · , q−
1) such that for positive integer p < q, one has

C0uj + C1uj+1 + C2uj+2 + · · ·+ Cq−1uj+q−1 = hpu
(p)
i , (2.4)

and obtain the substitution formula

u
(p)
i =

1

hp
(C0uj + C1uj+1 + C2uj+2 + · · ·+ Cq−1uj+q−1) , (2.5)

where ui = u(ti), u
(2)
i = u′′(ti), · · · , u(p)

i = u(p)(ti), and Ck are real numbers,
p, k = 1, 2, · · · , q − 1.

Next, we give the following definition for the formula (2.5).

Definition 2.1. Let u(t) be a function sufficiently smooth on [a, b]. We call (2.5)
a pth-order q-point analogue-difference formula. If ui ∈ {uk|k ∈ Z+and k = j, j +
1, · · · , j + q − 1}, the formula (2.5) is called an inner analogue-difference formula,
and if ui /∈ {uk|k ∈ Z+and k = j, j + 1, · · · , j + q − 1}, the formula (2.5) is called
an outer analogue-difference formula.

Example 2.1. The first-order center difference quotient formula u′i = 1
2h (ui+1 −

ui−1) is a first-order three-point inner analogue-difference formula. Since ui /∈
{ui+1, ui+2}, the formula u′i = 1

h (ui+2 − ui+1) is a first-order two-point outer
analogue-difference formula.

For the case of ui ∈ {uk|k ∈ Z+and k = j, j + 1, · · · , j + q − 1} in Definition 1,
that is, (2.5) is a inner analogue-difference formula, we have

Definition 2.2. When j = i, formula (2.5) is called a pth-order q-point forward
analogue-difference formula. When j = i − q + 1, (2.5) is called pth-order q-point
backward analogue-difference formula. In particular, when q is odd and j = i− q−1

2 ,
(2.5) is called pth-order q-point center analogue-difference formula.
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Example 2.2. u′i = 1
h (ui − ui−1) is a first-order two-point backward analogue-

difference formula, u′i = 1
h (ui+1 − ui) is a first-order two-point forward analogue-

difference formula, u′i = 1
2h (ui+1−ui−1) is a first-order three-point center analogue-

difference formula, and u
(4)
i = 1

h4 (ui−2 − 4ui−1 + 6ui − 4ui+1 + ui+2) is a fourth-
order five-point center analogue-difference formula.

It is easy to see that the pth-order q-point analogue-difference formula (2.5) can
be completely determined if p, q, j and i are given. In fact, if we omit the residues
Rm (m = 1, 2, · · · , q − 1) in (2.2), then we have


uj

uj+1

...

uj+q−1

 =


1 j − i · · · (j−i)q−1

(q−1)!

1 j − i+ 1 · · · (j−i+1)q−1

(q−1)!

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 j − i+ q − 1 · · · (j−i+q−1)q−1

(q−1)!




ui

hu′i
...

hq−1u
(q−1)
i

 . (2.6)

(2.5) shows that

(C0 C1 · · · Cq−1)


uj

uj+1

...

uj+q−1

 = hpu
(p)
i . (2.7)

By (2.6) and (2.7), we get

(C0 C1 · · · Cq−1)


1 j − i · · · (j−i)q−1

(q−1)!

1 j − i+ 1 · · · (j−i+1)q−1

(q−1)!

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 j − i+ q − 1 · · · (j−i+q−1)q−1

(q−1)!





ui
...

hpu
(p)
i

...

hq−1u
(q−1)
i



= (0 · · · 1 · · · 0)



ui
...

hpu
(p)
i

...

hq−1u
(q−1)
i


. (2.8)
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Hence,

(C0 C1 · · · Cq−1) = (0 · · · 1 · · · 0)


1 j − i · · · (j−i)q−1

(q−1)!

1 j − i+ 1 · · · (j−i+1)q−1

(q−1)!

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 j − i+ q − 1 · · · (j−i+q−1)q−1

(q−1)!



−1

,

(2.9)
which together with (2.5) may determine a pth-order q-point analogue-difference
formula.

