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Triple Positive Solutions for a Class of Fractional
Boundary Value Problem System*

Zhanbing Bai' and Dongmei Shi®'

Abstract In this paper, the solvability for the following fractional boundary
value problem system

t,’Uz(t),Dngr’Uz(t) , 0<t<l,

“DgLui(t) = fi )
(t,m(t),D(‘)‘jm(t)), 0<t<l,
(
(

“Dizuva(t) = fo
v1'(0) = bur (0), v1”(0) =0, “Dolv:

( o
UQI(O) = bvz (0), 'UQH(O

=a- CD0+1)1(77),
0

)=a- CDoiW(W):

is studied, wherea >0, -1 <5< 0,2< 01,02 <3,0<n<1,0< p1,p2 <1,
0< 6 <0, <1, f1, fo: [0,1] x RT x R — R" are continuous, CDg}rvl(t),
“D32 vy(t) are the Caputo fractional derivatives, and Djjiva(t), Df2vi(t) are
the Riemann-Liouville fractional derivatives. The fixed point theorem is used
to prove that there are three positive solutions to problems.

Keywords Fractional derivative, Boundary value problems, Fixed point the-
orem, Positive solutions.
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1. Introduction

Fractional calculus has been widely applied in abnormal diffusion, control, fluid me-
chanics, image processing characteristics and so on. Therefore, fractional differential
equations have captured our attention and gradually become an important model
to solve many practical problems. Scholars have studied the fractional boundary
value problem from the local problem to the nonlocal problem [2,7,9], from the non
resonance problem to the resonance problem [2], from the finite interval problem
to the infinite interval problem [1,5, 14], from the single equation [3,11,13] to the
system of equations [3,4,9] and so on. In particular, we note the studies as follows.

Qin and Jia [9] studied the single equation boundary value problems with Ca-
puto derivative

€D ult) = h(®)f(tu(t), 0<t<1, (L1)
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W/ (0) = bu(0), u”(0) =0, “Dfiu(l)=a- CD0+u(77) (1.2)

where 2 < a < 3, 0 < 1 < 1. The existence and multiplicity results are determined
by the use of the Krasnosel’skill fixed point theorem.

Su [10] studied the system of equation boundary value problem with Riemann-
Liouville fractional derivatives

Du(t) = f(t,v(t), D"v(t)), 0<t<I, (1.3)
DPu(t) = g(t,u(t), D u(t)), 0<t<1 (1.4)
u(0) = u(1) = v(0) =v(1) =0, (1.5)

where f, g: [0,1] x R x R — R are continuous functions, p, v > 0, 1 < o, 8 < 2,
a—v>1, 8—p>1. With the application of the Schauder fixed-point theorem,
some existence results are obtained.

Bai and Ge [3] studied the boundary value problems with containing derivatives
on the nonlinearity

() + f(t,x(t), 2’ (t) =0, 0<t<]l, (1.6)
xz(0) =z(1) =0, (1.7)

where f: [0,1] x [0,+00) x R — [0,400) is continuous. With fixed point index
theory, Bai established a new fixed point theorem in a cone. Imposing some growth
conditions on the nonlinearity, the above boundary value problems have three pos-
itive solutions. The interesting point is that the nonlinear term depends on the
derivative of the unknown function.

Inspired by the above pieces of literature, this paper mainly studies the system
of the functional boundary value problems

“DJivi(t) = fi(t,va(t), Dtoa(t)), 0<t<1, (1.8)
CDMQ( ) = f2( L(8), D2 i (1), 0<t<1, (1.9)
0 (0) = bur(0), v"(0) = DS (1) = a- Dy} v (n), (1.10)
0'(0) = bua(0),  ©"(0) =0, Dfua(1) =a- Dy’ va(n), (1.11)

Wherea>0,71<b<0,2<01,02§3,O<n<1,0<u1,p2§1,0<92§
61 <1 and an'~%I'(2 - 6,) < F(2 — 0). The functions fi, fo: [0,1] x RT x R —

RT are continuous, “DFL vy (t), “DF2va(t) are the Caputo fractional derivatives,

and Dy} va(t), Dyivi(t) are the Riemann-Liouville fractional derivatives. We will

prove that problems (1.8)-(1.11) have three positive solutions under some growth
conditions by using the fixed point theorem given in [3].

