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Abstract. Coronary artery disease is a devastating complication of some patients un-
dergoing liver transplantation. Anesthesia, anhepatic blood flow occlusion, and reper-
fusion of the liver can cause severe fluctuations in hemodynamics. However, the
vast majority of liver transplant patients cannot undergo invasive coronary exami-
nations due to their critical illness and abnormal coagulation function. In this paper,
we present a retrospective case of acute myocardial infarction during surgery in order
to demonstrate a noninvasive method to obtain coronary hemodynamic functional in-
formation based on scalable computational fluid dynamics technology. A P1−P1 sta-
bilized finite element method and second-order backward differentiation formula are
applied to discretize the time-dependent Navier-Stokes equations in the spatial and
temporal directions, respectively. A Windkessel model constructed based on the mea-
sured clinic data is used to characterize the outlet blood flow. We then apply a parallel
Newton-Krylov method with a restricted additive Schwarz preconditioner to acceler-
ate the timeliness of the simulation. The simulated functional indicator successfully
verifies the myocardial ischemia in the anhepatic phase of liver transplantation. We
also present the parallel performance of the algorithm on a supercomputer, and the
results show that the proposed solver achieves over 55% parallel efficiency with 3840
processor cores.
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1 Introduction

Coronary artery disease (CAD) is one of the most worrisome complications of liver trans-
plantation (LT) surgery and carries high morbidity and mortality [1]. Studies have re-
vealed that cardiovascular events remain a leading cause of early mortality (40%), fol-
lowed by infection (28%) and graft failure (12%) [2]. LT is a high-risk surgery, and
underlying CAD is considered a relative contraindication to the procedure [3]. LT is a
significant cardiovascular stressor, as surgical operations such as intraoperative anesthe-
sia, clamping of the hepatic vein and reperfusion can result in abnormal cardiovascular
hemodynamic behavior. Myocardial ischemia or myocardial infarction (MI) will occur
when the blood flow to the myocardium is affected and is insufficient during surgery.
Accordingly, a thorough, accurate and rapid risk assessment of perioperative myocardial
ischemia and further therapeutic intervention are essential for LT patients.

Currently, there is no consensus or standardized guideline regarding CAD risk as-
sessment in the pretransplant period [4]. Each institution uses its own protocol, such as
electrocardiography, ultrasonography, stress tests or nuclear myocardial perfusion imag-
ing, for CAD risk assessment, and the final decision depends on the individual character-
istics, with widespread variation in practice across LT centers [5]. Nevertheless, noninva-
sive coronary computed tomography angiography (CCTA) examination is recommended
by some guidelines [6, 7] to evaluate the CAD risk. CCTA is an anatomic test and pro-
vides an expeditious and cost-effective method of assessing patients at intermediate risk
for CAD, that is, anatomically obstructive CAD (≤ 50% luminal narrowing). However,
perioperative myocardial infarction is also observed in LT patients with nonobstructive
coronary artery stenosis [8]. Some studies have reported that anatomical stenosis does
not directly result in functional ischemia [9, 10].

Since myocardial infarction is caused by an insufficient blood supply to the my-
ocardium, that is, changes in coronary hemodynamics, cardiologists have developed an
interventional technique, i.e., fractional flow reserve (FFR) [11], to assess the risk of CAD
from the hemodynamic function perspective. FFR is defined as the ratio of maximum
flow in the presence of stenosis to the normal maximum flow [12]. Clinically, FFR is a
blood pressure ratio measured by a sensor on the tip of a guidewire during hyperemia
by injecting adenosine or papaverine. The guidelines suggest that FFR≤0.8 indicates my-
ocardial ischemia, and revascularization surgery (such as stenting) is needed to improve
the patient’s myocardial blood supply. However, in addition to the need for contrast
and tolerating the radiation used to guide the operation, we need to put a pressure wire
into the coronary arteries to measure their pressures. LT patients are usually in critical
condition and have abnormal coagulation function, and most patients cannot undergo
invasive coronary FFR examination. Therefore, although the invasive FFR has become
the gold-standard method for risk assessment of myocardial ischemia, it is unrealistic to
use it to preoperatively assess the risk of CAD for patients planning to undergo LT.