Remark 1. Note that in formula (2.5), q ≥ p + 1. That is to say, pth-order
derivative needs at least p + 1 points to be represented. In addition, for a given
interval partition, the value of q is associated with the subscript of the starting
point j. When some items are absent, the corresponding coefficients are zero by
default, namely Ci = 0 for some i (i = 0, 1, · · · , q − 1).

Theorem 2.1. Assume that the function u(t) is sufficiently smooth, r is the order
of truncation error of the algorithm (2.5). Then,

r =

{
q − p, p is even, q is odd and j = i− q−1

2 ,

q − p− 1, others.
(2.10)

Proof. We know that by (2.2) and (2.4),

C0uj + C1uj+1 + C2uj+2 + · · ·+ Cq−1uj+q−1

=D0 · ui +D1 · hu′i + · · ·+Dq−1 · hq−1u
(q−1)
i +Dq · hqu(q)

i

+Dq+1 · hq+1u
(q+1)
i + · · · ,

(2.11)

where

Dk = (C0 C1 · · · Cq−1)



(j−i)k
k!

(j−i+1)k

k!

...

(j−i+q−1)k

k!

 . (2.12)

From (2.9), we have

D1 = D2 = · · · = Dp−1 = Dp+1 = · · · = Dq−1 = 0, Dp = 1.

The residue of (2.4) is

Rq = Dq · hqu(q)
i +Dq+1 · hq+1u

(q+1)
i + · · · . (2.13)
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Therefore, the truncation error of (2.5) is

Rq(ui) = u
(p)
i −

1

hp
(C0uj + C1uj+1 + · · ·+ Cq−1uj+q−1)

= u
(p)
i −

1

hp
(hpu

(p)
i +Rq)

= −Rq
hp

= −(Dq · hq−pu(q)
i +Dq+1 · hq−p+1u

(q+1)
i + · · · )

(2.14)

It is easy to know that Dq = 0 when p is even, q is odd and j = i − q−1
2 . In this

situation, the residue of (2.5) is

Rq(ui) = Dq+1 · hq−p+1u
(q+1)
i + o(hq−p+1). (2.15)

The above discussion finishes the proof.

Remark 2. Numerical simulation shows that for fixed p, q, i and j, an inner
analogue-difference formula behaviors better than a outer analogue-difference for-
mula, and among all inner analogue-difference formulas, a center analogue-difference
formula behaviors best. Therefore, we adopt inner analogue-difference formulas.

3. ADM for second-order BVP

In this section, we use 2th-order 5-point analogue-difference formula (say ADM
formula) to find numerical solution of BVP(1.1).

Rearrange BVP(1.1) as follows

−u′′ + q(t)u = f(t), a ≤ t ≤ b
u(a) = α,

u(b) = β,

u′′(a) = αq(a)− f(a),

u′′(b) = βq(b)− f(b),

(3.1)

and choose the 2th-order 5-point ADM formula

u′′i =
1

h2

4∑
k=0

Ckui−2+k, (2 ≤ i ≤ N − 2) (3.2)

where [C0 C1 C2 C3 C4] =

[
− 1

12

4

3
− 5

2

4

3
− 1

12

]
.

In order to assure the higher accuracy, we choose the 2th-order 6-point or 2nd-
order 7-point ADM formula at the boundary points t = a and t = b by

u
(p)
0 =

1

hp

q−1∑
k=0

Ckuk, (q = 6 or 7) (3.3)



512 X. Liu, J. Mu & W. Wang

and

u
(p)
N =

1

hp

q−1∑
k=0

CkuN−q+1+k, (q = 6 or 7) (3.4)

respectively. We say the method (3.2) together with (3.3)(q = 6) and (3.4)(q = 6)
ADM2, and (3.2) together with (3.3)(q = 7) and (3.4)(q = 7) ADM3. The value of
Ck is shown in the table below.

