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Transversal Heteroclinic Bifurcation in Hybrid
Systems with Application to Linked Rocking

Blocks∗
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Abstract In this paper, we study heteroclinic bifurcation and the appearance
of chaos in time-perturbed piecewise smooth hybrid systems with discontinu-
ities on finitely many switching manifolds. The unperturbed system has a
heteroclinic orbit connecting hyperbolic saddles of the unperturbed system
that crosses every switching manifold transversally, possibly multiple times.
By applying a functional analytical method, we obtain a set of Melnikov func-
tions whose zeros correspond to the occurrence of chaos of the system. As
an application, we present an example of quasiperiodically excited piecewise
smooth system with impacts formed by two linked rocking blocks.
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1. Introduction

It is very important and interesting in the theory of dynamical systems to investigate
the occurrence of chaos. Common routes to chaos for smooth systems include
period-doubling, intermittency, torus bifurcation and homoclinic bifurcation [26,42].
In particular, for a periodically excited smooth system with a homoclinic orbit,
the perturbed stable and unstable manifolds intersect transversally under some
conditions, which implies the existence of Smale horseshoe chaos via Smale-Birkhoff
Homoclinic Theorem. The Melnikov method is a powerful analytical tool that can be
used to determine whether transversal homoclinic intersection occurs [19,25,26,40].

In recent years, with the development of science and technology, there have been
lots of works devoted to the study of bifurcation phenomena in piecewise smooth
(PWS) dynamical systems [9, 16, 19, 38, 39, 46]. This is because many problems
from real applications in fields such as mechanics, electrical engineering and control
theory are modelled by PWS systems. For such systems, a typical route to chaos is
through discontinuity-induced bifurcations, such as grazing, sliding, border-collision
and chattering [2, 9, 13,16,19,20,32,33,39,46].

In [15, 43], Chow, Rand and Shaw studied homoclinic bifurcations for a class
of periodically excited linear inverted pendulum. Their numerical results suggest
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that homoclinic bifurcation can also lead to chaotic motions for PWS systems. In
the last decades, many efforts have been made on extending the Melnikov method
established for smooth systems to PWS systems. To mention only a few of them,
see [2,3,14,18–20,22,31,36,45]. It is assumed in these works that the unperturbed
homoclinic or periodic orbit intersects the switching manifold transversally. In
[1, 4, 5, 7, 19], Battelli, Fečkan, Awrejcewicz et al. extended the Melnikov method
to sliding homoclinic bifurcation of general n-dimensional PWS systems. Grazing
homoclinic bifurcation for a periodically excited nonlinear inverted pendulum was
also studied in [17]. Calamai, Franca and Posṕı̌sil [12, 21] investigated homoclinic
bifurcations in PWS systems with the critical point lies on the switching manifold.
In particular, they proved that in this case, the existence of a transversal homoclinic
point does not imply chaos. In [4–8, 19], by using a functional analytical method,
Battelli and Fečkan proved rigorously that if a certain Melnikov function has a
simple zero, then under some recurrent conditions, a time-perturbed PWS system
with transversal or sliding homoclinic orbit behaves chaotically in the sense that
the system has a Smale-like horseshoe.

In 1988, Bertozzi extended the Smale-Birkhoff Homoclinic Theorem and the
Melnikov method, so they are applicable to heteroclinic bifurcations for smooth
systems [10]. It is natural to ask if the transversal intersections of the perturbed
stable and unstable manifolds of a heteroclinic orbit of PWS systems result in chaot-
ic motions. Unfortunately, the Heteroclinic Theorem of Berttozzi [10] requires the
corresponding Poincaré map to be differentiable. Thus, it cannot be applied to
PWS systems, because this condition is not satisfied by most of the PWS systems.
Nevertheless, the study of heteroclinic bifurcations in time-perturbed PWS systems
has attracted increasing attention. Heteroclinic bifurcations for models of periodi-
cally excited slender rigid blocks were studied in the works of Bruhn and Koch [11],
Hogan [28], Lenci and Rega in [34]. In [23], Granados, Hogan and Seara presented
the Melnikov method for heteroclinic and subharmonic bifurcations in a periodi-
cally excited piecewise planar Hamiltonian system with two zones. The Melnikov
method for heteroclinic bifurcations of a planar PWS system with impacts and of a
general planar PWS system with finitely many zones were developed in [35] and [44]
respectively. Although it is not rigorously proved, numerical simulations on con-
crete examples given in these works suggest that chaotic behavior can be resulted
from heteroclinic bifurcations in PWS systems.

Recently, by applying the aforementioned functional analytic method developed
by Battelli and Fečkan in [4–8,19], Li and Du [37] studied the appearance of chaos in
time-perturbed n-dimensional PWS systems with heteroclinic orbit. They derived
a set of Melnikov type functions whose zeros correspond to the occurrence of chaos
of the system. To reduce the complexity, they assumed that the switching manifolds
are supersurfaces intersecting at a connected (n− 2)-dimensional submanifold, the
unperturbed system has a hyperbolic saddle in each subregion and a heteroclinic
orbit connecting those saddles that crosses every switching manifold transversally
exactly once. However, in real applications, discontinuities of a PWS system may
occur on more complicated sets and impacts may occur, when the flow of the system
reaches the switching manifolds. Thus, it is necessary to extend the results obtained
in [37] to systems with other types of switching manifolds and other types of PWS
systems, for example, systems with impacts considered in [23,35].

The aim of this paper is to extend the results of [37] to more general systems,
namely n-dimensional time-perturbed PWS hybrid systems. We assume that the
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unperturbed system has an orbit connecting hyperbolic saddles of the unperturbed
system that crosses every switching manifold transversally. Comparing with the
work of [37], in this paper, we do not require that the switching manifolds inter-
sect each other, and we allow impacts occur when the flow of the system reaches
the switching manifold. Furthermore, the heteroclinic orbit may exit and enter a
subregion multiple times. Consequently, the heteroclinic orbit may connect mul-
tiple hyperbolic saddles in the same subregion. We obtain a set of Melnikov type
functions, and show that their zeros correspond to the occurrence of chaos of the
system. Obviously, the system considered in this paper is more general, and the
results obtained here can be applied to more general situations such as the ones
studied in [23,35].

As an application, in this paper, we study heteroclinic bifurcation and chaos for
quasiperiodically excited system consisting of two slender rocking blocks coupled
by a light spring. The slender rocking block model is an important PWS system
that can be widely used in earthquake engineering and robotics. The single block
model was first proposed by Housner in [30] and its dynamics have been extensively
investigated in the past. See, for example, [11, 23, 27, 28, 30]. In [24], Granados,
Hogan and Seara considered a periodically excited mechanical system consisting of
two slender rocking blocks coupled by a light spring. For simplicity, assume that
both blocks are identical. Under the assumption that on impact with the rigid base,
neither block loses energy, the Arnold diffusion of the system was studied in [24]. As
pointed out in [24], such a phenomenon can be seen as one possible mechanism for
block overturning. As in [24], we assume that both blocks are identical. However, we
assume that on impact with the rigid base, and both blocks lose energy. We further
assume that the system can be periodically or quasiperiodically excited, which is
more realistic, because many systems arising from real application are externally
excited by more than one frequencies. We show that the unperturbed system has
a transversal heteroclinic orbit. Then, we compute the corresponding Melnikov
functions and prove that the heteroclinic bifurcation of this four-dimensional system
results in chaos under certain conditions.

Our paper is organized as follows: In Section 2, we present some basic assump-
tions and the main result of the paper, namely Theorem 2.1. In Section 3, we
describe how to prove Theorem 2.1. In Section 4, we discuss chaotic behavior in
time-perturbed hybrid systems whose unperturbed system has a transversal het-
eroclinic orbit. In Section 5, we present an example of quasiperiodically excited
piecewise smooth system with impacts formed by two linked rocking blocks. Some
concluding remarks are given in Section 6.

