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Abstract. The five-equation model of multi-component flows has been attracting much
attention among researchers during the past twenty years for its potential in the study
of the multi-component flows. In this paper, we employ a second order finite vol-
ume method with minmod limiter in spatial discretization, which preserves local ex-
trema of certain physical quantities and is thus capable of simulating challenging test
problems without introducing non-physical oscillations. Moreover, to improve the
numerical resolution of the solutions, the adaptive moving mesh strategy proposed
in [Huazhong Tang, Tao Tang, Adaptive mesh methods for one- and two-dimensional
hyperbolic conservation laws, SINUM, 41: 487-515, 2003] is applied. Furthermore, the
proposed method can be proved to be capable of preserving the velocity and pres-
sure when they are initially constant, which is essential in material interface capturing.
Finally, several classical numerical examples demonstrate the effectiveness and robust-
ness of the proposed method.
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1 Introduction

Numerical study of the five equation model of two-component flows, proposed in [1], has
been attracting much attention during the past twenty years, due to its wide range of ap-
plications in inertial confinement fusion, underwater explosion, shock bubble dynamics,
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and so on. Much work can be seen in the literature, such as finite volume method with
high order weighted essentially non-oscillatory (WENO) reconstructions [5], discontinu-
ous Galerkin (DG) approaches [4, 28, 29], high order finite difference alternative WENO
(AWENO) method [11]. Other auxiliary techniques for the five-equation model such as
bound- and positivity-preserving limiters can be found in [4, 12, 29, 44]. These studies
cover the fluids with ideal, stiffened, and Mie-Grüneisen equations of state (EOS).

In capturing physical structures of the fluid, such as rarefaction waves, contact dis-
continuities and shocks, a core issue is that the proposed method should not produce spu-
rious oscillations. TVD (total variation diminishing) reconstruction is an effective way of
remedying this issue [23, 39]. One such possibility is to use linear reconstruction with
minmod slope limiter, as it is easy to implement in one and higher dimensions. The min-
mod limiter compares the candidate slopes and selects the one with minimum magnitude
if they have same sign, otherwise it returns zero slope. Modified by the minmod limiter,
linear reconstructions provide approximations of the related physical quantities at cell in-
terfaces, such that their local extrema are well preserved. As a result, spurious oscillations
are not produced. However, a limitation of this approach is that it achieves only second
order of accuracy, and solutions would be relatively dissipative, compared to those com-
puted by high order methods. To remedy this limitation, a straightforward idea is to use
adaptive mesh methods, such as adaptive mesh refinement method [17–19, 24, 26, 40], or
adaptive moving mesh method [13–15,20,22,25,27,38,43,46] which will be considered in
this paper. There are mainly two categories of the adaptive moving mesh methods. The
one is that a new distribution of the grid points is computed prior to solution evolution
step at each time step, and the solution is then evolved directly to the next time level on
the new mesh grids. Related studies can be seen in [20, 27]. The other one is to separate
the adaptive moving mesh step from the solution evolution step, which is adopted in this
paper. In this approach, the solutions are updated by repeating three steps: 1) evolve the
solution to the next time step, 2) update the distribution of the grid points based on the
solutions to be adapted, 3) update the solutions onto the newly computed mesh grids,
where the latter two steps form the adaptive moving mesh strategy.

To solve compressible multi-component flows, there are mainly two types of ap-
proaches: sharp interface methods and diffusive interface methods. The sharp inter-
face methods include Lagrangian or Lagrangian-Eulerian methods [16,42], front tracking
methods [9], level set methods [2, 30], ghost fluid methods [8, 48], and so on. In these
methods, the material interface is resolved prior to the discretization strategy designed
for fluids separated by the material interface. The diffusive interface methods allow a
small amount of artificial transition zone at material interface, due to unavoidable nu-
merical diffusion. If the physical law is well defined in this diffusive zone, the exist-
ing classical methods for single-component model, such as Euler equations, would be
activated. Readers may refer to [34] for a comprehensive review of diffusive interface
methods.

A notable feature of the model is that the velocity and pressure should remain un-
changed during computation once they are initially constants, which is referred to as
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E-property. As is pointed out in the literature [1, 32], the preservation of this feature is
critical in avoiding presence of spurious oscillations when a numerical discretization is
designed. Besides, since the fluids are mixed near material interface and the numerical
method is designed directly based on the mixture of fluids, preservation of the E-property
becomes the principal issue. Therefore, the corresponding analysis will be systematically
addressed.

In this paper, a finite volume diffusive interface method is introduced for the five-
equation model. To improve numerical resolution of the solutions, the adaptive mesh
method is also employed on quadrilateral mesh. We follow [14, 15, 38] to update the
mesh grids and solutions. Besides, with the help of the adaptive mesh method, the pro-
posed method is numerically demonstrated to be effective and robust by simulating some
challenging problems with ideal and stiffened fluids equations of state (EOS). The corre-
sponding numerical resolution of solutions is also improved.

The rest of this paper is organized as follows. The five-equation model is introduced
in Section 2. We then describe second order finite volume discretizations in one- and
two-dimensions and prove the E-property in Section 3. Moreover, the adaptive mov-
ing mesh method is revisited in Section 4. Finally, numerical examples demonstrate the
effectiveness and robustness of our approach in Section 5.

2 Five-equation model

We consider in this paper the five-equation model [1,47], which has potentials in the sim-
ulation of immiscible two-material compressible flows, such as gas-gas and gas-liquid
interactions. In one dimension, the five-equation model contains four conservative equa-
tions and one advection equation:

∂(z1ρ1)

∂t
+

∂(z1ρ1u)

∂x
=0,

∂(z2ρ2)

∂t
+

∂(z2ρ2u)

∂x
=0,

∂(ρu)

∂t
+

∂(ρu2+p)

∂x
=0,

∂E

∂t
+

∂((E+p)u)

∂x
=0,

(2.1)

∂z1

∂t
+u

∂z1

∂x
=0, (2.2)

where ρj is the density of the j-th component; u is the velocity; p is the pressure; E =
1
2 ρu2+ρe is the total energy of mixture; zj is the volume fraction of the j-th component,
satisfying ∑j zj = 1. Besides, the first two conservative variables, i.e. z1ρ1 and z2ρ2, are
partial densities of the first and the second components, respectively. Their sum is the
density of mixture, i.e. ρ= z1ρ1+z2ρ2.



192 Y. Gu et al. / Commun. Comput. Phys., 32 (2022), pp. 189-221

We notice that for ease of designing at least second order finite volume methods, the
following equation is suggested instead of (2.2):

∂z1

∂t
+

∂z1u

∂x
= z1

∂u

∂x
. (2.3)

The reason will be stated in Section 3; see also detailed explanations in [5, 21]. It now
allows us to combine (2.1) and (2.3), and to rewrite them in a compact form:

∂Q

∂t
+

∂F(Q)

∂x
=S(Q), (2.4)

where

Q=(Q̃T,z1)
T =




z1ρ1

z2ρ2

ρu
E
z1




, F(Q)=




z1ρ1u
z2ρ2u

ρu2+p
(E+p)u

z1u




, S(Q)=




0
0
0
0

z1
∂u
∂x




.

In this paper, the system (2.4) is solved for all the one-dimensional problems.
Similarly in two dimensions, the governing equations which are considered under

the finite volume framework proposed in this paper read:

∂Q

∂t
+∇·F(Q)=S(Q), (2.5)

where ∇=(∂x,∂y)T, F(Q)=(F(Q),G(Q)) and

F(Q)=




z1ρ1u
z2ρ2u

ρu2+p
ρuv

(E+p)u
z1u




, G(Q)=




z1ρ1v
z2ρ2v
ρuv

ρv2+p
(E+p)v

z1v




, S(Q)=




0
0
0
0
0

z1∇·u




,

where u=(u,v)T.
In this study, the ideal and stiffened fluids are considered where the equations of state

are of the form
pj =(γj−1)ρjej−γjπ∞,j, j=1,2,

where γj>1 is the specific heat ratio, and π∞,j≥0 is the reference pressure (where π∞,j=0
for ideal gases and π∞,j > 0 for stiffened fluids). In those cells where different materials
are mixed, the isobaric assumption is adopted [1], and one may refer to [1, 11, 29] and
derive the equation of state for mixture:

p=(γ−1)ρe−γπ∞, (2.6)

where γ and π∞ are computed by

1

γ−1
=∑

j

zj

γj−1
,

γπ∞

γ−1
=∑

j

zjγjπ∞,j

γj−1
. (2.7)
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3 Spatial and temporal discretizations

3.1 Spatial discretization in one dimension

Let Ωp = [xa,xb] be the physical domain, and let xa = x 1
2
< x 3

2
< ··· < xNx+

1
2
= xb be a

partition which forms control volumes (or cells) Ai=(xi− 1
2
,xi+ 1

2
). We denote the size and

barycenter of the i-th volume by ∆xi = xi+ 1
2
−xi− 1

2
and xi =

1
2(xi− 1

2
+xi+ 1

2
), respectively.