Table 1. Coefficient of ADM formula where q = 6

u
(p)
i C0 C1 C2 C3 C4 C5

u′0 − 137
60

5 −5 10
3

− 5
4

1
5

u′′0
15
4

− 77
6

107
6

−13 61
12

− 5
6

u′N − 1
5

5
4

− 10
3

5 −5 137
60

u′′N − 5
6

61
12

−13 107
6

− 77
6

15
4

Table 2. Coefficient of ADM formula where q = 7

u
(p)
i C0 C1 C2 C3 C4 C5 C6

u′0 − 49
20

6 − 15
2

20
3

− 15
4

6
5

− 1
6

u′′0
203
45

− 87
5

117
4

− 254
9

33
2

− 27
5

137
180

u′N
1
6

− 6
5

15
4

− 20
3

15
2

−6 49
20

u′′N
137
180

− 27
5

33
2

− 254
9

117
4

− 87
5

203
45

Remark 1. Note that if we take q = p + 1 in analogue-difference formula, then
the above methods are reduced to the classical finite difference methods. This is
an important reason that the method named as an analogue-difference method.
Throughout this article, Ck in ADM formula is just the coefficient of the corre-
sponding formula, which does not mean that it has the same value in different
formula.

Example 3.1. Consider the second-order boundary value problem{
u′′ + u′ = t, t ∈ [0, 1],

u(0) = 1, u′(1) + u(1) = 3
2 .

(3.5)

Rewrite (3.5) into the following problem

Lhui = u′′i + u′i = ti, (0 ≤ i ≤ N)

u(0) = u0 = 1,

u′(0) = u′0 = 0,

u′′(0) = u′′0 = 0,

u′(1) + u(1) = u′N + uN = 3
2 ,

u′′(1) + u′(1) = u′′N + u′N = 1.

(3.6)
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The analytical solution (AS for short) of (3.5) is u(t) = 1
2 t

2 − t + 2 − e−t. We
apply three methods FDM, ADM2 and ADM3 to obtain the numerical solutions
u1(t), u2(t) and u3(t), respectively. Take the step length h = 0.1. The numerical
simulation results shall be shown by Table 3, Table 4 and Figure 1.

Table 3. The value of numerical solutions and analytical solution

i ti
analytical solution numerical solution

u(ti) u1(ti) u2(ti) u3(ti)

0 0 1 1 1 1

1 0.1 1.00016258 1.00310212 1.00016407 1.00016259

2 0.2 1.00126925 1.00686119 1.00127197 1.00126927

3 0.3 1.00418178 1.01216701 1.00418562 1.00418183

4 0.4 1.00967995 1.01982466 1.00968483 1.00968003

5 0.5 1.01846934 1.03056253 1.01847516 1.01846943

6 0.6 1.03118836 1.04503965 1.03119505 1.03118845

7 0.7 1.04841470 1.06385228 1.04842219 1.04841478

8 0.8 1.07067104 1.08753990 1.07067926 1.07067111

9 0.9 1.09843034 1.11659061 1.09843921 1.09843040

10 1 1.13212056 1.15144601 1.13212972 1.13212061

0 0.2 0.4 0.6 0.8 1
t

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

u(
t)

AS
FDM

0 0.2 0.4 0.6 0.8 1
t

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

u(
t)

AS
ADM2

0 0.2 0.4 0.6 0.8 1
t

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

u(
t)

AS
ADM3

Figure 1. Numerical simulation image

Where AS (red curve) denotes the exact solution, and FDM, ADM2 and ADM3
(blue curves) denote the numerical solution curves corresponding to these three
methods.
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Table 4. Comparison result of three methods

i ti
truth value absolute errors

AS FDM ADM2 ADM3

0 0 1 1.7764e-15 3.1086e-15 6.7724e-15

1 0.1 1.0002 2.9395e-03 1.4871e-06 3.7319e-09

2 0.2 1.0013 5.5919e-03 2.7190e-06 2.4887e-08

3 0.3 1.0042 7.9852e-03 3.8420e-06 5.5645e-08

4 0.4 1.0097 1.0145e-02 4.8732e-06 7.5791e-08

5 0.5 1.0185 1.2093e-02 5.8204e-06 8.5964e-08

6 0.6 1.0312 1.3851e-02 6.6903e-06 8.7757e-08

7 0.7 1.0484 1.5438e-02 7.4889e-06 8.2667e-08

8 0.8 1.0707 1.6869e-02 8.2203e-06 7.2031e-08

9 0.9 1.0984 1.8160e-02 8.8687e-06 5.7591e-08

10 1 1.1321 1.9325e-02 9.1590e-06 4.8905e-08

It is clear that, for second-order boundary value problem, ADM2 and ADM3 are
better than FDM. In particular, ADM3 behaviours are much better than FDM. For
higher-order boundary value problem, especially for those with odd order derivative,
FDM has lower accuracy, and ADM can make up for this defect.