In the past few years, novel technologies that utilize computational fluid dynam-
ics [13–17] and conventional medical imaging data have made significant progress in
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obtaining the FFR noninvasively. Representatively, computed tomography (CT)-derived
fractional flow reserve (FFRCT) [18] has demonstrated high diagnostic performance and
high discriminatory power [19]. Despite limitations, e.g., dependence on quality imag-
ing data and stable CAD requirements, the of use of FFRCT proved that this emerging
numerical tool is able to provide a functional perioperative myocardial ischemia evalua-
tion of CAD by applying 3D anatomic and microvascular resistance models. Therefore,
considering the need to identify high CAD risk candidates in the LT pretransplant period
and the lack of any adequate methods to do so, this work shows a pilot study comparing
cardiac hemodynamics occurring while undergoing CCTA and LT. The indicators of my-
ocardial ischemia, FFR, at different surgical stages are calculated numerically for com-
parative analysis with clinical characteristics. Concerning the issues of timeliness, we
present a domain decomposition method-based scalable solver to simulate blood flow in
curved and complicated coronary artery trees.

A retrospective case of myocardial infarction in the perioperative period of LT was
studied, and the preoperative CCTA examination showed that the patient had nonob-
structive coronary artery stenosis. We first rebuilt the patient-specific morphological do-
main based on the CCTA images and then constructed boundary conditions according
to the monitored blood pressure and heart rate at different stages of LT. A stabilized
finite element P1−P1 scheme on an unstructured tetrahedral mesh and a fully implicit
second-order backward differentiation formula are applied for spatial and temporal dis-
cretization, respectively. A Newton-Krylov-Schwarz algorithm is applied to solve the
discretized large-scale nonlinear system. Through numerical experiments, we present
the calculated myocardial ischemia indicators, as well as the complex pulsatile blood
flow field in tortuous cardiac arteries at each stage. Moreover, we report the parallel
performance of the proposed solver carried out on a supercomputer.

The rest of the paper is organized as follows. In Section 2, we describe the details
of the computational method. Section 3 is devoted discussing the retrospective case and
some observations. Finally, we draw some conclusions in Section 4.

2 Methodology

2.1 Morphological domain construction

The patient-specific morphological domain is the premise of the numerical simulation of
hemodynamics. The cardiovascular arteries mainly include the aortic sinus connected to
the left ventricle, aorta and coronary artery. In this paper, the 3D geometry of artery trees
(diameter ≥ 0.8mm) is reconstructed based on high-resolution multislice CCTA images
at the end of diastole [20], as shown in Fig. 1. The relevant parameters of the CCTA
images are 0.75mm slice thickness, 0.35mm pixel size, 512×512 image resolution and a
total of 255 slices. The reconstructed anatomic model was evaluated by cardiovascular
ultrasound data and experienced physicians to ensure an accurate geometry.



1228 Z. Yan, D. Shang, J. Li and R. Chen / Adv. Appl. Math. Mech., 14 (2022), pp. 1225-1245

(a) (b)

Figure 1: Reconstructed patient-specific anatomical cardiovascular model (b) based on CCTA images ((a): axial
view).

2.2 Governing equation and boundary condition

In this work, the blood flow is assumed to be a Newtonian incompressible fluid with
constant and uniform density, ρ = 1.050g/cm3 and viscosity µ = 0.035cm2/s. The pul-
satile pumping of the heart during the cardiac cycle makes the flow unsteady, and the
governing equation can be described by the following Navier-Stokes equations:

∂u
∂t

+u·∇u−∇·σ=0 in Ω, (2.1a)