Integrating (2.4) on each control volume and dividing on both sides by ∆xi gives
standard finite volume discretization of (2.4), i.e.

∂Q̄i

∂t
=

1

∆xi
(Fi− 1

2
−Fi+ 1

2
)+S̄i, (3.1)

where

Q̄i=
1

∆xi

∫

Ai

Q(x,t)dx, (3.2)

S̄i=
1

∆xi

∫

Ai

S(Q)(x,t)dx. (3.3)

Note that only the fifth entry of S̄i is non-zero.
Our goal in this paper is to design a second order finite volume scheme, which re-

quires linear reconstructions in each control volume. Meanwhile, the reconstruction
should preserve the E-property. To this end, we perform linear reconstructions based
on primitive variables V=(z1ρ1,z2ρ2,u,p,z1)

T:

Vi(x)= V̄i+ri(x−xi), (3.4)

where ri is the vector of approximated slopes of the primitive variables in the control
volume Ai, and V̄i =(z1ρ1,z2ρ2,ū, p̄, z̄1)

T
i with ū and p̄ being directly computed from the

cell averages of conservative variables. Switches between the conservative and primitive
variables do not affect the order of accuracy since the cell average of a linear polynomial
is exactly the same as the function value at the barycenter. Moreover, in order to remove
non-physical oscillations near discontinuities, the TVD minmod limiter [23] is adopted

for the slope vector ri, i.e. for each entry r
(k)
i , k=1,2,··· ,5,

r
(k)
i =minmod

(
V̄

(k)
i −V̄

(k)
i−1

xi−xi−1
,
V̄

(k)
i −V̄

(k)
i+1

xi−xi+1

)
, (3.5)

where

minmod(a,b)=





a, if |a|< |b| and ab>0,

b, if |b|< |a| and ab>0,

0, otherwise.

(3.6)
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Next, estimates of V at the cell interfaces xi+ 1
2

and xi− 1
2
, denoted by V−

i+ 1
2

and V+
i− 1

2

respec-

tively, are computed by

V−
i+ 1

2

= V̄i+ri(xi+ 1
2
−xi), V+

i− 1
2

= V̄i+ri(xi− 1
2
−xi). (3.7)

Finally, these estimates are converted back to those of the conservative variables at the
cell interfaces.

The remaining two tasks are to estimate 1) the fluxes at the cell interfaces xi± 1
2

and

2) the cell averages of S in (3.3). For the flux term, one may replace the exact flux by a
consistent and Lipschitz continuous numerical flux, such as the classical Lax-Friedrichs
numerical flux. For the source term S̄, an estimate of the fifth entry of the source term,

denoted by s̄
(5)
i , is

s̄
(5)
i =

z̄i(ui+ 1
2
−ui− 1

2
)

∆xi
, (3.8)

where z,z1, and ui± 1
2

are approximations to the velocity u at the cell interfaces x= xi± 1
2
,

respectively. If the volume fraction is smooth, the above mid-point formula provides a

second order approximation to s̄
(5)
i . When there is an interface separating two different

components, an interpretation stated in [21] is that this discretization is exact far away
from the interface between two components, while it is of at most first order of accuracy
at the discontinuity of z1. These discussions would well explain why we compute (2.3)
instead of (2.2). Afterwards, one can observe that (3.8) is a discretization of z̄iux with
constant coefficient z̄i, which allows us to absorb the source terms into the flux terms and
define a spatial discretization operator L as

L(Qi) :=
1

∆xi
( f̂i− 1

2
− f̂i+ 1

2
), (3.9)

where f̂i+ 1
2

is an approximation to Fi+ 1
2
−S̃i+ 1

2
, with S̃i+ 1

2
:=(0,0,0,0, z̄iui+ 1

2
)T. As a result,

the fifth entry of f̂i+ 1
2

becomes [(z− z̄i)u]|x
i+ 1

2

, which implies that the estimate of the ve-

locity u in the flux and source term of the fifth equation would be consistent, which is
essential in preservation of the E-property. In practical computation, the newly defined
“flux” term f̂i+ 1

2
is approximated by the Lax-Friedrichs numerical flux

f̂i+ 1
2
=

1

2

[(
F(Q+

i+ 1
2

)−S̃+
i+ 1

2

)
+
(

F(Q−
i+ 1

2

)−S̃−
i+ 1

2

)]
−

αi+ 1
2

2

(
Q+

i+ 1
2

−Q−
i+ 1

2

)
, (3.10)

where S̃±
i+ 1

2

=(0,0,0,0, z̄iu
±
i+ 1

2

)T and αi+ 1
2
=maxi−1≤j≤i+2

{
|u|j+cj

}
, where c=

√
γ(p+π∞)/ρ

is the sound speed.
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3.2 Spatial discretization in two dimensions

Let Ωp=[xa,xb]×[ya,yb] be the physical domain in two dimensions, and let

{Ai,j |Ai,j ⊂Ωp, 1≤ i≤Nx, 1≤ j≤Ny} (3.11)

be a structured quadrilateral partition of the physical domain, i.e. the vertices of Ai,j are
(xi− 1

2
,yj+ 1

2
), (xi− 1

2
,yj− 1

2
), (xi+ 1

2
,yj− 1

2
), and (xi+ 1

2
,yj+ 1

2
). We denote the barycenter and area

of the (i, j)-th volume by xi,j =(xi,j,yi,j) and |Ai,j|, respectively.
Integrating (2.5) on each control volume and applying the divergence theorem, one

can obtain a spatial finite volume discretization of (2.5) as follows:

∂Q̄ij

∂t
=−

1

|Ai,j|

4

∑
ℓ=1

dℓi,j(F
ℓ
i,j−S̃ℓ

i,j)·n
ℓ
i,j , (3.12)

where Q̄i,j is the cell average of Q on Ai,j, i.e.

Q̄i,j=
1

|Ai,j|

∫

Ai,j

Q(x)dx;

dℓi,j is the length of the ℓ-th edge of Ai,j; nℓ
i,j=(nℓ,x

i,j ,n
ℓ,y
i,j ) is the unit outer normal to the ℓ-th

edge of Ai,j; Fℓ
i,j is the flux vector at the mid-point of the ℓ-th edge of Ai,j, and the source

vector S̃ℓ
i,j at the same point is of the form S̃ℓ

i,j =(S̃ℓ,u
i,j ,S̃ℓ,v

i,j ) with S̃ℓ,u
i,j =(0,0,0,0,0, z̄i,ju

ℓ
i,j)

T

and S̃ℓ,v
i,j =(0,0,0,0,0, z̄ijv

ℓ
i,j)

T. Note that in (3.12) we have used similar technique as in (3.8)

for the source term.
To achieve second order of accuracy, a linear polynomial is reconstructed on Ai,j

such that it preserves the cell average on Ai,j. In order to preserve the E-property,
the reconstruction would also be performed on the primitive variables. Let V =
(z1ρ1,z2ρ2,u,v,p,z1)

T be the vector of the primitive variables. The reconstruction patch
contains four extra volumes which share a common edge with Ai,j, i.e. Ai−1,j, Ai+1,j,
Ai,j−1, and Ai,j+1. Then four candidate linear polynomials can be reconstructed on
{Ai−1,j,Ai,j,Ai,j+1}, {Ai−1,j,Ai,j,Ai,j−1}, {Ai+1,j,Ai,j,Ai,j+1}, and {Ai+1,j,Ai,j,Ai,j−1} re-
spectively, such that each candidate polynomial admits cell averages on all the related
volumes. Taking the stencil {Ai−1,j,Ai,j,Ai,j+1} for example, we are aiming to recon-

struct for each primitive variable a linear polynomial which is of the form V
(k)
i,j (x) =

V̄
(k)
i,j +(r

x,(k)
i,j ,r

y,(k)
i,j )T ·(x−xi,j), k = 1,2,··· ,6, with r

x,(k)
i,j and r

y,(k)
i,j the approximated slopes

in x- and y-directions respectively, such that

1

|Ai,j|

∫

Ai,j

V
(k)
i,j (x)dx= V̄

(k)
i,j ,

1

|Ai−1,j|

∫

Ai−1,j

V
(k)
i,j (x)dx= V̄

(k)
i−1,j,

1

|Ai,j+1|

∫

Ai,j+1

V
(k)
i,j (x)dx= V̄

(k)
i,j+1.
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The first constraint is naturally satisfied since the cell average is exactly the same as the
function value at the barycenter. The other two constraints form a linear system which is
easy to solve. Once these four linear polynomials are reconstructed, the minmod limiter
is adopted to modify the x- and y-directional slopes, such that local extrema are preserved

and non-physical oscillations are thus suppressed. Afterwards, the velocity (uℓ,−
i,j ,vℓ,−

i,j )T

and the conservative variables Qℓ,−
i,j are estimated at each mid-point of the ℓ-th edge of

Ai,j. The estimates at the same point in adjacent volume is denoted by (uℓ,+
i,j ,vℓ,+

i,j ) and

Qℓ,+
i,j .