2. Preliminaries and lemmas

2.1. Theorem and lemma
Lemma 2.1 ( [9]). Given ¢; € L[0,1] (i=1, 2), the unique solution of the problem
“DTivi(t) =i(t), 0<t<l,i=12,
v;'(0) = bv;(0), v;"(0) =0, CD&_U,( )=a- CD0+UZ(77)
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18
1
— [ Gittopuito)is, (2.1)
0
where
[(51i(1—8)”i_91_1—a52( —sfi _92_1} 1+0t)+ (t_s o) 1, 0<s<min{p,t} <1
Gilts) = [51i(1— s)"ii@lfl—aégl( 3)01*02 1](1—1— bt), 0<t<s<n<l1
T 601 - ) (1 by 4 0<n<s<t<l
§1:(1 — 8)7 =N =11 + bt), 0 <max{n,t} <s<1
(2.2)
and

5 I(2 - 0,)0(2 — 65) .

YT b (o — 61) [an'—2T(2— 6,) — T(2 — 65)]’
I'(2—0,)T(2 - 63)

bF(CTZ — 02) [CLT]1702F(2 — 91) — F(2 — 92)} '

We call (G1,G2) the Green’s function of problems (1.8)-(1.11).
Lemma 2.2 ( [9]). The functions G;(t,s) (i=1, 2) defined by (2.2) satisfy
(1) Gi(t,s) € C([0,1] x [0,1]) ;

(2) Gi(t,s) >0 fort,s € (0,1);

(3) Gilt,5) < (13 + (1 — $)7 =7, for t,5 € [0,1];
(4) For s € [0,1], there holds

09 =

. Gi(t9) 2 [1430] (6 a1 - 7

te[1,3]

(5“7(1521)[14*%}7}

Corollary 2.1 ( [9]). Let ¢; = 5o,

> 0. For s €[0,1], there holds

inf Gi(t,s) > 6 sup Gi(t,s).
te[4,2] te[0,1]

Lemma 2.3 ( [10]). Define
= {v(t)| v(t) € C[0,1] , DE2o(t) € C[0,1]},
= {v(t)| v(t) € C[0,1] , Dfv(t) € C[0,1]},
equipped with the norms

vllv, = Jnax lu(t)] +tr€n[gb>§ |Dg3o(t)],

vllv, = Jnax lu(t)| +tgl[ax} |Dgo(t)].

Then, V1, |- Ivi), (Va, |l - |lvs) are two Banach spaces.
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Definition 2.1. ( [3]) Let E be a Banach space, K C E acone, H>0,1>¢>0
three constants. Assume v be a nonnegative continuous concave functional on the
cone K, and «, f: K — [0,+00) be two nonnegative convex functionals satisfying

[lv]] < Nmax{a(v), B(v)}, for (v1,v2) € K, (2.3)
where N is a positive real number, and
Q={veKlaw) <!, Blv)<H}# @, forl>0, H>0. (2.4)
Define bounded convex sets
K(a,l;8,H) ={z € K| a(z) < l,B(x) < H},
K(a,l;:8,H) = {z € K| a(z) <1, 8(z) < H},
K(ol; 8, Hyv,¢) = {w € K| a(z) <1, 8(z) < H,~(z) <c},
K(a,l;8,H;v,¢) = {z € K| a(z) <1,5(z) < H,y(z) < c}.