4. ADM for higher-order BVP

Consider pth-order linear boundary value problem

Lu = u(p) +

p∑
i=1

ai(t)u
(p−i) = f(t),

B(u) = η,

(4.1)

where ai(t), f(t) ∈ C[a, b],

B(u) =


B1(u)

B2(u)
...

Bp(u)

 , η =


η1

η2

...

ηp

 . (4.2)

Bi(u) =

m∑
k=0

p−1∑
j=0

bikju
(j)(αk), i = 1, 2, · · · , p, (4.3)

a = α0 < α1 < · · · < αm = b, (4.4)
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Theorem 4.1. [3] If BVP(4.1) has a unique solution, then

det


B1(α1) · · · B1(αm)

...
. . .

...

Bp(α1) · · · Bp(αm)

 6= 0. (4.5)

In this section, we always assume that problem (4.1) has a unique solution. We
still use the partition

a = t0 < t1 < · · · < ti < · · · < tN = b, (4.6)

where ti = a+ih, step size h = b−a
N , and αk ∈ {ti}, k = 1, 2, · · · ,m, i = 1, 2, · · · , N .

Choosing the proper p and q in the formula (2.5), we can obtain difference
equations corresponding to BVP (4.1) denoted by A1U = F1 and the difference
equations corresponding to boundary conditions B(u) = η denoted by A2U = F2,
furthermore, the numerical solution of the problem (4.1) can be found by solving
the following linear system:

AU = F, (4.7)

where

A =

A1

A2

 , U =


u0

u1

...

uN

 , F =

F1

F2

 . (4.8)

Note that rank(A) = rank(A1) + rank(A2), and rank(A1) is equals to the row
number of matrix (A1). It is easy to have the following results.

Theorem 4.2. If the linear system (4.7) has a unique solution, then

rank(A1) + rank(A2) = N + 1, (4.9)

where N = h(b− a).

Theorem 4.3. If the highest derivative u
(p)
i in equation (4.1) is expressed by pth-

order q-point ADM formula, then rank(A1) = N − q + 1.

We take the following example to illustrate the performance of our method
ADM.

Example 4.1. Consider the third-order BVP{
u′′′ + u′ = 2et, t ∈ [0, π],

u(0) = 3, u′(0) = 2, u(π) + u′′(π) = 2eπ + 1.
(4.10)

The problem (4.10) has an analytical solution

u(t) =
√

2 sin(t+
π

4
) + et + 1. (4.11)
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Rewrite the problem (4.10) as follows:

u′′′i + u′i = 2eti ,

u0 = u(0) = 3,

u′0 = u′(0) = 2,

uN + u′′N = u(π) + u′′(π) = 2eπ + 1,

u′′0 = u′′(0) = 0,

u′′′0 = u′′′(0) = 0.

(4.12)

By Theorem 1, we choose the ADM formula

u′′′i =
1

h3

5∑
k=0

Ckui−3+k(3 ≤ i ≤ N − 2), (4.13)

where [C0 C1 C2 C3 C4 C5] =

[
1

4
− 7

4

7

2
− 5

2

1

4

1

4

]
. Similar to the

second-order case, we take the formula at the boundary points as follows:
u′i = 1

h

∑3
k=0 Ckui−2+k, (2 ≤ i ≤ N − 1, ),

u
(p)
0 = 1

hp

∑5
k=0 Ckuk,

u
(p)
N = 1

hp

∑5
k=0 CkuN−q+1+k

(4.14)

The value of each Ck is shown in the table below.

Table 5. Coefficient of difference formula q = 6

u
(p)
i C0 C1 C2 C3 C4 C5

u′i
1
6

−1 1
2

1
3

- -

u′0 − 11
6

3 − 3
2

1
3

- -

u′′0
35
12

− 26
3

19
2

− 14
3

11
12

-

u′′N
11
12

− 14
3

19
2

− 26
3

35
12

-

u′′′0 − 17
4

71
4

− 59
2

49
2

− 41
4

7
4

or 
u′i = 1

h

∑4
k=0 Ckui−2+k, (2 ≤ i ≤ N − 2),

u
(p)
0 = 1

hp

∑6
k=0 Ckuk,

u
(p)
N = 1

hp

∑6
k=0 CkuN−q+1+k.