2. Preliminaries

First, we introduce some notations. Let k, l be positive integers. For two col-
umn vectors v1, v2 ∈ Rk, 〈v1, v2〉 and |v1| are defined by 〈v1, v2〉 = vT1 v2 and
|v1| =

√
〈v1, v1〉 respectively. For a k × k real matrix A, ‖A‖ is defined by

‖A‖ = max|x|=1 |Ax|. The identity matrix of proper size is denoted by I. For

a given linear map L : Rk 7→ Rl, its range and kernel are denoted by RL and NL
respectively. To simplify notations, without causing confusions, as in [8], we use
the notation ‖ · ‖ for any norm on a Banach space X instead of notation like ‖ · ‖X .
The boundary and closure of a set E ⊂ Rk are denoted by ∂E and Ē respectively.
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The gradient of a smooth scalar function h : Rk 7→ R is denoted by ∇h, and the
divergence and the Jacobian matrix of a smooth map G : Rk 7→ Rk are denoted by
divG and DG respectively. Let `∞(Rk) be the Banach space:

`∞(Rk) =

{
{xj}j∈Z : xj ∈ Rk for j ∈ Z, sup

j∈Z
|xj | <∞

}
with the norm ‖{xj}j∈Z‖ = supj∈Z |xj |. Let

`∞1 (R) =

{
{αj}j∈Z ∈ `∞(R) : sup

j∈Z
|αj − αj−1| < 1

}
.

Then, `∞1 (R) is an open nonempty subset of `∞(R).
Let Ω ⊆ Rn (n ≥ 2) be an open disc in Rn and m ≥ 2 be an integer, J =

{1, 2, · · · ,m}. Assume that Ω is split into m disjoint open regions Ω1, Ω2, · · · , Ωm
by the discontinuity sets Cij = Ω̄i∩Ω̄j for 1 ≤ i < j ≤ m, where each Cij is either the
empty set, when Ω̄i ∩ Ω̄j = ∅, or a hypersurface given by Cij = {x ∈ Ω̄ : hij(x) = 0}
with hij ∈ C2(Ω̄,R), when Ω̄i ∩ Ω̄j 6= ∅.

For i ∈ J , let fi ∈ C2
b (Ω̄i,Rn), gi ∈ C2

b (Ω̄i × R × R,Rn), namely fi and gi
have uniformly bounded derivatives up to the second order on Ω̄i and Ω̄i × R× R,
respectively. Moreover, we assume that their second order derivatives are uniformly
continuous.

Now, we consider the following PWS system defined on Ω:

ẋ = fi(x) + εgi(x, t, ε), x ∈ Ω̄i, i ∈ J , (2.1)

plus a set of reset maps

x 7→ Rij(x, ε), x ∈ Cij , for 1 ≤ i < j ≤ m and Cij 6= ∅, (2.2)

where ε ∈ Λ := (−ε0, ε0) for some ε0 > 0, and for each 1 ≤ i < j ≤ m with Cij 6= ∅,
Rij ∈ C2

b (Rn × Λ,Rn), namely, Rij has uniformly bounded derivatives up to the
second order and its second order derivative is uniformly continuous. Furthermore,
we assume that Rij maps the set Cij back to itself for 1 ≤ i < j ≤ m. Obviously,
the reset maps (2.2) are the generalizations of the impact laws defined on impact
manifolds of an impact system.

In the sequel, we assume that Cij = Cji and Rij = Rji for 1 ≤ i < j ≤ m.
Let D1Rij(x, ε) and D2Rij(x, ε) be the derivatives of Rij(x, ε) with respect to the
variables x and ε respectively for (x, ε) ∈ Rn × Λ.

When ε = 0, the unperturbed system of (2.1-2.2) has the following form: ẋ = fi(x), x ∈ Ω̄i, i ∈ J ,

x 7→ Rij(x, 0), x ∈ Cij , for 1 ≤ i < j ≤ m and Cij 6= ∅.
(2.3)

Let the following assumptions hold:

(H1) System (2.3) has N (N ≥ 2) hyperbolic saddles p1, p2, · · · , pN such that,
there is a sequence i1, i2, · · · , iN ∈ J with pj ∈ Ωij and Cijij+1 6= ∅ for
j ∈ JN := {1, 2, · · · , N}, where for the rest of this paper, we always assume
that i0 = iN and iN+1 = i1.
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(H2) System (2.3) has a heteroclinic cycle Γ which consists of 2N branches Γsj =
{γsj (t) : t ∈ [0,+∞)} ⊂ Ωij , Γuj = {γuj (t) : t ∈ (−∞, 0]} ⊂ Ωij (j ∈ JN ) such
that

Γ =

N⋃
j=1

(
Γuj
⋃
{pj}

⋃
Γsj

)
,

where for each j ∈ JN , γu,sj (t) are solutions of (2.3) in Ωij , Γuj and Γsj+1

intersect Cijij+1
transversally at γuj (0) and γsj+1(0) ∈ Cijij+1

respectively with
Rijij+1

(γuj (0), 0) = γsj+1(0) ∈ Cijij+1
. Furthermore,

lim
t→+∞

γsj (t) = lim
t→−∞

γuj (t) = pj .

Figure 1. A heteroclinic cycle Γ of system (2.3) with n = 2, N = 8 and m = 7

A heteroclinic cycle Γ of system (2.3) with n = 2, N = 8 and m = 7 is shown
in Figure 1. As it can be seen from Figure 1 that, in this case, we have i1 = 1,
i2 = 2, i3 = 3, i4 = 7, i5 = 3, i6 = 4, i7 = 5, i8 = 6. Thus, the sequence i1,
i2, · · · , iN ∈ J is not necessarily strictly increasing. Consequently, each zone may
contain multiple saddles, the cycle Γ may cross a switching manifold transversally
multiple times. Referring to Figure 1, Ω3 contains two saddles p3 and p5, Γ crosses
C37 transversally twice. Here, we take γuj (0) and γsj+1(0) as the same point due to
the reset map Rijij+1

for j ∈ JN . Hence, the system considered in this paper is
more general than the one considered in [37]. Since (2.3) is autonomous without
loss of generality and for the sake of simplicity, we assume that for each of j ∈ JN ,
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the time at which γu,sj (t) reaches the corresponding switching manifold is t = 0 in
(H2).

For technical purposes, for each i ∈ J and j ∈ JN , we extend the domains for
γu,sj so that they are defined on R and extend the domains of fi and gi such that

fi ∈ C2
b (Rn,Rn), gi ∈ C2

b (Rn × R× R,Rn) and

sup {|fi(x)| : x ∈ Rn} ≤ 2 sup
{
|fi(x)| : x ∈ Ω̄i

}
,

sup
{
|gi(x, t, ε)| : (x, t, ε) ∈ Rn+2

}
≤ 2 sup

{
|gi(x, t, ε)| : (x, t, ε) ∈ Ω̄i × R× Λ

}
.

In the sequel, we use the same notations for the extend functions as the original
ones and assume that up to the second order all the derivatives of Rij and the
extended fi and gi are bounded, uniformly continuous. Those assumptions for the
extend functions have no effect on the results obtained in this paper, because only
the values of fi and gi for x in a compact neighborhood of Γ are needed.

Since for each j ∈ JN , pj is a hyperbolic saddle of (2.3) in Ωij , the linear
variational system

ẋ = Dfij (γsj (t))x, t ≥ −1 (2.4)

has an exponential dichotomy on [−1,+∞) with projection P sij , constant K and
exponent ρ > 0 such that

‖Xs
ij (t)P sij (Xs

ij (s))−1‖ ≤ Ke−ρ(t−s) for − 1 ≤ s ≤ t,

‖Xs
ij (t)(I − P sij )(Xs

ij (s))−1‖ ≤ Keρ(t−s) for − 1 ≤ t ≤ s,

where Xs
ij

(t) is the fundamental matrix solution of (2.4) with Xs
ij

(0) = I for t ∈
[−1,+∞). Similarly, for each j ∈ JN , the linear variational system

ẋ = Dfij (γuj (t))x, t ≤ 1 (2.5)

has an exponential dichotomy on (−∞, 1] with projection Puij , constant K and
exponent ρ > 0 such that

‖Xu
ij (t)Puij (Xu

ij (s))−1‖ ≤ Ke−ρ(t−s) for s ≤ t ≤ 1,

‖Xu
ij (t)(I − Puij )(Xu

ij (s))−1‖ ≤ Keρ(t−s) for t ≤ s ≤ 1,

where Xu
ij

(t) is the fundamental matrix solution of (2.5) with Xu
ij

(0) = I for t ∈
(−∞, 1]. Here, without loss of generality, we assume thatK and ρ of the dichotomies
on (−∞, 1] and [−1,+∞) for all j ∈ JN are the same.