Lemma 2.4 ( [3]). Let E be a Banach space, K C E a cone and ly > d > k >
lih, >0, Hy > Hy > 0 be given constants. Assume that o, [ are nonnegative
continuous convez functionals on K, such that (2.3) and (2.4) are satisfied, and ~
is a monnegative continuous concave functional on K, such that v(z) < a(x) for
all x € K(a,ly; B, Hy). Let L : K(a,lo; 8, Hy) — K(a,lo; 3, Hs) be a completely
continuous operator. Suppose

(C){z € K(a,d; B, Hy; v, K)|y(x) > k} # @,y(La) > k, forx € K(a,d; 8, Ha; v, k);
(Co)a(Lx) < 1y, B(Lz) < Hy, for all x € K(a,ly; B, Hy);

(C3)y(Lx) >k, for all x € K(a,la; 8, Ha; 7y, k) with a(Lz) > d.

Then, L has at least three fized points x1, xo and x3 in K (o, lo; 3, Ho) such that

T € K(a7l1;ﬁaHl)7 T2 € {F(aa127/87H2777k)|7(x) > k}
and o o o
x5 € K(o,ly; 8, Ha) \ (K (a,la; 8, Ha; v, k) UK (v, 113 8, Hy)) -
For (v1,vq) € V1 x V3, let
[(v1, v2)[lvax vy = max {[Jv1 vy, [[va]lva }-

Evidently, (V4 x Va, || - [[vyxv,) is a Banach space.
Let
Klz{vleVl|v1(t)20}, KQZ{UQE‘/Q| Ug(t)ZO}.

Then, K = K71 x K> is a cone of the Banach space Vi x V5.
Consider a set of integral equations as follows:

{vl(t) - foi Gh(t,8) f1(s, va(s), DifLvg(s))ds
va(t) = [y Galt,s)fa(s,v1(s), D§7vi(s))ds.

Similar to [10], we can obtain that (vi,v2) € V4 X V4 is a solution of (1.8)-(1.11), if
and only if (vq,v9) is a solution of problem (2.5).
Define an integral operator L: V; x Vo — Vi x V5 by

Ly, v2)(t) =: (L1 (v1, v2)(8), L2 (v1,v2)(t))
= </ Gl(t7s)fl(s,vg(s),Dgivg(s))ds,/ Gg(t,s)fg(s,vl(s),ng_vl(s))ds>.
0 0

Then, the fixed point of operator L consists with the solution of (1.8)-(1.11).

(2.5)
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Lemma 2.5. L: K — K is completely continuous.
Proof. L is completely continuous, if and only if Ly and Lo are completely con-
tinuous. Therefore, we prove that Ly is completely continuous as follows.

The operator L : K — Ky is continuous on account of continuity and nonneg-
ativeness of G1(t,s) and f.

For Q C K be bounded, /i.e,, a positive real number N >0 can be foun/d
such that ||(vy,v2)|lvixv, < N, for (vi,v2) € Q. Thus, maxepoq) |v2(t)] < N,
maxe(o1) | Dhtva(t)] < N'. @(t) := fi(t, va(t), Dfiva(t)), Then,

|L1(v1,v2) ()] <

/O G (t, 5) 1 (5, vals), Dt vn(s))ds

1
SM*/ sup Gi(t,s)ds,
0 t€[0,1]

#i/o (t — s)7"2Ly(v1,v2)(s)ds

t(p_ g)-n2 [l
&[22 ([ ot s etar

57(8_7)%71 T)dT)ds
/0 s dlrdn)a

< ‘F(l_lfm) /0 t(tfs)*“rl(l +bg)ds- /O 1 51i(17)0i911¢(7)d¢<

1 t
71_‘(0‘ ~ ) /0 (t —7)7 i F2" (1) drds

‘LLQM*éu M*
T T(L—p2)  T(o;—p2)

"

where

M* = max |fi(t,u,v)| + 1.
t€[0,1],u€[0,N’],v€[0,N’]

Hence, L1(Q), Dy3 L1(Q) are bounded.

