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Abstract In this paper, we give all the first integrals of the quintic systems
which have a uniform isochronous center, and use them to determine the qual-
itative behavior of the periodic solutions of their equivalent non-autonomous
systems. Meanwhile, we clearly describe the local phase portraits of singularity
at infinity.
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1. Introduction

Consider a planar polynomial differential system x′ = ax+ by +
∑∞
k=2 Pk(x, y),

y′ = cx+ dy +
∑∞
k=2Qk(x, y),

(1.1)

where Pk(x, y) and Qk(x, y) are real homogeneous polynomials in x and y of degree
k, which is an integer and greater than or equal to two.

Determining a singular point of a planar polynomial differential system to be a
center is called Poincaré center-focus problem, which has been exhaustively studied
in the last century, and it is closely related to the Hilbert 16th problem. Neverthe-
less, in spite of all efforts, there is no general method to solve this problem. Up
to now, only for quadratic systems and some special systems the center conditions
have been obtained [1, 2, 9, 12, 16, 18, 21, 22, 31]. Poincaré and Lyapunov [13] have
provided such criterion: The origin point of (1.1) (with a + d = 0, ad − bc > 0)
is a center, if and only if it possesses a nonconstant real analytic first integral in
a neighbourhood of the origin (or there is a nonzero analytic integrating factor in
a neighbourhood of the origin). However, in general, it is very difficult to find the
integrating factor or the first integral. As increasing difficulties are encountered in
the process of finding the central condition, some scholars have been trying to look
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for the conditions under which system (1.1) possesses a special center. The compo-
sition center has been discussed by Alwash and Lloyd [5,7] (see, for instance, [5,7]).
Discussions of isochronous centres [4,6,8] have recently been provided by Algaba [3],
Conti [14] and Villarini [25] as well as by Christopher and Devlin [11], these works
refer to a number of articles on the topic, and have mentioned systems such as (1.1).

From [19], we get that if a planar differential polynomial system x′ = X(x, y), y′ =
Y (x, y) of degree n has a center at the origin of coordinates, then this center is an
uniform isochronous, if and only if we carry out a linear change of variables and a
scaling of time, it can be written into the formx′ = −y + xP (x, y),

y′ = x+ yP (x, y),
(1.2)

where P =
∑n−1
k=1 Pk(x, y), and Pk(x, y) is a homogeneous polynomial in x and y of

degree k.
System (1.2) is called rigid system [1, 5]. For the rigid system (1.2) with P =

P1 +Pm or P = P2 +P2m, m is an arbitrary positive integer. In [1] and [29,30], the
authors used different methods to obtain the center conditions and point out that
this center is also a composition center and uniform isochronous center.

In [8, 13, 19, 20], the authors have discussed the center conditions and phase
portraits of system (1.2) with P (x, y) as a quadratic or a cubic polynomial. In this
paper, we shall be primarily concerned with the quintic system, which has the formx′ = −y + x(P2(x, y) + P4(x, y)),

y′ = x+ y(P2(x, y) + P4(x, y)),
(1.3)

where Pk =
∑
i+j=k pijx

iyj , (k = 2, 4), pij are real constants. First, we will give
the first integrals of this system, when it has a center at origin point. Secondly, we
shall establish some time-varying systems, which are equivalent (with the coinciding
reflecting function [23]) to (1.3), and we use this autonomous system to determine
the qualitative behavior of the periodic solutions of their equivalent non-autonomous
systems. Finally, we will describe the local phase portraits of singularity at infinity.

2. The first integral

In this section, we will apply the method of Darboux [10, 15, 17] to sufficiently
discover many algebraic integrals of system (1.3) and construct its first integrals .

Let f(x, y) ∈ C[x, y], f(x, y) not be identically zero. The algebraic curve f(x, y) =
0 is an invariant algebraic curve ( f(x, y) called algebraic integral) of the polynomial
system

x′ = X(x, y), y′ = Y (x, y), (2.1)

if for some polynomial h(x, y) ∈ C[x, y], we have

fx(x, y)X(x, y) + fy(x, y)Y (x, y) = h(x, y)f(x, y).