Finally, we define the spatial discretization operator, still denoted by L, as

L(Q̄i,j)=−
1

|Ai,j|

4

∑
ℓ=1

dℓi,j f̂ ℓi,j , (3.13)

where the flux f̂ ℓi,j =(Fℓ
i,j−S̃ℓ

i,j)·n
ℓ
i,j is approximated by the Lax-Friedrichs numerical flux

f̂ ℓi,j =
1

2

[(
F(Qℓ,+

i,j )−S̃ℓ,+
i,j

)
+
(

F(Qℓ,−
i,j )−S̃ℓ,−

i,j

)]
·nℓ

i,j−
αℓ

i,j

2

(
Qℓ,+

i,j −Qℓ,−
i,j

)
. (3.14)

where the parameter αℓ
i,j is computed by αℓ

i,j=max{|ui,j ·n
ℓ
i,j|+ci,j}, where “max” is taken

over local reconstruction volumes.

3.3 Temporal discretization

Let T be an one-step time integration operator defined by

T (Qi)=Qi+∆tL(Qi), (3.15)

where the time step ∆t is defined as

∆t=





CFLmini

{
∆xi

|ui|+ci

}
, in 1D,

CFLmini,j

{
dist(xi,j,∂Ai,j)

maxℓ{ui,j·nℓ}+ci,j
,
}

, in 2D.
(3.16)

In this paper, the second order Runge-Kutta (RK) method [35] is adopted for temporal
discretization:

Q∗=T (Q̄n),

Q̄n+1=
1

2
(Q̄n+T (Q∗)).

(3.17)
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3.4 Equilibriums of the velocity and pressure in moving interface problems

An important feature of the five equation model is that equilibrium states of the velocity
and pressure are preserved when they are initially constant, which is referred to as E-
property. A discretization method, therefore, is required to preserve this E-property nu-
merically. In this section, we are going to prove that the proposed finite volume scheme
meets the requirements. For simplicity, we use in this section wi to denote the cell av-
erage of w on Ai in one dimension, and use wi,j to denote the cell average of w on Ai,j

in two dimensions, where w can be chosen as any physical quantity. One may also re-
gard wi and wi,j as function values at the barycenters xi and xi,j, since the unknowns are
approximated by piecewise linear polynomials.

We may pause for a moment, and define some notations for the proofs.

(1) The temporal jump ∆k[ f ]= f k+1− f k. An easy derivation gives ∆k[ f g]= f k+1∆k[g]+
gk∆k[ f ].

(2) Lax-Friedrichs flux related operators δ1[ f ]= f++ f− and δ2[ f ]= f+− f−.

Now, we state our main results as follows. We first prove the following lemmas.

Lemma 3.1. Let the velocity and pressure be two constants, and let Qk
i , Q±

i− 1
2

and Q±
i+ 1

2

be vectors

of the conservative variables in one dimension such that

u(Qk
i )=u(Q−

i− 1
2

)=u(Q+
i− 1

2

)=u(Q−
i+ 1

2

)=u(Q+
i+ 1

2

)=u,

p(Qk
i )= p(Q−

i− 1
2

)= p(Q+
i− 1

2

)= p(Q−
i+ 1

2

)= p(Q+
i+ 1

2

)= p.

Then the one-step solution update

Qk+1
i =Qk

i +
(

c1Qk
i +c2δ1[Q]i− 1

2
+c3δ2[Q]i− 1

2
+c4δ1[Q]i+ 1

2
+c5δ2[Q]i+ 1

2

)
(3.18)

with constant parameters c1,··· ,c5, preserves the same velocity and pressure, i.e. u(Qk+1
i ) = u

and p(Qk+1
i )= p.

Proof. We rewrite (3.18) as

∆k[Qi]= c1Qk
i +c2δ1[Q]i− 1

2
+c3δ2[Q]i− 1

2
+c4δ1[Q]i+ 1

2
+c5δ2[Q]i+ 1

2
, (3.19)

and prove that ∆k[ui]=0 and ∆k[pi]=0.

To prove the equilibrium of the velocity, one may add the first two equations up to
obtain

∆k[ρi]= c1ρk
i +c2δ1[ρ]i− 1

2
+c3δ2[ρ]i− 1

2
+c4δ1[ρ]i+ 1

2
+c5δ2[ρ]i+ 1

2
,
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and then derives from the third equation that

ρk+1
i ∆k[ui]+u∆k[ρi]=∆k[(ρu)i]

= c1(ρu)k
i +c2δ1[ρu]i− 1

2
+c3δ2[ρu]i− 1

2
+c4δ1[ρu]i+ 1

2
+c5δ2[ρu]i+ 1

2

=u∆k[ρi],

which implies, with positive density ρk+1
i , that ∆k[ui]=0.

To prove the equilibrium of the pressure, we first prove the following four properties.

(i) ∆k[(zj)i]= c1(zj)
k
i +c2δ1[zj]i− 1

2
+c3δ2[zj]i− 1

2
+c4δ1[zj]i+ 1

2
+c5δ2[zj]i+ 1

2
, j=1,2.

The equality for j = 1 is transparent since it is exactly the fifth equation in (3.19).
When j = 2, the equality can be derived by replacing z2 by 1−z1 and using the
linearity of the operator ∆k.

(ii) ∆k[Γi]=c1Γk
i +c2δ1[Γ]i− 1

2
+c3δ2[Γ]i− 1

2
+c4δ1[Γ]i+ 1

2
+c5δ2[Γ]i+ 1

2
, where Γ:= 1

γ−1=∑j
zj

γj−1 .

Since γj, j=1,2, are constants for the ideal and stiffened fluids, one has by the defi-
nition of Γ that

∆k[Γi]=∆k

[(

∑
j

zj

γj−1

)

i

]
=∑

j

∆k[(zj)i]

γj−1

=∑
j

1

γj−1

(
c1(zj)

k
i +c2δ1[zj]i− 1

2
+c3δ2[zj]i− 1

2
+c4δ1[zj]i+ 1

2
+c5δ2[zj]i+ 1

2

)

= c1Γk
i +c2δ1[Γ]i− 1

2
+c3δ2[Γ]i− 1

2
+c4δ1[Γ]i+ 1

2
+c5δ2[Γ]i+ 1

2
.

(iii) ∆k[(Π∞)i]=c1(Π∞)k
i +c2δ1[Π∞]i− 1

2
+c3δ2[Π∞]i− 1

2
+c4δ1[Π∞]i+ 1

2
+c5δ2[Π∞]i+ 1

2
, where

Π∞ := γπ∞

γ−1 =∑j
zjγjπ∞,j

γj−1 .

The proof is similar to that of (ii), and is thus omitted.

(iv) ∆k[(ρe)i ]= c1(ρe)k
i +c2δ1[ρe]i− 1

2
+c3δ2[ρe]i− 1

2
+c4δ1[ρe]i+ 1

2
+c5δ2[ρe]i+ 1

2
.

The fourth equation in (3.19) reads

∆k[Ei]= c1Ek
i +c2δ1[E]i− 1

2
+c3δ2[E]i− 1

2
+c4δ1[E]i+ 1

2
+c5δ2[E]i+ 1

2
.

Since E= 1
2 ρu2+ρe, one has

∆k[Ei]=c1

(1

2
ρu2+ρe

)k

i
+c2δ1

[1

2
ρu2+ρe

]
i− 1

2

+c3δ2

[1

2
ρu2+ρe

]
i− 1

2

+c4δ1

[1

2
ρu2+ρe

]
i+ 1

2

+c5δ2

[1

2
ρu2+ρe

]
i+ 1

2

=c1

(1

2
ρu2
)k

i
+c2δ1

[1

2
ρu2
]

i− 1
2

+c3δ2

[1

2
ρu2
]

i− 1
2

+c4δ1

[1

2
ρu2
]

i+ 1
2

+c5δ2

[1

2
ρu2
]

i+ 1
2

+c1(ρe)k
i +c2δ1[ρe]i− 1

2
+c3δ2[ρe]i− 1

2
+c4δ1[ρe]i+ 1

2
+c5δ2[ρe]i+ 1

2
.
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Then

∆k[(ρe)i ]=∆k

[
Ei−

(1

2
ρu2
)

i

]

= c1(ρe)k
i +c2δ1[ρe]i− 1

2
+c3δ2[ρe]i− 1

2
+c4δ1[ρe]i+ 1

2
+c5δ2[ρe]i+ 1

2
,

where we have used that

∆k

[(
1

2
ρu2

)

i

]
=

1

2
u2∆k[ρi]

=
1

2
u2
(

c1ρk
i +c2δ1[ρ]i− 1

2
+c3δ2[ρ]i− 1

2
+c4δ1[ρ]i+ 1

2
+c5δ2[ρ]i+ 1

2

)

= c1

(1

2
ρu2
)k

i
+c2δ1

[1

2
ρu2
]

i− 1
2

+c3δ2

[1

2
ρu2
]

i− 1
2

+c4δ1

[1

2
ρu2
]

i+ 1
2

+c5δ2

[1

2
ρu2
]

i+ 1
2

.