On the other hand, given € > 0, Gy(t,s), (t —s)7H271, (t — s)77#2~1 s uni-
formly continuous owing to the continuity of G1(t,s), (t —s)7H2=1 (t — s)oi—r2~1
on [0,1] x [0,1], i.e., for t1, ta € [0,1], t1 < ta, t2 —t1 < p, a positive real

o o r(i—
number p > 0 can be found such that |(ty —s)~271 — (t; — s) 77| < %,

|(t2 = s)7i 712t — (1 — )72t | < HGTH2E |Gy (b, 5) = Ga (b, 5)| < 7=, Thus,
for (v1,v2) € Q, we have

|L1(v1,v2)(t2) — L1(vi,v2)(t1)]

1
/O (G (b2, 5) — G (11, 8)] i (5, vals), DI va(s))ds
1
€ v
S /; W . M dS = £.

| D{2 Ly (v1,v2)(t2) — D2 Ly (v1,v2) ()]

<




Triple Positive Solutions for Boundary Value Problem System 459

t2 [(tg_s)—m—l—(tl—s)_l‘?_l](l-i-bS) . ! (1 — )T =1\ dr
[ i ds- [ 51 =m0 o(r)a

<

1 t2 L o
T #2)/t [(ta = 7)7 71270 — (ty — )72 g(r)dr
M*5y; [t e e
<|F o [ o s
M* t2 o o
...
=917y 7F¢

Hence, L1(2), Dy3 L1(Q) are equicontinuous.

By making use of the Arzela-Ascoli theorem, L1: K — K, is completely con-
tinuous. Similarly, there holds that Lo: K — Ks is completely continuous, too.
Hence, we obtain that L: K — K is completely continuous. O

3. Main results
For v = (v1,v9) € K, define the following functionals:

a(v) = afv,vg) = Jnax, lu1 ()] + Jnax, lva(t);

Bv) = B(v1,v2) = trél[éa)f] | Dbz vy (t)] + Iél[gx | Diva(t)] ;

v(v):v(vhvz):trﬁig]lvl(t)H H[llirg v2()];

11 € Z’Z]

(1+4b) (611 — adz1) (14 4b) (912 — adar) }

w mln{ 4 , p—y

M = min 1"1'511 1+512
(011 — adar) (1+ 3b) " (912 — adao) (1 + 30)

Theorem 3.1. Suppose there exist constants Hy > Hy > 0, lo > Mk > k > [ >
0 such that & < min {Mily, MyHy}, where My = min {;72=00s o=t d, 0, =

min { (5(11;0_1‘32(_21)51;12))’ (;Ti;(iléfﬁgﬁl)) }, the following assumptions hold:
(01=01)T(2—p2

(Al) fl(t,zl,l‘g) < min{Q&liill)ll’ 2(0’1—91+b611))H }

. oo —0
fa(t,z1,22) < mm{Q(é +1)lla (2(202 1215_3)653)H }
for (t,z1,22) € 0,1] X [0,11] x [~ Hl,Hl]

(A2) min{fi(t, z1,22), f2(t, 171,1‘2)} > k
for (t,21,2) € [3.3] [k, Mk] x [~ Hy, Ho;
(A3) fl(t JJ1,$2 < min {2?5111-?-11) 2, g(lalelgfj?bthﬂf))H }
oo—0 2
fa(t,z1,22) < mln{2(512+1) 2, 2(202 lgl_g_b(;f;l))H },
for (t,z1,22) € 0,1] x [0, 2] x [~ Ha, Ha];
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Then, the boundary value problems (1.8)-(1.11) have at least three positive solutions
(v11,v12), (v21,v22) and (vs1,vs2) satisfying

(v11,v12) € K(a,l1; 8, H1), (va1,v22) € {K(k,l2; 8, Ha; 7, k)| y(v1,v2) > k}
and
(vs1,v32) € K (a,l2; 8, Ha) \ (K (v, lo; 8, Ha; v, k) UK (o, 115 8, Hy)) -

Proof. For (v1,v2) € K(a,l2; 3, Hy), there are a(vy,vs) < la, B(v1,v2) < Ha, and
hypothesis (A3) implies

. S0 (01— 00)T(2 — pi2)
DI < A e Hy s
fu (& va(t), Diva(®)) < min { 2(011 + 1)l27 2oy — 6y +b6y1) S

. —0 (o9 — 01)T(2 — 1)
1 < g2 1 2 1
f2 (t,vl(t),Do+v1(t)) S mln{2<512+1)l2, 2(02 _91 +b512) H2 .