For j ∈ JN , let Ruijij+1
: Rn 7→ Rn be the projection onto N∇hijij+1

(γuj (0))

along γ̇uj (0) and Rsijij+1
: Rn 7→ Rn be the projection onto N∇hijij+1(γsj+1(0))

along γ̇sj+1(0) and given by

Rsijij+1
w = w −

〈∇hijij+1
(γsj+1(0)), w〉

〈∇hijij+1
(γsj+1(0)), γ̇sj+1(0)〉

γ̇sj+1(0),

Ruijij+1
w = w −

〈∇hijij+1
(γuj (0)), w〉

〈∇hijij+1(γuj (0)), γ̇uj (0)〉
γ̇uj (0)

for w ∈ Rn. Let

Suj = NPuij ∩N∇hijij+1
(γuj (0)),
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Ssj = RP sij ∩N∇hij−1ij (γsj (0)),

S̃uj = D1Rijij+1
(γuj (0), 0)Suj .

Since dimSuj = dimNPuij−1, dimSsj = dimRP sij−1, we have dim
(
RP sij+1

+ S̃uj

)
≤

n− 1. We assume that

(H3) For each j ∈ JN , RP sij+1
+ S̃uj has codimension one in Rn.

Similar to that of [4,5,7,8,19], condition (H3) is a kind of nondegeneracy condi-
tion on Γ. By (H3), for each j ∈ JN , there is a unitary vector ψij ∈ (RP sij+1

+ S̃uj )⊥

such that

Rn = (RP sij+1
+ S̃uj )⊕ span(ψij ).

Let ψi1 , · · · , ψiN be fixed in the sequel.
Let Pij be the stable projection of the dichotomy of the linear system ẋ =

Dfij (pj)x for j ∈ JN . Let

P̃ sij (t) = Xs
ij (t)P sij (Xs

ij (t))−1, P̃uij (t) = Xu
ij (−t)Puij (Xu

ij (−t))−1.

Then, by a result in [41], we have

lim
t→∞

‖P̃u,sij
(t)− Pij‖ = 0, j ∈ JN .

Hence, there is a T � 1 such that for any t1, t2 ≥ T , we have

N P̃ sij+1
(t1)⊕RP̃uij (t2) = Rn, j ∈ JN . (2.6)

Again, here we assume that the values T for all j ∈ JN are the same, and let T be
fixed in the sequel.

For each j ∈ JN , define

Ψj(t) =

 ((Xs
ij+1

(t))−1)T (I − (P sij+1
)T )(Rsijij+1

)Tψij , t ≥ 0,

((Xu
ij

(t))−1)T (Puij )T (Ruijij+1
)T (D1Rijij+1(γuj (0), 0))Tψij , t ≤ 0.

(2.7)

For α ∈ R, let

Mu
j (α) =

∫ 0

−∞
ΨT
j (τ)gij (γuj (τ), τ + α, 0)dτ, (2.8)

Ms
j(α) =

∫ +∞

0

ΨT
j (τ)gij+1

(γsj+1(τ), τ + α, 0)dτ. (2.9)

We define the Melnikov functions by

Mj(α) = ψTijD2Rijij+1
(γuj (0), 0) +Mu

j (α) +Ms
j(α), (2.10)

Clearly, under our assumptions, Mu
j (α), Ms

j(α) and Mj(α) are all C2 functions.
Consider a planar PWS system as a special case, i.e., n = 2. For each j ∈ JN ,

define

βuij (t) = exp

(
−
∫ t

0

divfij (γuj (s))ds

)
,
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βsij (t) = exp

(
−
∫ t

0

divfij (γsj (s))ds

)
,

Fuij (t, α) = fij (γuj (t)) ∧ gij (γuj (t), t+ α, 0),

F sij (t, α) = fij (γsj (t)) ∧ gij (γsj (t), t+ α, 0).

Then, similar to the method in [37], we have the following explicit expressions for
the Melnikov functions Mj(α) for j ∈ JN :

Mj(α) = Πij+1

{
((fij+1(γsj+1(0)))⊥)TD2Rijij+1(γuj (0), 0)

+
〈(∇hijij+1(γuj (0)))⊥, (D1Rijij+1(γuj (0), 0))T (fij+1(γsj+1(0)))⊥〉

〈∇hijij+1
(γuj (0)), γ̇uj (0)〉

·
∫ 0

−∞
Fuij (τ, α)βuij (τ)dτ +

∫ +∞

0

F sij+1
(τ, α)βsij+1

(τ)dτ

}
,

where Πij = 1/|fij (γsj (0))|.
In this paper, we aim to investigate the chaotic behaviors of system (2.1) near

the heteroclinic orbit Γ. For this purpose, we need to look for the solution defined
on R of (2.1) that belongs to a small neighborhood of Γ. For this, we have the
following theorem, which is also the main result of this paper:

Theorem 2.1. Assume that for each i ∈ J , fi and gi are functions with uniformly
bounded derivatives upto the second order on Ω̄i and Ω̄i ×R2 respectively and their
second order derivatives are uniformly continuous. Suppose that the assumptions
(H1 − H3) hold. Then, for given constant c0 > 0, there exist constants δ0 >
0 and c1 > 0, such that for any δ with 0 < δ < δ0, there is a ε̄δ > 0 such
that for any ε with 0 < |ε| < ε̄δ, for any increasing sequence T = {Tk}k∈Z with
Tk+1−Tk > 1−2ρ−1 ln |ε| for any k ∈ Z such that, for j ∈ JN , k ∈ Z and for some
$0 = {α0

k}k∈Z ∈ `∞1 (R) with

Mj

(
T2Nk+2j + α0

Nk+j

)
= 0 and inf

k∈Z
|M′j

(
T2Nk+2j + α0

Nk+j

)
| > c0, (2.11)

there exists a unique sequence {αk(T , ε)}k∈Z := {αk}k∈Z ∈ `∞1 (R) with |αk(T , ε)−
α0
k| < c1|ε| for any k ∈ Z, and a unique solution x(t, T , ε) of system (2.1) such that

for any j ∈ JN and k ∈ Z,
(1) x(t, T , ε) ∈ Ωij for t ∈ (T2Nk+2j−2+αNk+j−1, T2Nk+2j+αNk+j), x(t±, T , ε) ∈

Cijij+1 with x(t+, T , ε) = Rijij+1(x(t−, T , ε), ε) for t = T2Nk+2j + αNk+j;
(2) let Jsjk = [T2Nk+2j−2 +αNk+j−1, T2Nk+2j−1 +αNk+j−1], Jujk = [T2Nk+2j−1 +

αNk+j−1, T2Nk+2j + αNk+j ], then we have

sup
t∈Js

jk

∣∣x(t, T , ε)− γsj (t− T2Nk+2j−2 − αNk+j−1)
∣∣ < δ,

sup
t∈Ju

jk

∣∣x(t, T , ε)− γuj (t− T2Nk+2j − αNk+j)
∣∣ < δ.

3. Proof of Theorem 2.1

In this section, we describe how to prove Theorem 2.1. For this purpose, we first
discuss the orbits close to the heteroclinic orbit Γ.
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Let {Tk}k∈Z be an increasing sequence with Tk+1−Tk ≥ T +1, where T is given
in Section 2. For j ∈ JN , define

P sij ,k = Xs
ij (T2Nk+2j−1 − T2Nk+2j−2 + 1)P sij (Xs

ij (T2Nk+2j−1 − T2Nk+2j−2 + 1))−1

= P̃ sij (T2Nk+2j−1 − T2Nk+2j−2 + 1),

Puij ,k = Xu
ij (T2Nk+2j−1 − T2Nk+2j − 1)Puij (Xu

ij (T2Nk+2j−1 − T2Nk+2j − 1))−1

= P̃uij (T2Nk+2j−1 − T2Nk+2j − 1).