∇·u=0 in Ω, (2.1b)

where u is the blood velocity vector, σ=−pI+µ(∇u+(∇u)T) is the Cauchy stress tensor,
I is an 3×3 identity matrix, and p is the blood pressure. Ω ∈ R3 is the computational
domain bounded by artery walls. Under the rigid wall assumption, a nonslip boundary
condition is applied on the artery wall ΓW ,

u=0 on ΓW . (2.2)

Each distinct stage of LT has its own hemodynamic characteristics, such as changes in
cardiac output, heart rate, and systemic vascular resistance [21]. The hemodynamics of
blood flow in the coronary artery at each stage of LT can be simulated by changing the
boundary conditions based on the physiological parameters measured during the oper-
ation. However, some clinical data are destined to be unavailable with current medical
device technology, and some valuable and obtainable data are not perfect enough be-
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cause this case is retrospective. Therefore, we used both the measured clinical data and
data from literatures to construct suitable boundary conditions.

For the cardiovascular system, the blood is pumped by the heart from the left ventricle
and passes to the myocardium and other organs and tissues throughout the body. The
inlet is located at the junction of the left ventricle and the aorta, which is the largest
artery in the body. Cardiovascular ultrasound provides a mean blood velocity v̄aorta in
the aorta over a cardiac cycle, and combined with a recommended cardiovascular blood
waveform in the literature [22], a transient velocity g is obtained, which is imposed on
the inlet boundary ΓI :

u=g on ΓI . (2.3)

A Windkessel model [23] is imposed on the outlet boundary ΓO. Specifically, at time t,
the time-varying blood pressure p(t) on the k-th artery outlet,

pk(t)= [pk(0)−RkQk(0)−pk
d(0)]e

− t
τk +pk

d(t)

+RkQk+
∫ t

0

( e−(t−s)/τ

Ck

)
Qk(s)ds, (2.4a)

where Rk is the resistance,and Qk is the volume flow rate through the k-th outlet. pd is the
downstream pressure. τk =Rk

dCk and Ck is the capacitance which is used to characterize
the deformation of arteries. Rk and Ck are calculated by the rule for a parallel circuit and
the area of the corresponding outlet [24],

Rk =Rtotal
∑(dk)3

(dk)3 , k=1,··· ,n, (2.5a)

Ck =Ctotal
Ak

O

∑ Ak
O

, k=1,··· ,n, (2.5b)

where dk and AO are the diameter and area of the k-th artery outlet, respectively. Rtotal
and Ctotal are the total resistance and capacitance of all artery outlets, respectively. Rtotal

is calculated in the way Rtotal = α Pb
Qc

, where Pb is the mean brachial pressure, α is an
empirical constant, and Qc is the flow in the coronary arteries. At each stage of LT, Pb
is estimated based on the measured systolic blood pressure (SBP) and diastolic blood
pressure (DBP) by empirical formulas [25]. Since studies have reported that the total
blood flow delivered to the myocardium by the coronary artery is proportional to the
cardiac output, here, we set Qc equal to 4% of the inlet flow [26]. Let n be the outward
unit surface normal to the k-th outlet Γk

O; then, Qk is calculated by

Qk =
∫

Γk
O

u(t)·ndΓ. (2.6)

Therefore, the outlet boundary condition (2.4) gives a relationship of the flow velocity
and pressure.
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2.3 Discrtization

A stabilized P1−P1 finite element method is applied to discretize the governing equations
Eq. (2.1) in the spatial domain. Define the trial and weighting function spaces as:

V={u∈ [H1(Ω)]3 : u=g on ΓI , u=0 on ΓW}, (2.7a)

V0={Φ∈ [H1(Ω)]3 : Φ=0 on ΓI∪ΓW}, (2.7b)

P=L2(Ω). (2.7c)

The Galerkin weak form can be written as follows: finding u∈ V and p∈P such that
∀Φ∈V0 and ∀q∈P :