Consequently,

(0% (L(Ul, ’Ug)) = Oé(Ll(Ul, Ug), LQ(’Ul, ’U2))
= max |Lj(vy,v9)(t)] + tren[%,}i] | Lo (vy,v2) ()]

te[0,1]
1
— Dm
max, /O Gi(t, s)f1 (s,va(s), Dfiva(s)) ds
1
+ max / Ga(t,s) f2 (s,v1(s), DE2v1(s)) ds
tel0,1] | Jo

1
< max G1(t, s) f1 (s,v2(s), DyLva(s)) ds

0 tE[O 1]
/ max Ga(t,s) fa (s v1(s), Dgivl(s)) ds
o t€[0,1]

—Z 51 +1 /(511+1)(1 $)7 0 1ds

lg lo
=22,
y T TR
For (v1,v2) € K, there is L(v1,v2) € K. Hence,
B (L(u,v)) = B (L1(v1,v2), La(v1, v2))

= max |D”2L1(v1,vg |+ max |D Lg(vl,w)(t)|.
te[o 1]

On the other hand, we have

max |Dh* Ly (v, va)(t)|

te[0,1]
= 1—po !
e | (11 Ly (01, 02) ()
1 ¢ ,
< —_— t — *IJ«2L d
= et | T — jia) /0 (t = 8)7#2 Ly (v1, v2)(s)ds
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< max (01 —01) 1—M2)H2/ /3G1(87)dd‘
te(0,1] | 2(o1 — 01 + bd11) 0 0 s
_ —0,+b
S (o1 — 601)( ﬂ2)H2/ L s) ,01— 01+ 611ds‘
te[0,1] | 2(o1 — 01 + bd11) 0 01— b6
1
< —H,.
2
Similarly, we have
1
max | i Lo (v1,v2)(t)] < S He.

Hence,

B(L(v1,v2)) = fél[%)i | D2 Ly (v1,v2) ()] + ren[gﬂf | D Lo (v1,v2)(t)| < Ha.
Consequently, L : K(a,lg; 8, Hy) — K(a,la; 3, Hy). For the same reason, if (v1,vs) €
K(a,ly; 8, Hy), then hypothesis (A4;) yields

o1 — 0 o1 —0)T'(2 -

f1 (t,va2(t), DfLva(t)) < min{z((slll +11) L (2<101 _121 (+ béﬁQ))Hl}
As in the technique above, we reach L : K(a,l1; 3, H1) — K(a,l1; 3, H1). There-
fore, condition (C2) in Lemma 4 is satisfied.

To inspect condition (C1) in Lemma 4, we select (vi(t),v3(t)) = (£k, 2k) €
K(a, Mk; B, Hay; v, k), t € [0,1] and v (v}, v3) = Mk > k.

Therefore, {(v1,v2) € K(a, Mk; 3, Ha; 7, k)|y(v1.v2) > k} # @.

For (v1,v2) € K (o, Mk; B, Ha; 7, k), we have

v (L(v1,v2)) =7 (L1(v1,v2), La(v1,v2))
D[ﬂlins |1 (v1, v2)(t)] + fFlina] |La(v1,02)(¢)|

11 €11

/ Gi(t,s)f1 (s va(s), D0+v2( )) ds

= min
te(.4]
1
+ min / Ga(t,s) f2 (s,v1(s), DE2v1(s)) ds
te[1,2]1Jo
1
> n[nin | Gi(t,s)f1 (s,02(s), D va(s)) ds
0 te[$,3
1
+ min Gs(t, s) f2 (s,v1(s), DyZvi(s)) ds
0 te[§.3]
k(1+30) S 1
> % Z/ (5” — 0,621‘)(1 — S)Ui_el_lds
i=170
> E -w=k.
w