Let δ > 0 be a positive number such that for any t ≥ 0 and j ∈ JN , the closed balls
B̄(γsj (t), δ) and B̄(γuj (−t), δ) are subsets of Ω. Let

Nij = sup
{
|gij (x, t, ε)| : (x, t, ε) ∈ Rn+2

}
,

N ′ij = sup

{∣∣∣∣∂gij∂x
(x, t, ε)

∣∣∣∣ : (x, t, ε) ∈ Rn+2

}
,

∆s
ij (δ) = sup

|x|≤δ
sup
t≥0

∣∣Dfij (x+ γsj (t))−Dfij (γsj (t))
∣∣ ,

∆u
ij (δ) = sup

|x|≤δ
sup
t≤0

∣∣Dfij (x+ γuj (t))−Dfij (γuj (t))
∣∣ .

By the results given in [4,5,7,8,19], we have the following two Propositions, which
show how to construct solutions near γuj (t) on [T2Nk+2j−1 +α−1, T2Nk+2j +α] and
solutions near γsj (t) on [T2Nk+2j−2 + α, T2Nk+2j−1 + α + 1] for j ∈ JN , k ∈ Z and
α ∈ R:

Proposition 3.1. Suppose that the assumptions (H1) and (H2) hold and j ∈ JN ,
k ∈ Z, α ∈ R. Let δ > 0 and (ξuij , ϕ

u
ij
, α, ε) ∈ NPuij ×RP

u
ij ,k
× R2 be such that

2K(|ξuij |+ |ϕ
u
ij |+ 2ρ−1Nij |ε|) ≤ δ, 4Kρ−1(∆u

ij (δ) +N ′ij |ε|) < 1.

Then, equation ẋ = fij (x) + εgij (x, t, ε) has a unique bounded solution xuij ,k(t) :=

xuij ,k(t, ξuij , ϕ
u
ij
, α, ε) on [T2Nk+2j−1+α−1, T2Nk+2j+α], which is C2 in (ξuij , ϕ

u
ij
, α, ε)

and satisfies:

|xuij ,k(t+ T2Nk+2j + α, ξuij , ϕ
u
ij , α, ε)− γ

u
j (t)| ≤ 2K(|ξuij |+ |ϕ

u
ij |+ 2ρ−1Nij |ε|) ≤ δ

for any t ∈ [T2Nk+2j−1 − T2Nk+2j − 1, 0] together with

Puijx
u
ij ,k(T2Nk+2j + α, ξuij , ϕ

u
ij , α, ε) = ξuij ,

Puij ,kx
u
ij ,k(T2Nk+2j−1 + α− 1, ξuij , ϕ

u
ij , α, ε) = ϕuij .

Moreover, xuij ,k(t+α, ξuij , ϕ
u
ij
, α, ε) and its derivatives with respect to (ξuij , ϕ

u
ij
, α, ε)

are also bounded in [T2Nk+2j−1−1, T2Nk+2j ] uniformly with respect to (ξuij , ϕ
u
ij
, α, ε)

and k ∈ Z, uniformly continuous in (ξuij , ϕ
u
ij
, α, ε) uniformly with respect to t ∈

[T2Nk+2j−1 − 1, T2Nk+2j ] and k ∈ Z, and satisfy:

∂xuij ,k

∂ξuij
(t+ α, 0, 0, α, 0) = Xu

ij (t− T2Nk+2j)(I − Puij ),

∂xuij ,k

∂ϕuij
(t+ α, 0, 0, α, 0) = Υu,1

kj (t, T2Nk+2j−1 − 1),
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∂xuij ,k

∂ε
(t+ α, 0, 0, α, 0) =

∫ t

T2Nk+2j−1−1

Υu,1
kj (t, τ)gujk(τ, α)dτ

−
∫ T2Nk+2j

t

Υu,2
kj (t, τ)gujk(τ, α)dτ,

where

gujk(τ, α) = gij (γuj (τ − T2Nk+2j), τ + α, 0),

Υu,1
kj (t, τ) = Xu

ij (t− T2Nk+2j)P
u
ij (Xu

ij (τ − T2Nk+2j))
−1,

Υu,2
kj (t, τ) = Xu

ij (t− T2Nk+2j)(I − Puij )(Xu
ij (τ − T2Nk+2j))

−1.

Proposition 3.2. Suppose that the assumptions (H1) and (H2) hold and j ∈ JN ,
k ∈ Z, α ∈ R. Let δ > 0 and (ξsij , ϕ

s
ij
, α, ε) ∈ RP sij ×NP

s
ij ,k
× R2 be such that

2K(|ξsij |+ |ϕ
s
ij |+ 2ρ−1Nij |ε|) ≤ δ, 4Kρ−1(∆s

ij (δ) +N ′ij |ε|) < 1.

Then, equation ẋ = fij (x) + εgij (x, t, ε) has a unique bounded solution xsij ,k(t) :=

xsij ,k(t, ξsij , ϕ
s
ij
, α, ε) on [T2Nk+2j−2+α, T2Nk+2j−1+α+1], which is C2 in (ξsij , ϕ

s
ij
, α, ε)

and satisfies:

|xsij ,k(T2Nk+2j−2 + α, ξsij , ϕ
s
ij , α, ε)− γ

s
j (t)| ≤ 2K(|ξsij |+ |ϕ

s
ij |+ 2ρ−1Nij |ε|) ≤ δ

for any t ∈ [0, T2Nk+2j−1 − T2Nk+2j−2 + 1] together with

P sijx
s
ij ,k(T2Nk+2j−2 + α, ξsij , ϕ

s
ij , α, ε) = ξsij ,

P sij ,kx
s
ij ,k(T2Nk+2j−1 + α+ 1, ξsij , ϕ

s
ij , α, ε) = ϕsij .

Moreover, xsij ,k(t+α, ξsij , ϕ
s
ij
, α, ε) and its derivatives with respect to (ξsij , ϕ

s
ij
, α, ε)

are also bounded in [T2Nk+2j−2, T2Nk+2j−1+1] uniformly with respect to (ξsij , ϕ
s
ij
, α, ε)

and k ∈ Z, uniformly continuous in (ξsij , ϕ
s
ij
, α, ε) uniformly with respect to t ∈

[T2Nk+2j−2, T2Nk+2j−1 + 1] and k ∈ Z, and satisfy:

∂xsij ,k

∂ξsij
(t+ α, 0, 0, α, 0) = Xs

ij (t− T2Nk+2j−2)P sij ,

∂xsij ,k

∂ϕsij
(t+ α, 0, 0, α, 0) = Υs,2

kj (t, T2Nk+2j−1 + 1),

∂xsij ,k

∂ε
(t+ α, 0, 0, α, 0) =

∫ t

T2Nk+2j−2

Υs,1
kj (t, τ)gsjk(τ, α)dτ

−
∫ T2Nk+2j−1+1

t

Υs,2
kj (t, τ)gsjk(τ, α)dτ,

where

gsjk(τ, α) = gij (γsj (τ − T2Nk+2j−2), τ + α, 0),

Υs,1
kj (t, τ) = Xs

ij (t− T2Nk+2j−2)P sij (Xs
ij (τ − T2Nk+2j−2))−1,

Υs,2
kj (t, τ) = Xs

ij (t− T2Nk+2j−2)(I − P sij )(Xs
ij (τ − T2Nk+2j−2))−1.
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Now, let

`∞n=
{{(

ϕui1,k, ϕ
s
i1,k, · · · , ϕ

u
iN ,k, ϕ

s
iN ,k, ξ

u
i1,k, ξ

s
i1,k, · · · , ξ

u
iN ,k, ξ

s
iN ,k

)}
k∈Z ∈ `

∞ (R4nN
)

:

ϕuij ,k ∈ RP
u
ij ,k, ϕ

s
ij ,k ∈ NP

s
ij ,k, ξ

u
ij ,k ∈ NP

u
ij , ξ

s
ij ,k ∈ RP

s
ij ,∀j ∈ JN , k ∈ Z

}
be the Banach space with the norm:

‖θ‖ = sup
k∈Z

max
j∈JN

{
|ϕuij ,k|, |ϕ

s
ij ,k|, |ξ

u
ij ,k|, |ξ

s
ij ,k|

}
for θ =

{(
ϕui1,k, ϕ

s
i1,k

, · · · , ϕuiN ,k, ϕ
s
iN ,k

, ξui1,k, ξ
s
i1,k

, · · · , ξuiN ,k, ξ
s
iN ,k

)}
k∈Z
∈ `∞n . Let

δ0 be the largest positive number such that for all j ∈ JN , the following is satisfied:

4Kρ−1

[
∆u,s
ij

(δ0) +
N ′ijρ

4KNij
δ0

]
≤ 1.