(4.15)

Table 6. Coefficient of difference formula q = 7

u
(p)
i C0 C1 C2 C3 C4 C5 C6

u′i
1
12

− 2
3

0 2
3

− 1
12

- -

u′0 − 25
12

4 −3 4
3

− 1
4

- -

u′′0
15
4

− 77
6

107
6

−13 61
12

− 5
6

-

u′′N − 5
6

61
12

−13 107
6

− 77
6

15
4

-

u′′′0 − 49
8

29 − 461
8

62 − 307
8

13 − 15
8
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The method (4.13) with (4.14) is denoted by ADM4, and (4.13) with (4.15) is
denoted by ADM5. Numerical simulation results are show as follows.

Table 7. The absolute error of FDM and ADM

i ti
truth value absolute errors

u(ti) FDM ADM4 ADM5

0 0 3 0 0 0

1 0.31416 3.62918 0.00086 0.00952 0.00167

2 0.62832 4.27126 0.82021 0.02413 0.00442

3 0.94248 4.96313 2.40801 0.04306 0.00831

4 1.25664 5.77366 4.62523 0.06487 0.01300

5 1.57080 6.81048 7.26145 0.08795 0.01793

6 1.88496 8.22810 10.04939 0.11066 0.02236

7 2.19911 10.23826 12.68681 0.13197 0.02539

8 2.51327 13.12405 14.86217 0.15018 0.02621

9 2.82743 17.25998 16.28102 0.16935 0.02305

10 3.14159 23.14069 16.69040 0.17322 0.01789
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Figure 2. Numerical simulation for (4.10)

Where AS, FDM, ADM3 and ADM4 have the similar meanings as in Figure 1. Note
that FDM behaviors so bad that we need to improve the accuracy of it by partition
refinement (see Figure 3). In Table 8, we apply the method FDM by choosing the
nodes t = k

5π (k = 1, 2, 3, 4) and different values of N . We can see clearly that the
error of the ADM (taking N = 10, see last column of Table 7) is less than the error
of the method FDM (taking N = 1000, see Table 8).
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Table 8. The absolute error of refined FDM

N t = 1
5
π t = 2

5
π t = 3

5
π t = 4

5
π

100 0.18401 0.72040 1.39287 1.92217

200 0.09987 0.37358 0.70978 0.96876

300 0.06835 0.25199 0.47602 0.64735

400 0.05193 0.19008 0.35806 0.48605

500 0.04187 0.15259 0.28695 0.38910

600 0.03507 0.12745 0.23940 0.32438

700 0.03017 0.10942 0.20536 0.27813

800 0.02647 0.09586 0.17980 0.24341

900 0.02358 0.08529 0.15990 0.21641

1000 0.02126 0.07681 0.14396 0.19479
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Figure 3. The simulation of refined FDM for different N

Next, we apply our proposed method ADM to the models of [1] and compare
ADM with the methods of [1].

Example 4.2. Consider fifth-order BVP,

u(5) + u = 4etcos(t) + 2et(1− sin(t)) + 5etsin(t), 0 ≤ t ≤ 1

u(0) = 1,

u(1) = e(1− sin(1)),

u′(0) = 0,

u′(1) = −e(cos(1) + sin(1)− 1),

u′′(0) = −1.

(4.16)

The analytical solution of (4.16) is u(t) = et(1− sin(t)).

For this fifth-order boundary value problem, we take the 5th-order 8-point ADM
formula to deal with the equation, and 5th-order 10-point ADM formula to deal with
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boundary points. We choose the ADM formula

u
(5)
i =

1

h5

7∑
k=0

Ckui−3+k, (3 ≤ i ≤ N − 4), (4.17)

where
[C0 C1 C2 C3 C4 C6 C7]

=

[
−1

6
− 1

3

9

2
− 35

3

85

6
− 9

17

6
− 1

3

]
.

Specific information of coefficient selection in ADM formula for boundary points
and comparison results of the methods presented in Table 9-Table 11 and Figure 4.