Therefore, condition (C1) in Lemma 4 is satisfied.
Assume that (v1,v2) € K(a,la; 8, Ho; 7y, k) with a (L(v1,v2)) > Mk. Then, we
have

v (L(v1,v2)) = v (L1(v1,v2), La(vi, v2))
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= min |Li(vy,v2)(t)|+ min |La(v1,v2)(t)]
te[1,3] te[1,3

1
/0 G1(t,s) f1 (s,v2(s), DELva(s)) ds

= min
te[1,3]
+ min / Ga(t, s) f2 (s,v1(s), Dh2vi(s)) ds
te[4,3]

1
> min Gy (t, s) f1 (s,v2(s), DyLva(s)) ds
0 t€[1.3]
1
+ min _Ga(t, s) f2 (s,v1(s), Dh2vi(s)) ds

0 t€[5.3]
> 1 ! G H1
> M ; trerlg)%] 1(t,8)f1 (s, v2(s), Diva(s)) ds
+ o7 max Gs(t, ) f2 (s,v1(s), Dy vi(s)) ds
o t€[0,1]
> Mtren[gui/ G1(t, ) f1 (s,v2(s), DfLva(s)) ds
+Mtren[6a>§/ Ga(t,s)f2 (s,v1(s), Dh2vi(s)) ds

fa(Ll,LQ)(UhUg) = %a (L(Ul,’Ug)) > k.

Therefore, condition (C3) in Lemma 4 is contented.
Hence, by Lemma 4, there are three solutions of the boundary value problems
(1.8)-(1.11) such that

(vi1,v12) € K(a, 1158, Hy), (va1,v22) € {F(O&lmﬁvHQ;%k)|’7(’U1aU2) > k}

and

(vs1,v32) € K(a,lo; 8, Ha) \ (K (a,l2; 8, Ha; v, k) UK (e, 1; 8, Hy)) -
O
Corollary 3.1. Suppose there are constants 0 < Hy < Hy < -+ < Hp,1, 0 <
L < ki < Mki < lo < ko < Mky < -+ < lp,, m € N, such that 4 <
min {Q1lj+1,Q2H;41} (1 < j <m —1), where Q1 = mm{2(611$1)7 2?51511)}

Q2 = min { (g(lglejgfﬁéﬁ";), (5(202916){4(31361/;1)) }, and the following assumptions hold:

: 01 (01 =0T (2—p2)
(A1) fi(tmr,22) < min { o1y, Goegi o i |

fg(t,l‘1,$2)) < min{ —6, l: (o2—01)T(2— #1)Hj}7

2(512-‘,—1) Jo 2(0’2—91+b612)
for (t,x1,22) € 0,1] x [0,1;] x [—Hj,Hj], 1<ji<m-1;
(A5) min{fi(t,21,22), fot,x1,72)} > 2,
fOT(t,l’h.%‘Q)E [4,4} [k‘ Mk] [ Hj+1,Hj+1], 1<5j<m-1;
Therefore, problems (1.8)-(1.11) admit at least 2m — 1 positive solutions.
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Proof. When m = 1, it follows from (A;) that L: K (a,l1; 8, Hy) — K(a,l1; 3, Hy)
C K(a,l1; 8, Hy) . By the Schauder fixed-point theorem, the boundary value prob-
lems (1.8)-(1.11) admit at least a fixed point (v11,v12) € K(a,ly;8, Hy). When
m = 2, it meets the conditions in the Theorem 3.1, and we can get at least three
positive solutions (ve1,vs1), (v31,v32), (va1,v42). By keeping on this manner, the
proof can be finished in an inductive way. O

4. Conclusions

By employing the fixed-point theorem, a class of fractional boundary value problem
systems (1.8)-(1.11) has at least three positive solutions on condition that (A;),
(A3) and (As) exist. Finally, a corollary of Theorem 1 has been drawn. In other
words, under conditions (A4) and (As), the boundary value problems (1.8)-(1.11)
have 2m — 1 positive solutions, which simply prove this corollary.
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