Let δ ∈ (0, δ0) and εδ = min
j∈JN

{
ρδ

8KNij

}
. For any ε ∈ (−εδ, εδ), define

`∞δ,ε =
{{(

ϕui1,k, ϕ
s
i1,k, · · · , ϕ

u
iN ,k, ϕ

s
iN ,k, ξ

u
i1,k, ξ

s
i1,k, · · · , ξ

u
iN ,k, ξ

s
iN ,k

)}
k∈Z ∈ `

∞
n :

2K(|ξu,sij ,k|+ |ϕ
u,s
ij ,k
|+ 2ρ−1Nij |ε|) ≤ δ, j ∈ JN , k ∈ Z

}
,

`∞δ =
{

(θ,$, ε) ∈ `∞δ,ε × `∞1 (R)× (−εδ, εδ)
}
.

Then, `∞δ,ε and `∞δ are open nonempty subsets of `∞n and `∞n ×`∞(R)×R respectively.

We assume that θ =
{(
ϕui1,k, ϕ

s
i1,k

, · · · , ϕuiN ,k, ϕ
s
iN ,k

, ξui1,k, ξ
s
i1,k

, · · · , ξuiN ,k, ξ
s
iN ,k

)}
k∈Z

,

$ = {αk}k∈Z for (θ,$, ε) ∈ `∞δ in the sequel.

Take an increasing sequence T = {Tk}k∈Z with Tk+1 − Tk > T + 1, where T
is as above. By Proposition 3.1 and Proposition 3.2, for (θ,$, ε) ∈ `∞δ and for
each j ∈ JN , we have solutions xuij ,k(t) = xuij ,k(t, ξuij ,k, ϕ

u
ij ,k

, αNk+j , ε), x
s
ij ,k

(t) =

xsij ,k(t, ξsij ,k, ϕ
s
ij ,k

, αNk+j−1, ε) of ẋ = fij (x) + εgij (x, t, ε) defined on [T2Nk+2j−1 +

αNk+j−1, T2Nk+2j +αNk+j ] and [T2Nk+2j−2 +αNk+j−1, T2Nk+2j−1 +αNk+j−1 +1]
respectively. Since for any k ∈ Z, Tk+1 − Tk > T + 1 > 1 and |αk+1 − αk| < 1, we
have

T2Nk+2j−1 + αNk+j − 1 < T2Nk+2j−1 + αNk+j−1 < T2Nk+2j + αNk+j .

Thus, both xuij ,k(t) and xsij ,k(t) are defined at the time t = T2Nk+2j−1 + αNk+j−1.

Hence, we can consider the following infinite set of equations for (θ,$, ε) ∈ `∞δ :

GT (θ,$, ε) = 0, (3.1)

where GT : `∞δ 7→ `∞(R2nN+2N ) is given by

GT (θ,$, ε) =
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

xsij ,k(T2Nk+2j−1 + αNk+j−1, ξ
s
ij ,k

, ϕsij ,k, αNk+j−1, ε)

−xuij ,k(T2Nk+2j−1 + αNk+j−1, ξ
u
ij ,k

, ϕuij ,k, αNk+j , ε)

xsij+1,k
(T2Nk+2j + αNk+j , ξ

s
ij+1,k

, ϕsij+1,k
, αNk+j , ε)

−Rijij+1
(xuij ,k(T2Nk+2j + αNk+j , ξ

u
ij ,k

, ϕuij ,k, αNk+j , ε), ε)

hij−1ij (xsij ,k(T2Nk+2j−2 + αNk+j−1, ξ
s
ij ,k

, ϕsij ,k, αNk+j−1, ε))

hijij+1
(xuij ,k(T2Nk+2j + αNk+j , ξ

u
ij ,k

, ϕuij ,k, αNk+j , ε))


j∈JN


k∈Z

.

Clearly, a solution (θ,$, ε) of equation (3.1) implies the existence of solutions
xuij ,k(t) and xsij ,k(t) as described above with

xuij ,k(T2Nk+2j−1 + αNk+j−1) = xsij ,k(T2Nk+2j−1 + αNk+j−1)

for each j ∈ JN , k ∈ Z. From which we can construct a solution x(t, θ,$, ε) of
system (2.1) near the heteroclinic orbit Γ by setting

x(t, θ,$, ε) =

xsij ,k(t), t ∈ [T2Nk+2j−2 + αNk+j−1, T2Nk+2j−1 + αNk+j−1),

xuij ,k(t), t ∈ [T2Nk+2j−1 + αNk+j−1, T2Nk+2j + αNk+j)

for j ∈ JN , k ∈ Z. Clearly, we have x(t+, θ,$, ε) = Rijij+1
(x(t−, θ,$, ε), ε) for

t = T2Nk+2j + αNk+j .
The rest of the proof of Theorem 2.1 is similar to the proof of Theorem 2.1 given

in [37]. We omit it here for the sake of brevity.

4. Chaotic behavior

In this section, we discuss chaotic behaviors of system (2.1). Let the following
assumption hold so that the conditions of Theorem 2.1 are satisfied:

(H4) For any ε with 0 < |ε| < ε̄δ, there is an increasing sequence T = {Tk}k∈Z
with Tk+1 − Tk > 1− 2ρ−1 ln |ε| for any k ∈ Z and a $0 = {α0

k}k∈Z ∈ `∞1 (R)
with ‖$0‖ < 1

2 such that (2.11) holds for each j ∈ JN .

Let E be the set of bi-infinite sequences of elements of S := {0, 1}. Then,
(E , d) is a totally disconnected compact metric space with the distance d(e, e′) of
e = {· · · e−l · · · e−1.e0 · · · el · · · }, e′ = {· · · e′−l · · · e′−l.e′0 · · · e′l · · · } ∈ E being given by

d(e, e′) =

∞∑
l=−∞

|el − e′l|
2|l|

,

where for any l ∈ Z, el, e
′
l ∈ S. The Bernoulli shift σ : E → E is defined as σ(e) =

{· · · e−l · · · e−1e0.e1 · · · el · · · } for e = {· · · e−l · · · e−1.e0 · · · el · · · } ∈ E . Then, σ is
a homeomorphism having (1) a countable infinity of periodic orbits of all possible
periods, (2) an uncountable infinity of nonperiodic orbits and (3) a dense orbit [19, p.
18].

Let T and $0 be as in (H4). For any e = {· · · e−l · · · e−1.e0 · · · el · · · } ∈ E , let
{nek}k be a fixed increasing sequence of integers such that el = 1, if and only if
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l = nek. Define T e = {T el }l∈Z and $e
0 = {α0e

l }l∈Z as

T el =



T2Nne
k
, if l = 2Nk,

T2Nne
k+1, if l = 2Nk + 1,

...

T2Nne
k+2N−1, if l = 2Nk + 2N − 1,

α0e
l = α0

ne
l
.