Table 9. Coefficient of ADM formula for (4.16)

u
(p)
i C0 C1 C2 C3 C4 C5 C6 C7 C8 C9

u′0 − 1836
649

9 -18 28 − 63
2

126
5

-14 36
7

− 9
8

1
9

u′′0
2553
395

− 4609
140

5869
70

− 6289
45

6499
40

− 265
2

6709
90

− 967
35

3407
560

− 761
1260

u
(5)
0 − 3013

144
7807
48

− 6787
12

13873
12

− 36769
24

32773
24

− 9823
12

3817
12

− 3487
48

1069
144

u′N − 1
9

9
8

− 36
7

14 − 126
5

63
2

-28 18 -9 1836
649

u
(5)
N − 1069

144
3487
48

− 3817
12

9823
12

− 32773
24

36769
24

− 13873
12

6787
12

− 7807
48

3013
144

Table 10. Analytical solution versus numerical solutions

N t AS ADM AST IPT SPQ

0 0 1 1 0.99023494 0.98016020 0.98322052

1 0.1 0.99483793 0.99483792 0.98453007 0.97395398 0.97709352

2 0.2 0.97874749 0.97874743 0.96831848 0.95767165 0.96076648

3 0.3 0.95094825 0.95094809 0.94111319 0.93112183 0.93396683

4 0.4 0.91088080 0.91088049 0.90249353 0.89402221 0.89637594

5 0.5 0.85828219 0.85828174 0.85218070 0.84607518 0.84770479

6 0.6 0.79327313 0.79327261 0.79012504 0.78705526 0.78778124

7 0.7 0.71645760 0.71645710 0.71660571 0.71690878 0.71664979

8 0.8 0.62903559 0.62903525 0.63234352 0.63586679 0.63468444

9 0.9 0.53292981 0.53292968 0.53862756 0.54457175 0.54271540

10 1 0.43092654 0.43092654 0.43745614 0.44421835 0.44216991
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Table 11. Analytical solution and the absolute errors

N t AS ADM AST IPT SPQ

0 0 1 7.8493e-14 9.7651e-03 1.9840e-02 1.6779e-02

1 0.1 0.99483793 8.9059e-09 1.0308e-02 2.0884e-02 1.7744e-02

2 0.2 0.97874749 6.0595e-08 1.0429e-02 2.1076e-02 1.7981e-02

3 0.3 0.95094825 1.6763e-07 9.8351e-03 1.9826e-02 1.6981e-02

4 0.4 0.91088080 3.1085e-07 8.3873e-03 1.6859e-02 1.4505e-02

5 0.5 0.85828219 4.4701e-07 6.1015e-03 1.2207e-02 1.0577e-02

6 0.6 0.79327313 5.2242e-07 3.1481e-03 6.2179e-03 5.4919e-03

7 0.7 0.71645760 4.9177e-07 1.4812e-04 4.5118e-04 1.9219e-04

8 0.8 0.62903559 3.4286e-07 3.3079e-03 6.8312e-03 5.6488e-03

9 0.9 0.53292981 1.2780e-07 5.6977e-03 1.1642e-02 9.7856e-03

10 1 0.43092654 0 6.5296e-03 1.3292e-02 1.1243e-02
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Figure 4. Numerical simulation image of four methods

Based on the above simulations, the image deviation of all methods in [1] caused
by the error is obvious. The accuracy of all methods of [1] has been improved
significantly. Similar to Example 4.2, we may use ADM to obtain the numerical
solutions of another two models of [1], which also show that our proposed method
ADM is more accurate than all three methods of [1]. Here, we omit the detailed
information.

5. Conclusion

The paper established a method so called an analogue-difference method (ADM)
to compute the numerical solutions for boundary value problems of higher-order
differential equations, which performs much better than the classical finite differ-
ence method (FDM), especially FDE for the problems with odd-order derivative.
This method can be a supplementary one to FDM. Numerical examples and results
illustrated the efficiency and applicability of the method, which also shows that the
proposed method has higher accuracy than those of [1] for induction motor models.
From the formula (2.5) and Theorem 1, one can see that the number q is bigger,
the truncation error is less. However, one can not use ADM to improve the order
of truncation error unlimitedly. This problem and the stability of ADM shall be
considered latter.
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