The polynomial h(x, y) is called the cofactor of the invariant algebraic curve f(x, y) =
0.
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If H(t, x, y) is a nonconstant analytic function and such that

Ht +HxX(x, y) +HyY (x, y) ≡ 0,

then H(t, x, y) is called the first integral of (2.1).
Suppose that fi(x, y)(i = 1, 2, ..m) are the independent algebraic integrals of

(2.1) and the cofactor of fi(x, y) is hi(x, y). If there is a set of constants ki(i =
1, 2, ...,m) that are not all zero, such that

∑m
i= kihi(x, y) ≡ 0, then the function

H = fk11 (x, y)fk22 (x, y)...fkmm (x, y) is the first integral of system (2.1).
For system (1.3), in [30], the center conditions are given in a particularly succinct

form and more elegantly and economically expressed as follows.

Lemma 2.1 ( [30]). Suppose that P2(x, y) 6= 0 . The origin point of system (1.3)
is a center, if and only if∫ 2π

0

P2(cos θ, sin θ)dθ = 0,

∫ 2π

0

(

∫ θ

0

P2(cos τ, sin τ)dτ)kP4(cos θ, sin θ)dθ = 0, (k = 0, 1, 2),

i.e.,

p20 + p02 = 0; (2.2)

p22 + 3(p40 + p04) = 0; (2.3)

p11(p04 − p40) + p20(p31 + p13) = 0; (2.4)

(p211 − 4p220)(p40 + p04)− p11p20(p31 − p13) = 0. (2.5)

Theorem 2.1. Suppose that P2 · P4 6= 0 and the conditions of Lemma 2.1 are
satisfied. Then, system (1.3) can be brought to the formx′ = −y + x2y(1 +Ax2 +By2),

y′ = x+ xy2(1 +Ax2 +By2),
(2.6)

where A and B are constants and A2 + B2 6= 0. Furthermore, the first integral of
system (2.6) is described in what follows.

Case 1. B −A = 1
4 ,

H1 =
x2 + y2

1 + 2Ax2 + 2By2
e

1
1+2Ax2+2By2 ;

Case 2. B −A > 1
4 ,

H2 =
(x2 + y2)2

B −A+Ax2 +By2 + (Ax2 +By2)2
e
−2√
σ1
arctan 1+2Ax2+2By2√

σ1 ;

Case 3. B −A < 1
4 and B −A 6= 0,

H3 =
(x2 + y2)2

B −A+Ax2 +By2 + (Ax2 +By2)2
(
2Ax2 + 2By2 + 1 +

√
−σ1

2Ax2 + 2By2 + 1−
√
−σ1

)
1√
−σ1 ;

Case 4. B = A,

H4 =
x2 + y2

1 +Ax2 +Ay2
e

1+y2

A(x2+y2) ,

where σ1 = 4(B −A)− 1.
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Proof. As P2 6= 0, p220 + p211 6= 0.
Case (a). p20 = 0, p11 6= 0. By conditions (2.2)–(2.5), it follow that p22 = p40 =

p04 = 0, and system (1.3) becomesx′ = −y + x2y(p11 + p31x
2 + p13y

2),

y′ = x+ y2x(p11 + p31x
2 + p13y

2).

Case (b). p20 6= 0, p11 = 0. Applying conditions (2.2)–(2.5), we get

p20 = p02 = 0, p22 = 0, p40 + p04 = 0, p31 = p13 = 0.

Applying the transformation: u = x− y, v = x+ y, system (1.3) changes intou′ = −v + u2v(p20 + 1
4 (2p40 − p31)u2 + 1

4 (2p40 + p31)v2),

v′ = u+ v2u(p20 + 1
4 (2p40 − p31)u2 + 1

4 (2p40 + p31)v2).

Case (c). p20 · p11 6= 0. Using conditions (2.2)–(2.5) and applying the transfor-

mation: u = x− δy, v = δx+ y, where δ =
−p11+

√
p211+4p220

2p20
, system (1.3) becomesu′ = −v + p20

δ u
2v(1 + Ǎu2 + B̌v2),

v′ = u+ p20
δ uv

2(1 + Ǎu2 + B̌v2),

where

Ǎ =
1

(1 + δ2)2
(p40 − p04 +

δ

p20
(p11(p40 + p04)− p20p31)),

B̌ =
1

(1 + δ2)2
(p40 − p04 −

δ

p20
(p11(p40 + p04) + p20p13)).

In summary, under condition (2.2)–(2.5), system (1.3) can be transformed into
the form u′ = −v + u2v(A0 +A1u

2 +A2v
2),

v′ = u+ uv2(A0 +A1u
2 +A2v

2)
(2.7)

with A0 6= 0. Without losing generality, we can assume that A0 > 0, as when
A0 < 0, by using t → −t, it ensures that A0 > 0. By applying the transformation
x =
√
A0u, y =

√
A0v, system (2.7) can be brought to the form of (2.6).