Based on the above analysis, one can use the relation ρe=Γp+Π∞ to derive that

∆k[(Γp)i]+∆k[(Π∞)i]

=∆k[(ρe)i]

=c1(ρe)k
i +c2δ1[ρe]i− 1

2
+c3δ2[ρe]i− 1

2
+c4δ1[ρe]i+ 1

2
+c5δ2[ρe]i+ 1

2

=c1(Γp)k
i +c2δ1[Γp]i− 1

2
+c3δ2[Γp]i− 1

2
+c4δ1[Γp]i+ 1

2
+c5δ2[Γp]i+ 1

2

+c1(Π∞)
k
i +c2δ1[Π∞]i− 1

2
+c3δ2[Π∞]i− 1

2
+c4δ1[Π∞]i+ 1

2
+c5δ2[Π∞]i+ 1

2

=p∆k[Γi]+∆k[(Π∞)i].

Therefore, ∆k[(Γp)i]= p∆k [Γi], from which one can prove that ∆[pi ]=0.

Remark 3.1. In Lemma 3.1, we generalize the analysis studied in [11]. This lemma will be
used to proved that the finite volume discretization (3.9) and the solution update formula
(4.3) in moving mesh method which is presented in Section 4 preserves the E-property.

Lemma 3.2. For the one-dimensional model, let Q1 and Q2 be two vectors of the conservative
variables, such that u(Q1)=u(Q2)=u and p(Q1)=p(Q2)=p. Then for all convex combinations
Q= aQ1+bQ2, with 0≤ a,b≤1, a+b=1,

u(Q)=u, p(Q)= p.

Proof. Without loss of generality, we denote Q1 = (q1
1,q1

2,(q1
1+q1

2)u,q1
4,q1

5)
T and Q2 =

(q2
1,q2

2,(q2
1+q2

2)u,q2
4,q2

5)
T, due to the requirement that u(Q1)=u(Q2)=u. Then

Q= aQ1+bQ2=(aq1
1+bq2

1,aq1
2+bq2

2,
[

a(q1
1+q1

2)+b(q2
1+q2

2)
]

u,aq1
4+bq2

4,aq1
5+bq2

5)
T.
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The derivation of u(Q)=u is simple, since

u(Q)=
ρu(Q)

ρ(Q)
=

[
a(q1

1+q1
2)+b(q2

1+q2
2)
]
u

aq1
1+bq2

1+aq1
2+bq2

2

=u.

To prove p(Q)= p, one may first use (2.6) and (2.7) for p(Q1) and p(Q2) to obtain

p(Q1)

γ(Q1)−1
=

p

γ(Q1)−1
=q1

4−
1

2
(q1

1+q1
2)u

2−

(
q1

5γ1π∞,1

γ1−1
+
(1−q1

5)γ2π∞,2

γ2−1

)
,

p(Q2)

γ(Q2)−1
=

p

γ(Q2)−1
=q2

4−
1

2
(q2

1+q2
2)u

2−

(
q2

5γ1π∞,1

γ1−1
+
(1−q2

5)γ2π∞,2

γ2−1

)
,

and then derive p(Q) by using (2.6), (2.7) and the above two equations:

p(Q)

γ(Q)−1
=(aq1

4+bq2
4)−

1

2

[
a(q1

1+q1
2)+b(q2

1+q2
2)
]

u2

−
(aq1

5+bq2
5)γ1π∞,1

γ1−1
−
(1−aq1

5−bq2
5)γ2π∞,2

γ2−1

=

(
a

γ(Q1)−1
+

b

γ(Q2)−1

)
p

=

(
aq1

5

γ1−1
+

a(1−q1
5)

γ2−1
+

bq2
5

γ1−1
+

b(1−q2
5)

γ2−1

)
p=

p

γ(Q)−1
,

which implies, with 1
γ(Q)−1

>0, that p(Q)= p.

Now we are ready to state our main result in one dimension.

Theorem 3.1. Suppose that u0
i = u= constant and p0

i = p= constant over the whole domain,
then the one-dimensional finite volume discretization, which consists of (3.9), (3.10) and (3.17),
produces un

i =u, pn
i = p at any future time.

Proof. It suffices for us to prove that u(Qn+1
i )= u and p(Qn+1

i )= p, provided u(Qn
i )= u

and p(Qn
i )= p for all index i.

Let Q̃= (z̃1ρ1, z̃2ρ2,ρ̃u,Ẽ, z̃1)
T denote the vector of conservative variables after linear

reconstruction procedure at t= tn, where ρ̃= z̃1ρ1+ z̃2ρ2 and Ẽ= ρ̃e+ 1
2 ρ̃u2 with ρ̃e being
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computed by (2.6) using z̃1 and p. Then the numerical flux f̂i± 1
2

can be represented by Q̃i:

f̂i± 1
2
=

1

2

[(
F(Q+

i± 1
2

)−S̃+
i± 1

2

)
+
(

F(Q−
i± 1

2

)−S̃−
i± 1

2

)
−αi± 1

2

(
Q+

i± 1
2

−Q−
i± 1

2

)]
,

=
1

2





u




z̃1ρ1

z̃2ρ2

ρ̃u
Ẽ
z̃1




+

i± 1
2

+u




z̃1ρ1

z̃2ρ2

ρ̃u
Ẽ
z̃1




−

i± 1
2

−αi± 1
2







z̃1ρ1

z̃2ρ2

ρ̃u
Ẽ
z̃1




+

i± 1
2

−




z̃1ρ1

z̃2ρ2

ρ̃u
Ẽ
z̃1




−

i± 1
2








+C,

=C+
u

2
δ1[Q̃]i± 1

2
−

αi± 1
2

2
δ2[Q̃]i± 1

2
,

where C = (0,0,p,pu,u(z̄1)i)
T. The first step of the Runge-Kutta method can thus be

rewritten as

Q∗
i = Q̄n

i +
∆t

∆x

(
u

2
δ1[Q̃]i− 1

2
−

αi− 1
2

2
δ2[Q̃]i− 1

2
−

u

2
δ1[Q̃]i+ 1

2
+

αi+ 1
2

2
δ2[Q̃]i+ 1

2

)
. (3.20)

By Lemma 3.1, one can prove that u(Q∗
i ) = u and p(Q∗

i ) = p. In the second step of the
Runge-Kutta method, T (Q∗) preserves the same velocity and pressure as well. Note
that Qn and T (Q∗) are added up by a convex combination, one has by Lemma 3.2 that
u(Q̄n+1

i )=u and p(Q̄n+1
i )= p.

Next, we describe how to prove E-property in two dimensions. If the velocity u,
v and the pressure p are constant over the whole physical domain, the finite volume
discretization operator (3.13) can then be written as

L(Q̄i,j)=−
1

|Ai,j|

4

∑
ℓ=1

dℓ
2

(
nx
ℓ
uδ1[Q]ℓ+n

y
ℓ
vδ1[Q]ℓ−αℓδ2[Q]ℓ

)
,

where we have used that for any quadrilateral ∑
4
ℓ=1dℓnℓ=0.

Based on these observations, we list below two lemmas and one theorem for two
dimensions without proofs, as they can be proved by mimicking Lemma 3.1, Lemma 3.2
and Theorem 3.1.

Lemma 3.3. Let the velocity u, v and the pressure p be constants, and let Qk
i,j, Q−

ℓ
and Q+

ℓ
be

vectors of the conservative variables in two dimensions such that

u(Qk
i,j)=u(Q−

ℓ
)=u(Q+

ℓ
)=u,

v(Qk
i,j)=v(Q−

ℓ
)=v(Q+

ℓ
)=v,

p(Qk
i,j)= p(Q−

ℓ
)= p(Q+

ℓ
)= p.
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Then the one-step solution update formula

Qk+1
i,j =Qk

i,j+
4

∑
ℓ=1

(
c1
ℓ
Qk+1

i,j +c2
ℓ
δ1[Q]l+c3

ℓ
δ3[Q]ℓ

)
(3.21)

with constant parameters c1
ℓ
,··· ,c3

ℓ
, preserves the same velocity and pressure, i.e. u(Qk+1

i,j )= u,

v(Qk+1
i,j )=v and p(Qk+1

i,j )= p.