Similar to that of [37], we have the following result:

Theorem 4.1. Assume that for each i ∈ J , fi and gi are functions with uniformly
bounded derivatives upto the second order on Ω̄i and Ω̄i ×R2 respectively and their
second order derivatives are uniformly continuous. Suppose that the assumptions
(H1 − H4) hold. Let T , $0 be as in (H4) and T e, $e

0 be defined above. Then,
for any sufficiently small |ε| 6= 0 and for any e ∈ E, there is a unique sequence
{αel (T e, ε)}l∈Z := {αel }l∈Z ∈ `∞1 (R) with |αel − α0e

l | < c1|ε|, for any l ∈ Z and a
unique solution x(t, T , e, ε) of system (2.1), depending only on e and T , such that:

(1) If for both l = nek and l̄ = nek+1, el = el̄ = 1, then for any j ∈ JN ,

sup
t∈Je,s

jk

∣∣x(t, T , e, ε)− γsj (t− T e2Nk+2j−2 − αeNk+j−1)
∣∣ < δ,

sup
t∈Je,u

jk

∣∣x(t, T , e, ε)− γuj (t− T e2Nk+2j − αeNk+j)
∣∣ < δ,

where Je,sjk = [T e2Nk+2j−2 + αeNk+j−1, T
e
2Nk+2j−1 + αeNk+j−1], Je,ujk = [T e2Nk+2j−1 +

αeNk+j−1, T
e
2Nk+2j + αeNk+j ].

(2) If there is an integer k− such that ene
k−

= 1 and el = 0 for any l < nek− ,

then

sup
t∈Je,u

1k−

∣∣∣x(t, T e, ε)− γu1 (t− T e2Nk−+2 − αeNk−+1)
∣∣∣ < δ,

where Je,u1k−
= (−∞, T e2Nk−+2 + αeNk−+1].

(3) If there is an integer k+ such that ene
k+

= 1 and el = 0 for any l > nek+ , then

sup
t∈Je,s

1(k++1)

∣∣∣x(t, T , e, ε)− γs1(t− T e2N(k++1) − α
e
N(k++1))

∣∣∣ < δ.

where Je,s1(k++1) = [T e2N(k++1) + αeN(k++1),+∞).

(4) If e = 0, then for each j ∈ JN and sufficiently small |ε|, there is a unique
bounded solution defined on t ∈ R, denoted by xj(t, T , 0, ε), of system (2.1), such
that xj(t, T , 0, ε) ∈ Ωij for all t ∈ R and

sup
t∈R
|xj(t, T , 0, ε)− pj | < δ.

Furthermore, for l ∈ Z, x(t, T (l+1), σ(e), ε) = x(t, T (l), e, ε) for any t ∈ R and
e ∈ E, where T (l) = {Tk+2Nl}k∈Z.
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The proof of Theorem 4.1 is similar to the arguments given before Theorem 5.1
of [37]. Thus, we omit it for brevity.

For l ∈ Z, let Sl =
{
x(T2l, T (l), e, ε) : e ∈ E

}
⊂ Rn. Define the map Fl : Sl 7→

Sl+1, so that for ξ ∈ Sl, Fl(ξ) is the value at time T2l+1 of the solution x(t) of
(2.1) such that x(T2l) = ξ, i.e., Fl(ξ) = x(T2l+1). Let Φl : E 7→ Sl be defined as
Φl(e) = x(T2l, T (l), e, ε). Then, for each l ∈ Z, Sl is compact in Rn, Fl and Φl are
homeomorphisms. Moreover, we have the following result:

Theorem 4.2. Under the assumptions of Theorem 4.1, for any sufficiently small
|ε| > 0 and for any l ∈ Z, the commute diagram

E σ−−−−→ E

Φl

y yΦl+1

Sl
Fl−−−−→ Sl+1

holds. Furthermore, Φl : E 7→ Sl is a homeomorphism for any l ∈ Z.

Now, we assume that for all i ∈ J , gi(x, t, ε) are almost periodic or periodic in
t uniformly in (x, ε). It is easy to see that Theorems 6.1 and 6.2 given in [37] are
still true for system (2.1). Here, we omit them for brevity.

5. Application to linked rocking blocks

In this section, we consider heteroclinic bifurcation and chaos for a quasiperiodically
excited system consisting of two slender rocking blocks coupled by a light spring,
as is depicted in Figure 2. In [24], Granados, Hogan and Seara studied the Arnold
diffusion of this model, when it is periodically excited. They assumed that on
impact with the rigid base, and neither block loses energy. They pointed out that
the Arnold diffusion can be seen as one possible mechanism for block overturning.

The blocks are rigid, of mass m1 and m2 and with semi-diagonal of length R1

and R2 respectively. The base is sufficiently flat, so that the i-th block rotates
only about O

′

i for i = 1, 2. Let α1, α2 be the angles formed by the lateral sides
and the diagonals of the blocks. The state variables x1 and x3 are chosen so that
α1x1 and α2x3 are the angles formed by the vertical and the lateral side of each
block. When there is a rotation, x1 (respectively x3) is positive for rotation about
O1 (respectively O2) and x1 (respectively x3) is negative for rotation about O

′

1

(respectively O
′

2). For slender blocks, αi � 1 for i = 1, 2.
As in [24], we assume that both blocks are identical, namely m1 = m2 and

α1 = α2. However, we assume that on impact with the rigid base, and both blocks
lose energy.

Let x = (x1, x2, x3, x4)T ∈ R4, ha(x) = x1 and hb(x) = x3. Suppose that R4 is
divided into four disjoint open regions Ωi (i = 1, · · · , 4) by the super-surfaces C12,
C23, C34 and C41, where C12 = {x ∈ R4 : hb(x) = 0, x1 > 0}, C23 = {x ∈ R4 :
ha(x) = 0, x3 < 0}, C34 = {x ∈ R4 : hb(x) = 0, x1 < 0}, C41 = {x ∈ R4 : ha(x) =
0, x3 > 0}. Thus, Ω1 = {x ∈ R4 : x1 > 0, x3 > 0}, Ω2 = {x ∈ R4 : x1 > 0, x3 < 0},
Ω3 = {x ∈ R4 : x1 < 0, x3 < 0}, Ω4 = {x ∈ R4 : x1 < 0, x3 > 0}. According
to [24], the dimensionless form of this coupled two slender rigid blocks can be
modeled by

ẋ = fi(x) + εgi(x, t), x ∈ Ω̄i, i = 1, · · · , 4, (5.1)
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Figure 2. Two slender rocking blocks linked by a light spring

plus a set of reset maps

x 7→ Rij(x, ε), x ∈ Cij , for (i, j) ∈ {(1, 2), (2, 3), (3, 4), (4, 1)} , (5.2)

where for i = 1, · · · , 4,

gi(x, t) = %(x3 − x1)(0, 1, 0,−1)T − (σi1 sinω1t+ σi2 sinω2t)(0, 1, 0, 1)T .

Moreover,

f1(x) = (x2, x1 − 1, x4, x3 − 1)T ,

f2(x) = (x2, x1 − 1, x4, x3 + 1)T ,

f3(x) = (x2, x1 + 1, x4, x3 + 1)T ,

f4(x) = (x2, x1 + 1, x4, x3 − 1)T ,

R12(x, ε) = (x1, x2, 0, (1− εr)x4)T , for x = (x1, x2, 0, x4)T ∈ C12,

R23(x, ε) = (0, (1− εr)x2, x3, x4)T , for x = (0, x2, x3, x4)T ∈ C23.

R34 (respectively R41) has the same form as that for R12 (respectively R23) for
x ∈ C34 (respectively x ∈ C41). Here, ε% > 0 corresponds to the light spring
constant, 1− εr ∈ (0, 1] is the coefficient of restitution corresponding to the energy
loses of the blocks on impact with the rigid base, σi1, σi2 for i = 1, · · · , 4 and ω1,
ω2 are all positive constants.