In order to integrate system (2.6), we use the method of Darboux [10, 15] to
sufficiently discover many algebraic integrals of system (2.6).

Case 1. B − A = 1
4 . It is not difficult to verify that system (2.6) has algebraic

integrals:

f1 = x2 + y2, f2 = 1 + 2Ax2 + 2By2, f3 = e
1

1+2Ax2+2By2 ,

and their co-factors are respectively

h1 = 2xy(1 +Ax2 +By2), h2 = xy(1 + 2Ax2 + 2By2), h3 = −xy,

and taking k1 = 1, k2 = −1, k3 = 1, which ensure that k1h1 + k2h2 + k3h3 ≡ 0.
Therefore, it follows that system (2.6) possesses the first integral H1.
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Case 2. B −A > 1
4 . System (2.6) has algebraic integrals:

f1 = x2+y2, f2 = B−A+Ax2+By2+(Ax2+By2)2, f3 = e
arctan 1√

σ1
(1+2Ax2+2By2)

and their co-factors are respectively

h1 = 2xy(1 +Ax2 +By2), h2 = 2xy(1 + 2Ax2 + 2By2), h3 =
√
σ1xy,

and taking k1 = 2, k2 = −1, k3 = − 2√
σ1
, we obtain k1h1 + k2h2 + k3h3 ≡ 0. Thus,

the function H2 is the first integral of system (2.6).
Case 3. B −A < 1

4 , B −A 6= 0. The system (2.6) has algebraic integrals:

f1 = x2 + y2, f2 = 1−
√
−σ1 + 2Ax2 + 2By2, f3 = 1 +

√
−σ1 + 2Ax2 + 2By2,

and their co-factors are respectively

h1 = 2xy(1+Ax2+By2), h2 = xy(1+
√
−σ1+2Ax2+2By2), h3 = xy(1−

√
−σ1+2Ax2+2By2),

and taking k1 = 2, k2 = −1 − 1√
−σ1

, k3 = −1 + 1√
−σ1

, which follow that k1h1 +

k2h2 + k3h3 ≡ 0. Thus, system (2.6) has the first integral H3.
Case 4. B = A. System (2.6) has algebraic integrals:

f1 = x2 + y2, f2 = 1 +Ax2 +Ay2, f3 = e
1+y2

x2+y2 ,

and their co-factors are respectively

h1 = 2xy(1 +Ax2 +Ay2), h2 = 2Axy(x2 + y2), h3 = −2Axy,

and taking k1 = 1, k2 = −1, k3 = 1
A , we have k1h1 + k2h2 + k3h3 ≡ 0. Therefore,

the function H4 is the first integral of system (2.6).
Remark 1. Obviously, H = arctan y

x−t = c is the first integral of system (1.3).
Thus, by Theorem 2.1, all the first integrals of (2.6) are known.

Similar to what have been mentioned above, we can get the following conclusions.

Theorem 2.2. If P4(x, y) ≡ 0, P2 6= 0 , then the origin point of system (1.3) is a
center, if and only if

p20 + p02 = 0,

and it can be brought to the formx′ = −y + x2y,

y′ = x+ xy2,
(2.8)

and its first integral is

H5 =
x2 + y2

1 + y2
.

Theorem 2.3. If P2(x, y) ≡ 0, P4 6= 0 , then the origin point of systemx′ = −y + xP4(x, y),

y′ = x+ yP4(x, y)
(2.9)
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is a center, if and only if
p22 + 3(p40 + p04) = 0,

and this system has the first integral:

H6 =
(x2 + y2)2

1 + 4xy(p40x2 − p04y2) + (p13 + p31)y4 + 2p31x2y2
.

3. Equivalence system

In this section, we will establish some time varying differential systems, which are
equivalent to the above autonomous differential systems (2.6), (2.8) and (2.9), by
which to determine the qualitative behaviors of the periodic solutions of their e-
quivalent time varying systems.

Now, we present some results and concepts necessary to our study.
Consider the differential system

x′ = X(t, x), (3.1)

which has a continuously differentiable right-hand side and general solution φ(t; t0, x0).

Definition 3.1 ( [23]). For system (3.1), F (t, x) := φ(−t; t, x) is called its reflecting
function.