Lemma 3.4. For the two-dimensional model, let Q1 and Q2 be two vectors of the conservative
variables in two dimensions, such that u(Q1) = u(Q2) = u, v(Q1) = v(Q2) = v and p(Q1) =
p(Q2)= p. Then for all convex combinations Q= aQ1+bQ2, with 0≤ a,b≤1, a+b=1,

u(Q)=u, v(Q)=v, p(Q)= p.

Theorem 3.2. Suppose that u0
i,j=u= constant, v0

i,j =v= constant and p0
i,j= p= constant over

the whole physical domain. The two-dimensional finite volume discretization, which consists of
(3.13), (3.14) and (3.17), produces un

i,j =u, vn
i,j =v and pn

i,j = p at any future time.

4 Adaptive moving mesh method

In this section, we revisit the adaptive moving mesh method proposed in [38]. Mean-
while, we will show that a use of the adaptive moving mesh method does not destroy the
E-property.

4.1 One-dimensional adaptive moving mesh method

Let Ωc be the computational domain, and let 0= ξ 1
2
< ξ 3

2
< ···< ξNx+

1
2
= 1 be a uniform

partition. A surjective mapping between the coordinates x and ξ is determined by mini-
mizing a functional of the following form:

E(x)=
1

2

∫

Ωc

ω(xξ)
2 dξ,

where ω=ω(Q)> 0 is a monitor function depending on the underlying solutions to be
adapted and will be specified in each test case in Section 5. The Euler-Lagrange equation
associated with the above functional reads

(ωxξ)ξ =0, (4.1)

whose solution forms a new distribution of the mesh grids denoted by x̃i+ 1
2
, i=0,··· ,Nx.

It is also required that x̃ 1
2
=x 1

2
and x̃Nx+

1
2
=xNx+

1
2

since they are at the physical boundaries.

To solve (4.1), the Gauss-Seidel-type iteration is suggested by the authors in [38]:

ωi+1(xi+ 3
2
− x̃i+ 1

2
)−ωi(x̃i+ 1

2
− x̃i− 1

2
)=0, 1≤ i≤Nx−1, (4.2)
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where ωi is computed by a spatial smoothing of the volume-wise monitor functions in
the following way, avoiding a singular mesh distribution and/or large approximation
errors near the regions where the gradient of the solution is very large [38]

ωi=
1

4
(ω(Q̄i−1)+2ω(Q̄i)+ω(Q̄i+1)).

It has been proved in [38] that x̃i− 1
2
< x̃i+ 1

2
for all i; in other words, no distortion of the

mesh is generated.
Then, one could use the cell averages and the linearly reconstructed values on the

previous mesh to obtain new cell averages on the newly updated mesh:

¯̃Qi =
∆xi

∆x̃i
Q̄i−

1

∆x̃i

(
(cQ)i+ 1

2
−(cQ)i− 1

2

)
, (4.3)

where ∆xi = xi+ 1
2
−xi− 1

2
, ∆x̃i = x̃i+ 1

2
− x̃i− 1

2
, ci± 1

2
= xi± 1

2
− x̃i± 1

2
, and the flux terms (cQ)i± 1

2

are defined by

(cQ)i± 1
2
=

1

2
ci± 1

2

(
Q+

i± 1
2

+Q−
i± 1

2

)
−

1

2
|ci± 1

2
|
(

Q+
i± 1

2

−Q−
i± 1

2

)
, (4.4)

which achieves second order of accuracy. It is easy to prove that conservations of the

conservative variables are guaranteed in the sense that ∑i ∆x̃i
¯̃Qi =∑i ∆xiQ̄i.

Note that the mesh algorithm (4.2) only produces small displacements of the grid
points. In order to obtain a satisfactory redistribution of the grid points, we perform five
full Gauss-Seidel-type iterations which is suggested in [38].

We enclose this sub-section by pointing out that the solution update procedure (4.3)
does not destroy the E-property. Observe that ∆x̃=∆x−(ci+ 1

2
−ci− 1

2
). The solution update

procedure (4.3) can be written as

¯̃Qi=Q̄i+

(
∆xi−∆x̃i

∆x̃i
Q̄i+

ci− 1
2

2∆x̃i
δ1[Q]i− 1

2
−
|ci− 1

2
|

2∆x̃i
δ2[Q]i− 1

2
−

ci+ 1
2

2∆x̃i
δ1[Q]i+ 1

2
+
|ci+ 1

2
|

2∆x̃i
δ2[Q]i+ 1

2

)
.

Consequently, one can see by Lemma 3.1 that the E-property is not destroyed after a use
of the adaptive moving mesh method.

4.2 Two-dimensional adaptive moving mesh method

Let Ωc = [0,1]×[0,1] be the computational domain in two dimensions, and let ξ and η
be the coordinates. The new distribution of the coordinates on the physical domain is
defined by minimizing the following functional:

E(x)=
1

2

∫

Ωc

(
(∇̃x)TGx∇̃x+(∇̃y)TGy∇̃y

)
dξdη,
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where ∇̃= (∂ξ ,∂η)T, and the monitor functions Gx and Gy are 2×2 symmetric positive
definite matrices. One may solve for x and y the Euler-Lagrange equations associated
with the above functional:

∇̃·(Gx∇̃x)=0, ∇̃·(Gy∇̃y)=0. (4.5)

There are much work on discussions of the choice of the monitor functions Gx and Gy.
The simplest choice, for example, is to set Gx = Gy = ω I [43]. Another simple choice
studied in [14,38] is Gx=Gy=diag(ωξ ,ωη), which is more flexible than the previous one,
and will degenerate to the previous one when ωξ=ωη. Therefore, Gx=Gy=diag(ωξ ,ωη)
is adopted in this paper. A good design of the monitor functions is essential in the mesh
redistribution procedure, and affects the behaviour of the numerical solutions. Concrete
choices of the monitor functions will be given in each test case in Section 5.

To solve for the new distribution of the interior nodes x̃i+ 1
2 ,j+ 1

2
=(x̃i+ 1

2 ,j+ 1
2
,ỹi+ 1

2 ,j+ 1
2
)T,

one can apply conservative central differences to the Euler-Lagrange equations (4.5), and
solve by Gauss-Seidel-type iterations as follows:

(ωξ)i+1,j+ 1
2

(
xi+ 3

2 ,j+ 1
2
− x̃i+ 1

2 ,j+ 1
2

)
−(ωξ)i,j+ 1

2

(
x̃i+ 1

2 ,j+ 1
2
− x̃i− 1

2 ,j+ 1
2

)

+(ωη)i+ 1
2 ,j+1

(
xi+ 1

2 ,j+ 3
2
− x̃i+ 1

2 ,j+ 1
2

)
−(ωη)i+ 1

2 ,j

(
x̃i+ 1

2 ,j+ 1
2
− x̃i+ 1

2 ,j− 1
2

)
=0, (4.6)

where

(ωξ)i,j+ 1
2
=

1

2

(
ωξ(Qi,j)+ωξ(Qi,j+1)

)
, (ωξ)i+1,j+ 1

2
=

1

2

(
ωξ(Qi+1,j)+ωξ(Qi+1,j+1)

)
,

(ωη)i+ 1
2 ,j =

1

2

(
ωη(Qi,j)+ωη(Qi+1,j)

)
, (ωη)i+ 1

2 ,j+1=
1

2

(
ωη(Qi,j+1)+ωη(Qi+1,j+1)

)
.

Again, to avoid a very singular mesh distribution, the following smoothing procedure is
suggested for the monitor functions 2-3 times; see also [14].

(ωξ/η)i,j =
1

4
(ωξ/η)i,j+

1

8

[
(ωξ/η)i−1,j+(ωξ/η)i+1,j+(ωξ/η)i,j−1+(ωξ/η)i,j+1

]

+
1

16

[
(ωξ/η)i−1,j−1+(ωξ/η)i−1,j+1+(ωξ/η)i+1,j−1+(ωξ/η)i+1,j+1

]
.

Besides, the nodes on the physical boundaries (except the four corner ones) also need
to be redistributed, such that discontinuities near boundaries at the initial and/or any
future time can be well captured. This is done by setting

x̃i+ 1
2 , 1

2
= xi+ 1

2 , 1
2
+
(

x̃i+ 1
2 , 3

2
−xi+ 1

2 , 3
2

)
(4.7)

for all the interior nodes on the lower boundary of the physical domain. The nodes on
the other three boundaries can be modified similarly.
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Once a new distribution of the grid points is obtained, the solution on the new mesh
needs to be updated. Denote c(cx,cy)=x(x,y)− x̃(x̃,ỹ). Based on a perturbation analysis
[38], the solution on the new mesh is interpolated from that on the old mesh by

∫

Ãi,j

Q̃(x̃)dx̃≈
∫

Ai,j

Q(x)dx−
∫

Ai,j

∇·(cQ)dx.