When ε = 0, the unperturbed system of (5.1-5.2) has four hyperbolic saddles
p1 = (1, 0, 1, 0)T ∈ Ω1, p2 = (1, 0,−1, 0)T ∈ Ω2, p3 = (−1, 0,−1, 0)T ∈ Ω3 and
p4 = (−1, 0, 1, 0) ∈ Ω4. Corresponding to p1, the first (respectively second) block
is at the unstable rest position such that its diagonal is perpendicular to O1 (re-
spectively O2). Corresponding to p2, the first (respectively second) block is at the
unstable rest position such that its diagonal is perpendicular toO1 (respectivelyO

′

2).
Corresponding to p3, the first (respectively second) block is at the unstable rest posi-
tion such that its diagonal is perpendicular to O

′

1 (respectively O
′

2). Corresponding
to p4, the first (respectively second) block is at the unstable rest position such
that its diagonal is perpendicular to O

′

1 (respectively O2). The eigenvalues λij for
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i = 1, · · · , 4 and j = 1, · · · , 4 of the coefficient matrix of the linearized system of the
unperturbed system of (5.1-5.2) at pi are given by: λi1 = λi2 = 1, λi3 = λi4 = −1.
The unperturbed system of (5.1-5.2) has a heteroclinic cycle Γ, which consists of
eight branches Γsi := {γsi (t) : t ∈ [0,+∞)} ⊂ Ω̄i, Γui := {γui (t) : t ∈ (−∞, 0]} ⊂ Ω̄i
such that

Γ =

4⋃
i=1

(
Γsi
⋃
{pi}

⋃
Γui

)
,

where γu,si (t) are solutions of the unperturbed system of (5.1-5.2) given by

γu1 (t) = (1, 0, 1− et,−et)T , t ∈ (−∞, 0],

γs1(t) = (1− e−t, e−t, 1, 0)T , t ∈ [0,+∞),

γu2 (t) = (1− et,−et,−1, 0)T , t ∈ (−∞, 0],

γs2(t) = (1, 0,−1 + e−t,−e−t)T , t ∈ [0,+∞),

γu3 (t) = (−1, 0,−1 + et, et)T , t ∈ (−∞, 0],

γs3(t) = (−1 + e−t,−e−t,−1, 0)T , t ∈ [0,+∞),

γu4 (t) = (−1 + et, et, 1, 0)T , t ∈ (−∞, 0],

γs4(t) = (−1, 0, 1− e−t, e−t)T , t ∈ [0,+∞),

with

γ̇u1 (0) = (0, 0,−1,−1)T , γ̇s1(0) = (1,−1, 0, 0)T ,

γ̇u2 (0) = (−1,−1, 0, 0)T , γ̇s2(0) = (0, 0,−1, 1)T ,

γ̇u3 (0) = (0, 0, 1, 1)T , γ̇s3(0) = (−1, 1, 0, 0)T

γ̇u4 (0) = (1, 1, 0, 0)T , γ̇s4(0) = (0, 0, 1,−1)T .

Furthermore, we have ij = j for j = 1, · · · , 4, γu1 (0) = γs2(0) = (1, 0, 0,−1)T ∈
C12, γu2 (0) = γs3(0) = (0,−1,−1, 0)T ∈ C23, γu3 (0) = γs4(0) = (−1, 0, 0, 1)T ∈ C34,
γu4 (0) = γs1(0) = (0, 1, 1, 0)T ∈ C41. In the following, to simplify notations, ij is
written as j for j = 1, · · · , 4. Note that when ε = 0, all of the reset maps given
in (5.2) are identities. Hence, assumptions (H1) and (H2) are satisfied for system
(5.1-5.2). Since system (5.1-5.2) is of four dimensional, it is not possible to plot the
heteroclinic cycle Γ in the phase space.

We smoothly extend the right hand side functions of system (5.1) and γu,si (t)
for i = 1, · · · , 4, as is explained in Section 2. Let Ac be a 4× 4 matrix given by

Ac =


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 .

Then, the corresponding linear variational systems ẋ = Dfi(γ
u,s
i (t))x for i =

1, · · · , 4 are given by

ẋ = Dfi(γ
u,s
i (t))x = Acx, i = 1, · · · , 4, (5.3)
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where (5.3) is defined on [−1,+∞) for the superscript “s” and on (−∞, 1] for the
superscript “u”. For i = 1, · · · , 4, the fundamental matrix solutions Xu,s

i (t) with
Xu,s
i (0) = I of (5.3) are given by Xu,s

i (t) = X̃u,s
i (t)(X̃u,s

i (0))−1, where

X̃u,s
i (t) =


et 0 −e−t 0

et 0 e−t 0

0 et 0 −e−t

0 et 0 e−t

 , i = 1, · · · , 4.

Here, Xs
i (t) is defined on [−1,+∞) and Xu

i (t) is defined on (−∞, 1].

For each i = 1, · · · , 4, we found that Pu,si = X̃u,s
i (0)P̃u,si (X̃u,s

i (0))−1, where
P̃ui = P̃ si = diag(0, 0, 1, 1). Therefore,

NPui = span
{

(1, 1, 0, 0)T , (0, 0, 1, 1)T
}
,

RP si = span
{

(1,−1, 0, 0)T , (0, 0, 1,−1)T
}

for i = 1, · · · , 4. By direct computations, we have

S̃u1 = S̃u3 = span
{

(1, 1, 0, 0)T
}
, S̃u2 = S̃u4 = span

{
(0, 0, 1, 1)T

}
.

It is easy to see that for each i = 1, · · · , 4, D1Ri,i+1(mod 4)(γ
u
i (0), 0) : Sui → S̃ui is an

isomorphism, implying that dim(Sui ) = dim(S̃ui ). Thus, we codim(RP si+1(mod 4) +

S̃ui ) = 1 for i = 1, · · · , 4.

In summary, the unperturbed system of (5.1 - 5.2) has a heteroclinic orbit Γ
that satisfies assumptions (H1 - H3).

In the following we compute the Melnikov functions. The unitary vectors ψi ∈
(RP si+1(mod 4) + S̃ui )⊥ can be chosen as

ψ1 = ψ3 =
1√
2

(0, 0, 1, 1)T , ψ2 = ψ4 =
1√
2

(1, 1, 0, 0)T .

The projections Rui,i+1(mod 4)w, Rsi,i+1(mod 4)w for i = 1, · · · , 4 are given by

Ru12w = Ru34w = (w1, w2, 0, w4 − w3)T ,

Rs12w = Rs34w = (w1, w2, 0, w3 + w4)T ,

Ru23w = Ru41w = (0, w2 − w1, w3, w4)T ,

Rs23w = Rs41w = (0, w1 + w2, w3, w4)T ,

where w = (w1, w2, w3, w4)T ∈ R4. From (2.7), we obtain

ΨT
1 (t) = ΨT

3 (t) =

 1√
2
(0, 0, e−t, e−t), t ≥ 0,

1√
2
(0, 0,−et, et), t ≤ 0,

ΨT
2 (t) = ΨT

4 (t) =

 1√
2
(e−t, e−t, 0, 0), t ≥ 0,

1√
2
(−et, et, 0, 0), t ≤ 0.
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From (2.8 - 2.10), we have

M1(α) =
1√
2
r +
√

2%− 1√
2

2∑
i=1

H1i(ωi) sin(ωiα+ ϑ1i), (5.4)

M2(α) =
1√
2
r +

√
2

4
%− 1√

2

2∑
i=1

H2i(ωi) sin(ωiα+ ϑ2i), (5.5)

M3(α) = − 1√
2
r −
√

2%− 1√
2

2∑
i=1

H3i(ωi) sin(ωiα+ ϑ3i), (5.6)

M4(α) = − 1√
2
r +
√

2%− 1√
2

2∑
i=1

H4i(ωi) sin(ωiα+ ϑ4i), (5.7)

where for i = 1, 2 and j = 1, · · · , 4, Hji(ωi) =
√

(Ξsji(ωi))
2 + (Ξcji(ωi))

2, ϑji =

arctan(Ξcji(ωi)/Ξ
s
ji(ωi)) and

Ξc1i(ωi) =
ωi(σ2i − σ1i)

1 + ω2
i

, Ξs1i(ωi) =
σ1i + σ2i

1 + ω2
i

,

Ξc2i(ωi) =
ωi(σ3i − σ2i)

1 + ω2
i

, Ξs2i(ωi) =
σ2i + σ3i

1 + ω2
i

,

Ξc3i(ωi) =
ωi(σ4i − σ3i)

1 + ω2
i

, Ξs3i(ωi) =
σ3i + σ4i

1 + ω2
i

,

Ξc4i(ωi) =
ωi(σ1i − σ4i)

1 + ω2
i

, Ξs4i(ωi) =
σ1i + σ4i

1 + ω2
i

.