By [23], we see that a differentiable function F (t, x) is a reflecting function of
system (3.1), if and only if it is a solution of the Cauchy problem

Ft + FxX(t, x) +X(−t, F ) = 0, F (0, x) = x.

If system (3.1) is 2ω-periodic with respect to t, F (t, x) is its reflecting function,
then T (x) := F (−ω, x) = φ(ω;−ω, x) is the Poincaré mapping of (3.1) over the
period [−ω, ω]. Thus, the solution x = φ(t;−ω, x0) of (3.1) defined on [−ω, ω] is
2ω-periodic, if and only if x0 is a fixed point of T (x).

Definition 3.2 ( [23]). If the reflecting functions of two differential systems are
coincident in their common domain, then these systems are said to be equivalent.

All the equivalent 2ω-periodic systems have a common Poincaré mapping over
the period [−ω, ω], and the qualitative behavior of the periodic solutions of these
equivalent systems are the same. By this, we can study the qualitative behavior of
the solutions of a complicated system by using a simple differential system. Unfor-
tunately, in general, it is very difficult to find out the reflecting function of (3.1).
How to judge whether the two systems are equivalent when we do not know their
reflecting function? This is a very important and interesting problem. In [23, 24],
Mironenko has studied the problem and obtained some valuable and interesting
conclusions.

In [24], the author provided a useful criterion for the equivalence of two equa-
tions. Afterwards, this conclusion has been generalized by [31].

Lemma 3.1 ( [24,31]). If the vector function ∆i(t, x) is a solution of the equation

∆t(t, x) + ∆xX(t, x)−Xx(t, x)∆(t, x) = 0, (3.2)
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then system (3.1) is equivalent to system

x′ = X(t, x) +

m∑
i=1

αi(t,H(t, x, y))∆i(t, x), (3.3)

where αi(t,H(t, x, y)) is an arbitrary differentiable scalar function and αi(t,H(t, x, y))+
αi(−t,H(t, x, y)) = 0, H(t, x, y) is a first integral of (3.1).

In addition, if systems (3.1) and (3.3) are 2ω-periodic with respect to t, then
the qualitative behavior of their 2ω-periodic solutions are the same.

Remark 2. If X(t, 0) = 0, the zero solution x = 0 (i.e., origin point) of (3.1) is
called a center, if there exists an open neighborhood U of x = 0, for every x0 ∈ U
the solution x = φ(t; t0, x0) through x0 is periodic.

Theorem 3.1. System (2.6) is equivalent to systemx′ = −y + x2y(1 +Ax2 +By2) + xα(t,H)(B −A+Ax2 +By2 + (Ax2 +By2)2),

y′ = x+ xy2(1 +Ax2 +By2) + yα(t,H)(B −A+Ax2 +By2 + (Ax2 +By2)2),

(3.4)
where α(t,H(x, y)) is an arbitrary differentiable scalar function and such that
α(t,H) + α(−t,H) = 0, H is the first integral of system (2.6), i.e., H = Hi(i =
1, 2, 3), corresponding to B −A = 1

4 , B −A > 1/4, B −A < 1/4 respectively.
Furthermore, if α(t+ 2π,H) = α(t,H), then the origin point of system (3.4) is

a center, too.

Proof. It is not difficult to verify that the function

∆ = (x(B−A+Ax2+By2+(Ax2+By2)2), y(B−A+Ax2+By2+(Ax2+By2)2))T

is a solution of the equation (3.2) with X = (−y+x2y(1 +Ax2 +By2), x+ y2x(1 +
Ax2 + By2))T . By Lemma 3.1, we see that the system (2.6) is equivalent to (3.4).
In view of Lemma 2.1, the origin point of (2.6) is a center. Thus, the zero solution
x = 0, y = 0 of system (3.4) is a center, too.