To achieve second order of accuracy, the third integral is approximated by mid-point rule,
which leads to the following solution update formula:

|Ãi,j|
¯̃Qi,j = |Ai,j|Q̄i,j−(cQ)i− 1

2 ,j−(cQ)i+ 1
2 ,j−(cQ)i,j− 1

2
−(cQ)i,j+ 1

2
, (4.8)

where

ci− 1
2 ,j=di− 1

2 ,jci− 1
2 ,j ·ni− 1

2 ,j

=
1

2

([
xi− 1

2 ,j+ 1
2
− x̃i− 1

2 ,j+ 1
2

yi− 1
2 ,j+ 1

2
− ỹi− 1

2 ,j+ 1
2

]
+

[
xi− 1

2 ,j− 1
2
− x̃i− 1

2 ,j− 1
2

yi− 1
2 ,j− 1

2
− ỹi− 1

2 ,j− 1
2

])
·

[
yi− 1

2 ,j− 1
2
−yi− 1

2 ,j+ 1
2

xi− 1
2 ,j+ 1

2
−xi− 1

2 ,j− 1
2

]
,

ci+ 1
2 ,j=di+ 1

2 ,jci+ 1
2 ,j ·ni+ 1

2 ,j

=
1

2

([
xi+ 1

2 ,j− 1
2
− x̃i+ 1

2 ,j− 1
2

yi+ 1
2 ,j− 1

2
− ỹi+ 1

2 ,j− 1
2

]
+

[
xi+ 1

2 ,j+ 1
2
− x̃i+ 1

2 ,j+ 1
2

yi+ 1
2 ,j+ 1

2
− ỹi+ 1

2 ,j+ 1
2

])
·

[
yi+ 1

2 ,j+ 1
2
−yi+ 1

2 ,j− 1
2

xi+ 1
2 ,j− 1

2
−xi+ 1

2 ,j+ 1
2

]
,

ci,j− 1
2
=di,j− 1

2
ci,j− 1

2
·ni,j− 1

2

=
1

2

([
xi− 1

2 ,j− 1
2
− x̃i− 1

2 ,j− 1
2

yi− 1
2 ,j− 1

2
− ỹi− 1

2 ,j− 1
2

]
+

[
xi+ 1

2 ,j− 1
2
− x̃i+ 1

2 ,j− 1
2

yi+ 1
2 ,j− 1

2
− ỹi+ 1

2 ,j− 1
2

])
·

[
yi+ 1

2 ,j− 1
2
−yi− 1

2 ,j− 1
2

xi− 1
2 ,j− 1

2
−xi+ 1

2 ,j− 1
2

]
,

ci,j+ 1
2
=di,j+ 1

2
ci,j+ 1

2
·ni,j+ 1

2

=
1

2

([
xi+ 1

2 ,j+ 1
2
− x̃i+ 1

2 ,j+ 1
2

yi+ 1
2 ,j+ 1

2
− ỹi+ 1

2 ,j+ 1
2

]
+

[
xi− 1

2 ,j+ 1
2
− x̃i− 1

2 ,j+ 1
2

yi− 1
2 ,j+ 1

2
− ỹi− 1

2 ,j+ 1
2

])
·

[
yi− 1

2 ,j+ 1
2
−yi+ 1

2 ,j+ 1
2

xi+ 1
2 ,j+ 1

2
−xi− 1

2 ,j+ 1
2

]
,

where di± 1
2 ,j and di,j± 1

2
are the lengths of the four edges; ci± 1

2 ,j and ci,j± 1
2

are the displace-

ments of the barycenters of the four edges. One [38] can easily prove that the conservative

variables are updated in a conservative sense due to ∑i ∑j |Ãi,j|
¯̃Qi,j=∑i ∑j |Ai,j|Q̄i,j. To im-

plement (4.8), the last four terms are approximated using Lax-Friedrichs fluxes similar to
those in (4.4):

(cQ)i− 1
2 ,j=

1

2
ci− 1

2 ,j(Q
+
i− 1

2 ,j
+Q−

i− 1
2 ,j
)−

1

2
|ci− 1

2 ,j|(Q
+
i− 1

2 ,j
−Q−

i− 1
2 ,j
),

(cQ)i+ 1
2 ,j=

1

2
ci+ 1

2 ,j(Q
+
i+ 1

2 ,j
+Q−

i+ 1
2 ,j
)−

1

2
|ci+ 1

2 ,j|(Q
+
i+ 1

2 ,j
−Q−

i+ 1
2 ,j
),

(cQ)i,j− 1
2
=

1

2
ci,j− 1

2
(Q+

i,j− 1
2

+Q−
i,j− 1

2

)−
1

2
|ci,j− 1

2
|(Q+

i,j− 1
2

−Q−
i,j− 1

2

),

(cQ)i,j+ 1
2
=

1

2
ci,j+ 1

2
(Q+

i,j+ 1
2

+Q−
i,j+ 1

2

)−
1

2
|ci,j+ 1

2
|(Q+

i,j+ 1
2

−Q−
i,j+ 1

2

),

(4.9)
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where Q±
i± 1

2 ,j
and Q±

i,j± 1
2

are the linearly reconstructed values at the barycenters of four

edges of the control volume Ai,j introduced in Section 3. Finally, suggested by [14, 38],
the two-dimensional moving mesh algorithms (4.6), (4.7) and (4.8) is repeated 3-5 times
at each time level.

We enclose this sub-section by pointing out that the solution update formula (4.8)
does not destroy the E-property due to Lemma 3.3.

5 Numerical experiments

In this section, robustness and effectiveness of the adaptive mesh method are illustrated
by several numerical examples. We note that monitor functions play important roles in
the mesh grid redistribution algorithm, and should be thus carefully designed. Based on
our numerical experience, we give some suggestions on the choice of monitor functions.

• Density is the mostly concerned primitive variable, and will be used in all of the
following numerical tests. In general, first order derivative would depict change
of the density. But sometimes one may add second order derivative which also
captures change of first order derivative of the density.

• The rarefaction wave is usually captured by introducing entropy-related variable to
the monitor function once the structure of rarefaction wave is as important as other
structures.

• Adaptive moving mesh methods produce as high resolution solutions as those pro-
duced by high order methods. Therefore, for those hard problems in which positiv-
ity of the sound speed is the key issue, it is reasonable to add first order derivative
of ρe−π∞ (as c =

√
γ(γ−1)(ρe−π∞)/ρ) to the monitor function, see e.g. two-

dimensional tests in this paper.

• Other physical quantities, such as volume fraction, velocity and pressure, may also
help to improve quality of the mesh.

5.1 One-dimensional test cases

In this section, the adaptive moving mesh method is verified by testing the one-
dimensional five-equation model. The reference solution is computed with 2000 grid
points.

Accuracy test problem

In the first set of tests, convergence rate is shown by testing the following problem [10,29]:

ρ1(x,0)=ρ2(x,0)=1.0, u(x,0)= p(x,0)=1.0, z1(x,0)=0.5+0.499sin(πx),

γ1=1.4, γ2=1.9, π∞,1=1.0, π∞,2=0.0.
(5.1)
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Table 1: Accuracy test problem: L1-norms of errors of the volume fraction and the convergence rate.

α

Nx
80 160 320 640 1280

20 3.72E-02 (-) 1.26E-02 (1.56) 3.45E-03 (1.87) 8.23E-04 (2.07) 1.67E-04 (2.30)

50 3.91E-02 (-) 1.43E-02 (1.45) 4.35E-03 (1.72) 9.60E-04 (2.18) 2.10E-04 (2.19)

The problem is solved in (0,2) up to t=1.0 with CFL=0.95, and the monitor function is
set as

w=

√

1+α

(
(z1)ξ

max|(z1)ξ |

)2

.

The volume fraction has an explicit exact solution z1(x,t)= 0.5+0.499sin(π(x−t)), and
L1-norms of errors are shown in Table 1 for different α, One can observe that the second
order convergence is well achieved.

Moving Interface Problem

In the second set of tests, the moving interface problem studied in [11, 12, 29] is used to
show that the adaptive mesh method proposed in this paper preserves the E-property.
The initial setup is given by

(ρ1,ρ2,u,p,γ,π,z1)=

{
(1.0, 0.125, 1.0, 1.0, 1.4, 1.0, 1.0), x<0,
(1.0, 0.125, 1.0, 1.0, 1.9, 0.0, 0.0), x≥0.

(5.2)

The problem is solved in (−5,5) with CFL= 0.95 until t = 2.0. Transmissive boundary
conditions are used at the left and right boundaries.