Now, we divide our discussion into the following two cases. In the following, we
assume that ε > 0. Hence, % > 0. We denote the set (0,+∞)× (0,+∞) by R2

+.
Case 1: System (5.1-5.2) is periodically excited.
Without lose of generality, we assume that σj1 6= 0 and σj2 = 0 for j = 1, · · · , 4.

It is easy to see that for all j = 1, · · · , 4,Mj(α) are all periodic of the same period
2π/ω1. From (5.4 - 5.7), we obtain that M1(α) = 0 has simple zeros, if and only if

r + 2% < H11(ω1) =
1

1 + ω2
1

√
(1 + ω2

1)(σ2
11 + σ2

21) + 2(1− ω2
1)σ11σ21. (5.8)

M2(α) = 0 has simple zeros, if and only if

r +
1

2
% < H21(ω1) =

1

1 + ω2
1

√
(1 + ω2

1)(σ2
21 + σ2

31) + 2(1− ω2
1)σ21σ31. (5.9)

M3(α) = 0 has simple zeros, if and only if

r + 2% < H31(ω1) =
1

1 + ω2
1

√
(1 + ω2

1)(σ2
31 + σ2

41) + 2(1− ω2
1)σ31σ41. (5.10)

M4(α) = 0 has simple zeros, if and only if

|r − 2%| < H41(ω1) =
1

1 + ω2
1

√
(1 + ω2

1)(σ2
11 + σ2

41) + 2(1− ω2
1)σ11σ41. (5.11)
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Figure 3. The shaded area represents the set Hp in the (r, %) parameter space.

When (5.8-5.11) are all satisfied, then each ofMj(α)(j = 1, · · · , 4) has exactly two
simple zeros in [0, 2π/ω1] and system (5.1-5.2) is chaotic for ε > 0 sufficiently small.

For example, take ω1 = 1, σ11 = 1, σ21 = 1.2, σ31 = 1.4 and σ41 = 0.7, then
(5.8 - 5.11) are all satisfied, if and only if (r, %) ∈ Hp, where

Hp =
{

(r, %) ∈ R2
+ : r + 2% <

√
1.22, |r − 2%| <

√
0.745

}
.

Please see the shaded area in Figure 3. Take (r, %) = (0.4, 0.2) ∈ Hp. Then,

M1(α) =
2
√

2

5
−
√

61

10
sin

(
α+ arctan

(
1

11

))
,

M2(α) =

√
2

4
−
√

170

10
sin

(
α+ arctan

(
1

13

))
,

M3(α) = −2
√

2

5
− 7
√

5

5
sin

(
α− arctan

(
2

21

))
,

M4(α) = −
√

298

10
sin

(
α+ arctan

(
3

17

))
.

Clearly, M1(α), M2(α), M3(α), M4(α) are all periodic functions of period 2π.
In [0, 2π], M1(α) has two simple zeros α11 ≈ 0.7193383634, α12 ≈ 2.240934516;
M2(α) has two simple zeros α21 ≈ 0.3167922441, α22 ≈ 2.671256627; M3(α) has
two simple zeros α31 ≈ 4.044399052, α32 ≈ 5.570282321; M4(α) has two simple
zeros α41 ≈ 2.966920455, α42 ≈ 6.108513108. Thus, system (5.1-5.2) is chaotic for
ε > 0 sufficiently small.

Case 2: System (5.1-5.2) is quasiperiodically excited.
In this case, ω1/ω2 is irrational and σj1σj2 6= 0 for j = 1, · · · , 4. Then, M1(α),

· · · , M4(α) are all quasiperiodic with fundamental frequencies ω1, ω2.
From (5.4-5.7), we obtain that when

r + 2% < H11(ω1) +H12(ω2). (5.12)
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M1(α) = 0 has simple zeros, when

r +
1

2
% < H21(ω1) +H22(ω2), (5.13)

M2(α) = 0 has simple zeros, when

r + 2% < H31(ω1) +H32(ω2). (5.14)

M3(α) = 0 has simple zeros, when

|r − 2%| < H41(ω1) +H42(ω2). (5.15)

M4(α) = 0 has simple zeros.

Figure 4. The shaded area represents the set Hqp in the (r, %) parameter space.

As a concrete example, take ω1 = 1, ω2 =
√

3, σ11 = 1.4, σ21 = 0.8, σ31 = 0.4,
σ41 = 1 and σ12 = 4, σ22 = 0.5, σ32 = 1.1, σ42 = 2. For this set of parameters, it is
easy to see that conditions (5.12 - 5.14) hold implies that (5.15) holds. Thus, (5.12
- 5.15) are all satisfied, if and only if (r, %) ∈ Hqp, where

Hqp =

{
(r, %) ∈ R2

+ : r + 2% <
2
√

58 +
√

301

20
, r +

1

2
% <

4
√

10 +
√

91

20

}
.

Please see the shaded area in Figure 4. Take (r, %) = (0.5, 0.1) ∈ Hqp. Then,

M1(α) =
7
√

2

20
−
√

65

10
sin

(
α− arctan

(
3

11

))
−
√

114

4
sin

(
√

3α− arctan

(
7
√

3

9

))
,

M2(α) =
11
√

2

40
−
√

5

5
sin

(
α− arctan

(
1

3

))



38 M. Zhou & Z. Du

−
√

181

40
sin

(
√

3α+ arctan

(
3
√

3

8

))
,

M3(α) = −7
√

2

20
− 1

5
sin

(
α+ arctan

(
3

7

))
−
√

602

40
sin

(
√

3α− arctan

(
9
√

3

31

))
,

M4(α) = − 3

10
−
√

6

5
sin

(
α+ arctan

(
1

6

))
−3 sin

(
√

3α− arctan

(
7
√

3

3

))
.

Clearly, M1(α), M2(α), M3(α), M4(α) are all quasi-periodic functions of fun-
damental frequencies ω1 = 1 and ω2 =

√
3. Hence, all of them have infinitely

many simple zeros. For example, in [0, 2π], M1(α) has four simple zeros α11 ≈
0.6289728376, α12 ≈ 2.427783136, α13 ≈ 4.942184708, α14 ≈ 5.251063458; M2(α)
has two simple zeros α21 ≈ 0.4539411143, α22 ≈ 1.531829215; M3(α) has four
simple zeros α31 ≈ 2.524171802, α32 ≈ 3.006146459, α33 ≈ 5.423432222, α34 ≈
6.099300212;M4(α) has three simple zeros α41 ≈ 2.524171802, α42 ≈ 3.006146459,
α43 ≈ 5.423432222. Thus, system (5.1-5.2) is chaotic for ε > 0 sufficiently small.

6. Concluding remarks

In this paper, we extended the results of [37] on transversal heteroclinic bifurcation
of PWS systems. Therefore, it is applicable to more general systems such as sys-
tems with more general types of switching manifolds and systems with impacts like
the ones considered in [23, 35]. More precisely, we studied heteroclinic bifurcation
and the appearance of chaos in n-dimensional time-perturbed PWS hybrid systems.
We assume that the unperturbed system has an orbit connecting hyperbolic sad-
dles of the unperturbed system that crosses every switching manifold transversally,
possibly multiple times. Unlike the systems considered in [37], we do not require
the switching manifolds intersect each other at a connected (n − 2)-dimensional
submanifold and impacts are also allowed. By applying the functional analytical
method developed by Battelli and Fečkan in [4–8,19], we obtained a set of Melnikov
type functions and show that their zeros correspond to the occurrence of chaos of
the system. Finally, we applied our results to a four-dimensional quasiperiodically
excited system with impacts formed by two linked rocking blocks.

Although there have been lots of works on homoclinic and heteroclinic bifurca-
tions and chaos of PWS systems so far, many problems still need to be solved. For
example, to the best of our knowledge, there are still no results on the study of
sliding or grazing heteroclinic orbits for PWS systems. It is worth mentioning that
in this paper, we assume that the switching manifolds of system (2.1-2.2) are all
of codimension-1. Recently, Hosham has investigated bifurcation of limit cycles in
PWS systems with the phase space being split into four regions that are separated
by codimension-2 manifolds in [29]. Then, it is natural to study homoclinic and het-
eroclinic bifurcations for such systems. In our future work, we plan to investigate
those problems, which are interesting and more difficult.
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