Theorem 3.2. If A 6= 0, then the differential systemx′ = −y + x2y(1 +Ax2 +Ay2),

y′ = x+ xy2(1 +Ax2 +Ay2).
(3.5)

is equivalent to systemx′ = −y + x2y(1 +Ax2 +Ay2) + α1(t,H4)∆11 + xα2(t,H4)(x2 + y2)(1 +Ax2 +Ay2),

y′ = x+ xy2(1 +Ax2 +Ay2) + α(t,H4)∆21 + yα2(t,H4)(x2 + y2)(1 +Ax2 +Ay2),

(3.6)
where

∆11 = c1y + x(1 +A(x2 + y2))ϕ,

∆21 = −c1x+ y(1 +A(x2 + y2))ϕ,

ϕ = β1(t)x2 + β2(t)xy + β3(t)y2,

β1 = c2+c3 cos 2t+c4 sin 2t, β2 = −c1+2c3 sin 2t−2c4 cos 2t, β3 = c2−c3 cos 2t−c4 sin 2t,
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where ci(i = 1, 2, ..., 4) are arbitrary constants, αi(t,H4)) (i = 1, 2) are arbitrary
differentiable scalar functions and such that αi(t,H4) + αi(−t,H4) = 0 (i = 1, 2),
H4 is the same as it in Theorem 2.1.

Furthermore, if αi(t + 2π,H4) = αi(t,H4) (i = 1, 2), then the origin point of
system (3.6) is a center, too.

Proof. By checking, we see that the functions ∆1 = (∆11,∆21)T , ∆2 = (x(x2 +
y2)(1 +Ax2 +Ay2), y(x2 + y2)(1 +Ax2 +Ay2))T are the solutions of the equation
(3.2) with X = (−y + x2y(1 +Ax2 +Ay2), x+ y2x(1 +Ax2 +Ay2))T . Further, by
using Lemma 2.1 and Lemma 3.1, it follows that system (3.5) and system (3.6) are
equivalent, and the origin point of system (3.6) is a center, too.

Similar to the above, we can get the following conclusions.

Theorem 3.3. System (2.8) is equivalent to systemx′ = −y + x2y + α1x(1 + y2) + α2x(x2 − 1) + α3x(x2 + y2) + α4(c1y + xϕ),

y′ = x+ xy2 + α1y(1 + y2) + α2y(x2 − 1) + α3y(x2 + y2) + α4(−c1x+ yϕ),

(3.7)
where c1 is an arbitrary constant, αi = αi(t,H5) (i = 1, 2, 3, 4) are arbitrary differ-
entiable scalar functions and such that αi(t,H5)+αi(−t,H5) = 0 (i = 1, 2, 3, 4), H5

is the same as it in Theorem 2.2 and ϕ is the same as it in Theorem 3.2.
Furthermore, if αi(t + 2π,H5) = αi(t,H5) (i = 1, 2, 3, 4), then the origin point

of system (3.7) is a center, too.

Theorem 3.4. Suppose that 3(p40+p04)+p22 = 0. Then, system (2.9) is equivalent
to system x′ = −y + xP4(x, y) + α1(t,H6)∆11 + xα2(t,H6)(x2 + y2)2,

y′ = x+ yP4(x, y) + α1(t,H6)∆12 + yα2(t,H6)(x2 + y2)2,
(3.8)

where ∆11 = xψ, ∆12 = yψ, ψ = 1 + 4xy(p40x
2− p04y2) + (p13 + p31)y4 + 2p31x

2y2,
αi(t,H6)) (i = 1, 2) are arbitrary differentiable scalar functions and αi(t,H6) +
αi(−t,H6) = 0 (i = 1, 2), H6 is the same as it in Theorem 2.3.

In addition, if αi(t + 2π,H6) = αi(t,H6) (i = 1, 2), then the origin point of
system (3.8) is a center, too.

Remark 3. By the above theorems, we see that if the origin point of a au-
tonomous system is a center. Then, the origin point of all its equivalent non-
autonomous systems is a center, too.

4. Infinite singular points

In this section, we will discuss the qualitative behavior of the infinite singular point
of the above quintic system. First, we present a lemma necessary to our research.

Let O(0, 0) be an isolated singular point of the system of the formx′ = y + P (x, y),

y′ = Q(x, y),
(4.1)
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where P (x, y) and Q(x, y) are analytic in a neighborhood U(%,O) (0 < %� 1) and
also P (0, 0) = Q(0, 0) = Px(0, 0) = Py(0, 0) = Qx(0, 0) = Qy(0, 0) = 0.

Lemma 4.1 ( [17,26]). If there is a reversible topological transformation in U(%,O),
by this, system (4.1) can be brought to the formx′ = y,

y′ = akx
k(1 + g1(x)) + bnx

ny(1 + g2(x)) + y2G(x, y),
(4.2)

where g1(x), g2(x), G(x, y) are analytic in U(%,O) and g1(0) = g2(0) = G(0, 0) = 0,
k = 2m+ 1(m ≥ 1), λ := b2n + 4(m+ 1)a2m+1.