The corresponding results are shown in Fig. 1, where the monitor function is chosen
as

w=

√
1+20

(
ρξ

max|ρξ |

)2

+20

(
ρξξ

max|ρξξ |

)2

.

With the moving mesh method being used, the grid points are dragged towards the dis-
continuity, as shown at the first panel in Fig. 1. Besides, the initial discontinuities in the
density and volume fraction move, with constant right-going velocity u=1.0, to x=2.0,
which can be observed at the second panel in Fig. 1. We also plot L∞-norms of errors of
the velocity and pressure under different mesh resolutions at the third panel, from which
one can see that the E-property is well preserved by our approach.

To show that the adaptive mesh method produces higher resolution solutions at the
material interface than the ones computed on uniform mesh with Nx = 200, we present
a comparison in Fig. 2, from which one can clearly see that the contact discontinuity is
better resolved by the adaptive mesh.
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Figure 1: Moving interface problem. Left: trajectory of the mesh grids. Middle: distributions of the density
and volume fraction. Right: L∞-norms of errors of the velocity and pressure. Output time is t=2.0.

Figure 2: Distributions of the density and volume fraction for moving interface problem solved on uniform and
adaptive meshes, with Nx =200. Output time is t=2.0.

Gas-liquid shock-tube problem I

In the third set of tests, numerical solutions of a classical gas-liquid shock-tube problem
studied in [21, 37] are shown. The initial conditions are

(ρ1,ρ2,u,p,γ,π,z1)

=

{
(1.241, 0.991, 0.0, 2.753, 1.4, 0.0, 1.0), x<0,

(1.241, 0.991, 0.0, 3.59×10−4, 5.5, 1.505, 0.0), x≥0.
(5.3)

The problem is computed in x∈(−5,5) with transmissive boundary conditions. The CFL
condition number is set as 0.95, and the final time is t=1.0.

Numerical results are shown in Fig. 3, where the monitor function is chosen as

w=

√
1+100

(
ρξ

max|ρξ |

)2

+100

(
ρξξ

max|ρξξ |

)2

+50

(
sξ

max|sξ |

)2

,
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Figure 3: Distributions of the mesh grids with Nx = 100 (top left), and Nx = 200 (top right), and density
(middle left), volume fraction (middle right), velocity(bottom left) and pressure(bottom right) for the gas-liquid
shock-tube problem I. The final time is t=1.0.



210 Y. Gu et al. / Commun. Comput. Phys., 32 (2022), pp. 189-221

Figure 4: Distributions of the density and volume fraction for the gas-liquid shock-tube problem I on uniform
and moving meshes with Nx =200. The final time is t=1.0.

where s= p
ργ . One can see that the rarefaction wave, material interface and shock wave

are perfectly resolved by the mesh. As a result, numerical solutions of the density, vol-
ume fraction, velocity and pressure match the reference ones well. Moreover, refinement
study illustrates convergence of our approach.

Besides, we present in Fig. 4 a comparison test in which the problem is solved on
uniform and adaptive moving meshes, with Nx = 200. One may observe that with the
help of the adaptive mesh method, the solutions become more accurate near the rarefac-
tion wave, material interface and shock wave. In the remaining numerical tests except
the first one in Section 5.2 (An air shock impacting on a helium bubble), we will not
present the results on uniform mesh, and readers are convinced that the adaptive mov-
ing mesh method always produces higher resolution solutions with the same number of
grid points.

Gas-liquid shock-tube problem II

In the fourth set of tests, the gas-liquid shock-tube problem studied in [3,33] is presented.
The problem is computed in x∈ (0,1) with the following initial conditions

(ρ1,ρ2,u,p,γ,π,z1)=

{
(5.0, 103, 0.0, 105, 1.4, 0.0, 1.0), x<0.3,

(5.0, 103, 0.0, 109, 4.4, 6.0×108, 0.0), x≥0.3.
(5.4)

Transmissive boundary conditions are employed at both boundaries. The CFL number is
set as 0.95, and output time is t=2.4×10−4.

This problem is challenging for most high order numerical schemes, such as the ones
studied in [3, 12, 41], due to the large discontinuities in the initial profiles of the density,
pressure and π∞. To overcome the difficulty, positivity-preserving limiters need to be
used to avoid a crash of the code. The adaptive moving mesh method proposed in this
paper, however, does not encounter this difficulty since new local extrema are suppressed
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Figure 5: Distributions of the mesh grids with Nx = 400 (left), and Nx = 800 (middle), and density (right) for

the gas-liquid shock-tube problem II. The final time is t=2.4×10−4.

by the minmod limiter. Although the proposed method achieves only second order of
accuracy, the moving mesh method is capable of improving the numerical resolution of
the solutions. Distributions of the mesh grids and density are shown in Fig. 5 where the
monitor function is set as

w=

√
1+

(
ρξ

max|ρξ |

)2

+100

(
uξ

max|uξ |

)2

+5

(
sξ

max|sξ |

)2

,

where s = p+π∞

ργ . One can observe that distribution of the mesh grids perfectly match

the basic physical structures, such as the rarefaction wave, material interface and shock
wave. Besides, refinement study indicates the convergence of our algorithm, as one can
see that the density gets closer to the reference solution with increasing number of grid
points.

Gas-liquid shock-tube problem III

In the fifth set of tests, another challenging gas-liquid shock-tube problem studied in
[28, 29] is presented. The problem is computed in x∈ (−0.2,1) with the following initial
conditions

(ρ1,ρ2,u,p,γ,π,z1)

=

{
(1000.0, 50.0, 0.0, 109, 4.4, 6.0×108, 1.0), x≤0.5,

(1000.0, 50.0, 0.0, 105, 1.4, 0.0, 0.0), x>0.5.
(5.5)

Transmissive boundary conditions are imposed at both boundaries. The CFL number is
set as 0.95, and final time is t=2.0×10−4.

This problem is also challenging since the pressure ratio is extremely high and the
material interface and shock wave are quite close to each other. As a result, distribution
of the density between the material interface and the shock wave is hard to capture.
Numerical results in Fig. 6 illustrate the effectiveness of our approach, where the monitor
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function is chosen to be





ω=
√

1+α1min{1,Φ1}2+α2min{1,Φ2}2+α3{1,Φ3}2,

Φ1=
2|∂ξ φ1|

max|∂ξ φ1|+min|∂ξ φ1|
, Φ2 =

2|∂ξξφ2|
max|∂ξξφ2|+min|∂ξξφ2|

, Φ3 =
2|∂ξ φ3|

max|∂ξ φ3|+min|∂ξ φ3|
,

α1=α2=α3=200,

φ1=φ2=ρ,

φ3= z1.

Distributions of the grid points with Nx = 2000 and its zoom-in plot in (x,t)∈ [0.3,0.6]×
[2.0×10−5,6.0×10−5] can be seen at the top row of Fig. 6, where we output the trajecto-
ries every four grid points so that the structure can be seen clearly. One can observe that
the rarefaction wave, material interface and shock wave are well resolved by the mesh.
Moreover, distribution of the density with the same mesh resolution is shown at the mid-
dle row, from which we can see that the density matches the reference one [6], except
that there is a slight undershoot at the material interface. This problem can be fixed by
refining the mesh, as one can see that the resolution is improved when Nx=4000. Finally,
good performances of the distributions of the velocity and pressure presented at the bot-
tom row also demonstrate the effectiveness and robustness of the proposed method.

5.2 Two-dimensional test cases

An air shock impacting on a helium bubble

In the sixth set of tests, numerical solutions of a helium bubble impacted by an air shock
are presented to demonstrate the robustness of the adaptive mesh method. The same test
problem can be found in [28, 31]. At the initial state, the physical quantities are

(ρ1,ρ2,u,v,p,z1)

=





(1.0, 0.138, 0.0, 0.0, 1.0, 10−10), d<1.0,

(1.3764, 0.138, 0.394, 0.0, 1.5698, 1.0−10−10), x<−1.2,

(1.0, 0.138, 0.0, 0.0, 1.0, 1.0−10−10), elsewhere,

(5.6)

with γ1 = 1.4, γ2 =
5
3 , π∞,1 = π∞,2 = 0.0, and d =

√
x2+y2. The computational domain

is (−3,4)×(−3,3). Reflective boundary conditions are imposed at the top and bottom
physical boundaries, and transmissive boundary conditions are imposed elsewhere. The
results are extracted at multiple output time: t=0.5, 1.0, 2.0, 4.0, with CFL=0.9.

In the first comparison, we keep the number of the mesh grids fixed, with Nx×Ny =
70×60, and test the problem on uniform and moving meshes. The monitor functions are
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Figure 6: Gas-liquid shock-tube problem III. Top row: trajectories of the mesh grids with Nx=2000 on the left,
and its zoom-in plot on the right. Middle row: distributions of density with Nx = 2000 and Nx = 4000 on the
left, and its zoom-in plot on the right. Bottom row: distributions of the velocity (left) and pressure (right).