1̇. If a2m+1 > 0, then O(0, 0) is a saddle;
2̇. If a2m+1 < 0, bn = 0, then O(0, 0) is a center of focus;
3̇. If a2m+1 < 0, bn 6= 0, n > m or m = n and λ < 0, then O(0, 0) is a center of

focus;
4̇. If a2m+1 < 0, bn 6= 0 , n is an even number, and n < m or n = m and also

λ ≥ 0, then O(0, 0) is a node;
5̇. If a2m+1 < 0, bn 6= 0, n is an odd number, and n < m or n = m and also

λ ≥ 0. Then, the phase portrait of (4.1) near the O(0, 0) consists of one hyperbolic
and elliptic sector.

Let D(0, 0) be the infinite singular point of (2.6) on the X-axis, E(0, 0) be the

infinite singular point on the Y -axis and M(0, u1), N(0, u2) (u1, 2 = ±
√
−A
B ) be

the infinite singular points on the U -axis.

Theorem 4.1. For system (2.6)
Case 1. A ·B 6= 0. When A < 0, D(0, 0) is a saddle, when A > 0, it is a center.

When B > 0, E(0, 0) is a saddle, when B < 0, it is a center. When A > 0 and
B < 0 the infinite singular points M(0, u1) and N(0, u2) are saddles. When A < 0
and B > 0 and also B > A+ 1

4 , the infinite singular points M(0, u1) and N(0, u2)
are centers. When A < 0 and 0 < B ≤ 1

4 + A, near M(0, u1) and N(0, u2), the
phase portraits of (2.6) consists of one hyperbolic and elliptic sector.

Case 2. A 6= 0, B = 0. When A < 0, D(0, 0) is a saddle, when A > 0, it is a
center. When A > 0 or − 1

4 ≤ A < 0, E(0, 0) is a saddle, when A < − 1
4 , it is a

center.
Case 3. B 6= 0, A = 0. When B < 0, D(0, 0) is a saddle, when B > 0, it is a

center. When B > 0, E(0, 0) is a saddle, when B < 0, it is a center.
Case 4. A = B = 0. D(0, 0) is a center, E(0, 0) is a saddle.

Proof. Case 1. A ·B 6= 0. By transforming x = 1
z , y = u

z ,
dτ
dt = 1

z3 , system (2.6)
becomes  du

dτ = z3(1 + u2),

dz
dτ = u(z4 − z2 −Bu2 −A).

(4.3)

If A ·B > 0, system (4.3) has an unique singular point D(0, 0). If A ·B < 0, system
(4.3) has three singular points D(0, 0) and M(0, u1) and N(0, u2).

Taking z = x, y = u(z4 − z2 −Au2 −A), system (4.3) turns intox′ = y,

y′ = −Ax3(1 + 1
Ax

2 − 1
Ax

4) + 2
Ay

2x(1 + o(x)) + ... .
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By Lemma 4.1, it implies that when A < 0, D(0, 0) is a saddle, when A > 0, D(0, 0)
is a center or focus. On the other hand, similar to the Theorem 2.1, we can get the
first integral of system (4.3) as follows: when B = A + 1

4 , H̃1 = H1( 1
z ,

u
z ); when

B > A+ 1
4 , H̃2 = H2( 1

z ,
u
z ); when B < A+ 1

4 , H̃3 = H3( 1
z ,

u
z ), where Hi(i = 1, 2, 3)

are the same as they are in Theorem 2.1. By their phase portraits (see Figure 1),
when A > 0, the singular point D(0, 0) being a center is manifest.

u

z

u

z

( )a ( )b

Figure 1.

(c) ( )d

v v

z z

Figure 2.

v

z

v

z

( )e ( )f

Figure 3.
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Based on the similar analysis, we can get that when B > 0 the singular point
E(0, 0) is a saddle, when B < 0, it is a center.

In the case A ·B < 0, taking z = z, w = u− ui, then system (4.3) becomesw′ = z3(1 + (w + ui)
2),

z′ = (w + ui)(z
4 − z2 −Bw2 − 2Buiw).

(4.4)

Putting x = z, y = (w + ui)(x
4 − x2 −Bw2 − 2Buiw), then (4.4) becomesx′ = y,

y′ = 2A
B (B −A)x3(1 + o(x))− 2uixy(1 + o(x)) + ... .

By Lemma 4.1, we see that when A > 0, M(0, u1), N(0, u2) are saddles. As λ =
4u2i (1− 4B + 4A), by this and Lemma 4.1, it implies that when A < 0 and B > 0
and also B > A + 1

4 , M(0, u1) and N(0, u2) are centers (see Figure 1(b)), when
A < 0 and 0 < B ≤ 1

4 + A, near M(0, u1) and N(0,−u2), the phase portrait of
(4.3) consists of one hyperbolic and elliptic sector.

Case 2. A 6= 0, B = 0. Similar to Case 1, by applying Lemma 4.1, we conclude
that when A < 0, D(0, 0) is a saddle, when A > 0, D(0, 0) is a center (see Figure
3(f)).

By transforming x = v
z , y = 1

z ,
dτ
dt = − 1

z3 , system (2.6) changes into dv
dτ = z3(1 + v2),

dz
dτ = v(z4 + z2 +Av2).

(4.5)

Taking v = r cos θ, z = r sin θ, system (4.5) becomes r′ = r5 cos θ sin3 θ + r3R(θ),

θ′ = r2U(θ),
(4.6)

where U(θ) = (A− 2) cos2 θ + 3 cos2 θ − 1, R(θ) = cos θ sin θ(A cos2 θ + 2 sin2 θ).
1̇. If σ2 = 4A+ 1 < 0, then U(θ) < 0, system (4.6) can be written as

dr

dθ
=

1

U(θ)
(R(θ)r + r3 sin3 θ cos θ), (4.7)

its right side is continuously differentiable, and the coefficients satisfy the compo-
sition conditions [5, 7]. Thus, r = 0 is a composition center, i.e., E(0, 0) is a center
(see Figure 3(e)).

2̇. If σ2 = 4A+1 > 0, A < 0, U(θi) = 0 (i = 1, 2, 3, 4), θ1,2 = arccos(±
√
−3+√σ2

2(A−2) ),

θ3,4 = arccos(±
√
−3−√σ2

2(A−2) ), and R(θ1) > 0, R(θ2) < 0, R(θ3) > 0, R(θ4) < 0, by this

and applying the criterions of [27], there exists at least one trajectory tending to
zero along the direction θ = θ1(θ = θ3), when t −→ −∞; there exists at least one
trajectory tending to zero along the direction θ = θ2(θ = θ4), when t −→ +∞.
Thus, E(0, 0) is a saddle (see Figure 2(c) and Figure 2(d)).

In the case of A = − 1
4 or A > 0, similar to the above analysis, we conclude that

E(0, 0) is a saddle, too.
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Case 3. A = 0, B 6= 0. By transforming x = 1
z , y = u

z ,
dτ
dt = 1

z3 , system (2.6)
becomes  du

dτ = z3(1 + u2),

dz
dτ = u(z4 − z2 −Bu2).

(4.8)

Using polar coordinates u = r cos θ, z = r sin θ and transforming (4.8) into r′ = r3 cos θ sin θ(−B cos2 θ + r2 sin2 θ),

θ′ = −r2(B cos4 θ + sin2 θ).

1̇. If B > 0, U(θ) = B cos4 θ + sin2 θ > 0, the r = 0 of equation

dr

dθ
= −r cos θ sin θ(r2 sin2 θ −B cos2 θ)

B cos4 θ + sin2 θ

is a composition center [5, 7], i.e., D(0, 0) is a center.

2̇. If B < 0, U(θ1,2) = 0, θ1,2 = arccos±(

√
1−
√
1−4B
2B ), by this and applying the

criterions of [27], it follows that the D(0, 0) is a saddle.
Similar to Case 1, we obtain that when B > 0, E(0, 0) is a saddle, when B < 0,

E(0, 0) is a center (see Figure 3(f)).
Case 4. A = B = 0. System (4.3) becomes du

dτ = z(1 + u2),

dz
dτ = u(z2 − 1),

which has an analytic first integral

z2 − 1

1 + u2
= c,

and by this, we know that the singular point D(0, 0) is a center.
System (4.5) becomes  dv

dτ = z(1 + v2),

dz
dτ = v(z2 + 1),

and in polar coordinates, it can be written as the following dr
dτ = r(2 + r2) sin θ cos θ,

dθ
dτ = cos 2θ.

Similar to Case 2, we see that the singular point E(0, 0) is a saddle.
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