The final time is t=2.0×10−4.
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Figure 7: An air shock impacting on a helium bubble. Distributions of density computed on uniform (top) and
adaptive (bottom) meshes, and distribution of mesh grids (middle), with Nx×Ny=70×60, at multiple output
time: t=0.5, 1.0, 2.0, 4.0.

set as





ωξ(Qi,j)=
√

1+α1min{1,Φ1}2+α2min{1,Φ2}2+α3{1,Φ3}2,

ωη(Qi,j)=
√

1+α1min{1,Ψ1}2+α2min{1,Ψ2}2+α3{1,Ψ3}2,

α1=α2=α3=200,

Φ1=
2|∂ξ φ1|i,j

maxi,j |∇φ1|+mini,j |∇φ1|
, Φ2=

2|∂ξξφ2|i,j
maxi,j |∆φ2|+mini,j |∆φ2|

, Φ3=
2|∂ξ φ3|i,j

maxi,j |∇φ3|+mini,j |∇φ3|
,

Ψ1=
2|∂ηψ1|i,j

maxi,j |∇ψ1|+mini,j |∇ψ1|
, Ψ2=

2|∂ηηψ2|i,j
maxi,j |∆ψ2|+mini,j |∆ψ2|

, Ψ3=
2|∂ηψ3|i,j

maxi,j |∇ψ3|+mini,j |∇ψ3|
,

φ1=φ2=ψ1=ψ2=ρ,

φ3=ψ3=ρe−π∞.

Numerical results and CPU time are shown in Fig. 7 and Table 2, respectively. When the
adaptive mesh method is used, the mesh points are concentrated at material interface.
As a result, the mesh size becomes much smaller and it would take much more CPU time
for the adaptive mesh method to simulate. However, a significant improvement in the
resolution of solutions can be observed.
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Table 2: CPU time comparison.

Mesh type Nx×Ny CPU time (second)

Uniform Mesh 70×60 8.5

Moving Mesh 70×60 103.7

Uniform Mesh 420×210 2651.0

Moving Mesh 140×120 1396.6

Table 3: CPU time on uniform mesh.

Mesh type Nx×Ny CPU time (second)

Uniform Mesh 105×90 36.2

Uniform Mesh 210×180 310.1

Uniform Mesh 420×210 2651.0

In the second comparison, we are going to show how much acceleration one may
expect by using the adaptive mesh method. Note that the computational time is propor-
tional to the number of mesh grids when problems are solved on uniform mesh, which
can be clearly seen in Table 3. When the adaptive mesh method is used, the minimum
value of the grid size varies step by step, and the CPU time is not easy to estimate. We
test the problem on uniform mesh with Nx×Ny = 420×360, and on moving mesh with
Nx×Ny = 140×120. Numerical results and CPU time are shown respectively in Fig. 8
and Table 2, from which one can observe that the resolutions of solutions computed on
uniform and moving meshes are quite close to each other, but it requires much fewer grid
points and takes much less CPU time for the adaptive mesh method to simulate.

In addition to the above two comparisons, one may also see convergence of the adap-
tive mesh method by comparing solutions on moving meshes with Nx×Ny=70×60 and
Nx×Ny =140×120.

Interaction of a shock in water with a gas bubble

In the seventh set of tests, the robustness of our approach is illustrated by testing a prob-
lem studied in [4,12,45], where an air bubble interacts with a Mach 1.72 shock in water. At
the initial state, the bubble is centred at (x,y)=(6.0,6.0) with radius 3.0, and the left-going
shock is located at x=11.4. Concretely, the initial physical quantities are

(ρ1,ρ2,u,v,p,z1)

=





(1.2×10−3, 1.325, −68.525, 0.0, 19153.0, 10−6), x>11.4,
(1.2×10−3, 1.0, 0.0, 0.0, 1.0, 1.0−10−6), d<3.0,
(1.2×10−3, 1.0, 0.0, 0.0, 1.0, 10−6), elsewhere,

(5.7)
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Figure 8: Solutions of an air shock impacting on a helium bubble at multiple output time: t=0.5, 1.0, 2.0, 4.0.
Distributions of density computed on uniform mesh (top), with Nx×Ny=420×360. Distributions of mesh grids
(middle) and density on moving mesh (bottom), with Nx×Ny=140×120.

with γ1 = 1.4, π∞,1 = 0.0 and γ2 = 4.4, π∞,2 = 6000.0, and d =
√
(x−6)2+(y−6)2. The

problem is computed in (0,12)×(0,12) with CFL = 0.9 until t = 4.50×10−2. Transmis-
sive boundary conditions are employed at the left and right boundaries, while reflective
boundary conditions are imposed elsewhere.

This problem is challenging since the positivity of the sound speed is difficult to pre-
serve during the whole computation if high order methods are used, and negative sound
speed would lead to a crash of the code, as shown in [4]. However, it does not encounter
this difficulty when the linear reconstructions together with minmod limiters are used
for the primitive variables, since their local extrema are well preserved.

Distributions of the mesh grids and density at multiple output time: t = 1.02×
10−2,2.04×10−2,3.05×10−2,4.05×10−2,4.50×10−2, are shown in Fig. 9, where the monitor
functions are the same as those for the previous test, except that α1=α2=α3=20. For the
solutions computed on the coarse mesh, i.e. under mesh resolution Nx×Ny = 100×100,
one can see that the structures of the density has already been produced. However, they
are not sharp enough due to lack of the grid points. We also compute the problem with
Nx×Ny=500×500, and find that the solutions are comparable to those presented in [12],
where the problem is computed on Nx×Ny =500×500 uniform mesh by a fifth order al-
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Figure 9: Interaction of a shock in water with a gas bubble: distributions of the mesh grids and density under
mesh resolutions Nx×Ny=100×100 (left two columns) and Nx×Ny=500×500 (right two columns) at multiple

output time: t=1.02×10−2, 2.04×10−2, 3.05×10−2, 4.05×10−2, 4.50×10−2.

ternative WENO scheme with bound- and positivity-preserving limiters. Although our
approach only achieves second order of accuracy, it is capable of producing sharp mate-
rial interface and fine physical structures, since the grid points are suitably concentrated
near discontinuities; see the right two columns in Fig. 9. Moreover, it does not require



218 Y. Gu et al. / Commun. Comput. Phys., 32 (2022), pp. 189-221

Figure 10: Under water explosion problem: distributions of the mesh grids and density under mesh resolution
Nx×Ny=240×180 at multiple output time: t=2.0×10−3, 8.3×10−3, 12.8×10−3, 19.0×10−3

.

bound- and positivity-preserving limiters in the simulation, which demonstrates the ro-
bustness of the adaptive moving mesh method.

Under water explosion

In the eighth set of tests, the proposed adaptive mesh method is illustrated by simulating
the underwater explosion problem studied in [4, 7, 11, 36]. The initial conditions are

(ρ1,ρ2,u,v,p,z1)

=





(1.225×10−3, 1.0, 0.0, 0.0, 1.01325, 1.0−10−10), y>0.0,
(1.25, 1.0, 0.0, 0.0, 1.0×104, 1.0−10−10), d<0.12,
(1.25, 1.0, 0.0, 0.0, 1.01325, 10−10), elsewhere,

(5.8)

where γ1=1.4 and π∞,1=0.0 for the air phase; γ2=4.4 and π∞,1=6.0×103 for the water
phase; d=

√
x2+(y+0.3)2. The problem is computed in (−2,2)×(−1.5,1.5) with CFL=

0.9. Reflective boundary conditions are imposed at the top and bottom boundaries, while
transmissive boundary conditions are employed elsewhere.

Numerical solutions are shown in Fig. 10 where distributions of the mesh grids and
density are plotted under mesh resolution Nx×Ny = 240×180 at multiple output time:
t=2.0×10−3,8.3×10−3,12.8×10−3,19.0×10−3. In this test, we have used the same monitor
functions as those for the previous test. From the figure, one may clearly observe that
distributions of the grid points are concentrated near the material interface and shocks
at every output time, which in turn provides high resolution solutions, such as the air
bubble which evolves from a circle to oval-like shapes.
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6 Conclusions

In this paper, a second order finite volume discretization with minmod limiter is pro-
posed for the five-equation model, where we have slightly modified the advection equa-
tion for the volume fraction. This serves as the first ingredient of our approach. Mean-
while, adaptive moving mesh method is applied as the second ingredient to improve the
numerical resolution of the solutions. Besides, we have also proved that the proposed
approach preserves the E-property. Numerical examples illustrate that the E-property
is preserved and the physical structures, such as the rarefaction wave, material inter-
face and shock wave, are perfectly resolved. Moreover, challenging test problems have
demonstrated the effectiveness and robustness of our approach.
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