B({u,p},{Φ,q})=0, (2.8)

with

B({u,p},{Φ,q})≡ρ
∫

Ω

∂u
∂t
·ΦdΩ+µ

∫
Ω
∇u:∇ΦdΩ+ρ

∫
Ω
(u·∇)u·ΦdΩ

−
∫

Ω
p∇·ΦdΩ+

∫
Ω
(∇·u)pdΩ−

∫
ΓO

τ ·ΦdΓ, (2.9)

where τ=−pn+µ(∇u·n).
The finite element pair P1−P1 is unstable to discretize incompressible Navier-Stokes

equations [27] because it does not satisfy the LBB condition. A stabilization term intro-
duced in [28] is employed in this paper to stabilize the P1−P1 method. On an unstruc-
tured tetrahedral mesh T h={K}, the finite dimensional weak form is defined as follows:
Finding uh∈V h and ph∈Ph, such that ∀Φh∈V h

0 and ∀qh∈Ph,

B̄({uh,ph},{Φh,qh})=0, (2.10)

with

B̄({uh,ph},{Φh,qh})≡B({uh,ph},{Φh,qh})+ ∑
K∈T h

(
∇·uh,τc∇·Φh

)
K

+ ∑
K∈T h

(
Lh,τm

(
uh ·∇Φh+∇qh

))
K
+ ∑

K∈T h

(
ūh ·∇uh,Φh

)
K

+ ∑
K∈T h

(
ūh ·∇uh,τbūh ·∇Φh

)
K

, (2.11)

where τc, τm and τb are the stabilization parameters. ūh =−τmLh and Lh is computed by

Lh =ρ
∂uh

∂t
+ρuh ·∇uh+∇ph−ρfh.
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The stabilization parameters τm, τc and τb are defined as follows:

τm =

√ 4
∆t2 +(uh

n ·Guh
n)+36

(
µ

ρ

)2

G : G

−1

,

τc =(8τmtrace(G))−1 ,

τd =
√

uh
n ·Gūh

n,

where

G={Gij}=
{

3

∑
k=1

∂ξk

∂xi

∂ξk

∂xj

}

is the covariant metric tensor and ∂ξ
∂x denotes the inverse Jacobian of the mapping be-

tween the reference and the physical element. uh
n and ūh

n are the counterparts of uh and
ūh at the nth time step, respectively. ∆t is the timestep size for the temporal discretization.

We rewrite Eq. (2.10) in the following simplified form to introduce the temporal dis-
cretization,

X
dt

=L(X), (2.12)

where L(X) is the semidiscretized system of the Navier-Stokes equations, except the first
term ∂ū

∂t after spatial discretization. X is the vector consisting of the nodal values of the
velocity and pressure. A second-order backward differentiation formula (BDF2) [29, 30]
is applied for the temporal discretization of Eq. (2.12), as shown in Eq. (2.13),

1.5Xn−2Xn−1+0.5Xn−2=∆tL(Xn). (2.13)

Note that, in (2.13), we need two previous timestep solutions to calculate the current
timestep solution. With a given initial condition X0, we first calculate X1 by the backward
Euler method with time step size 0.5∆t, and then step forward by (2.13) with X0 and X1.

2.4 Domain decomposition method based solver

After discretization, a large, sparse, and nonlinear system must be solved at each time
step to obtain the solution at the next time step, which is simply denoted as:

Fn(Xn)=0. (2.14)

We propose a solution strategy for solving the system (2.14) based on a Newton-Krylov-
Schwarz (NKS) method [31]. The NKS method is suitable for solving large, sparse non-
linear systems and has been widely applied in various problems [32, 33]. At the nth time
step, let Xn

0 =Xn−1 be the initial guess and Xn be the current approximate solution. The
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inexact Newton’s method solves the nonlinear equation system iteratively by inexactly
solving a series of linearized systems

Jn
k dn

k =−Fn(xn
k ), (2.15)

to obtain the search direction dn
k and then update the solution in the way

Xn
k+1=Xn

k +λn
k dn

k , (2.16)

where λn
k is the step length obtained by a cubic backtracking line search and Jn

k is the
Jacobian of Fn evaluated at xn

k . The system (2.15) is a large and ill-conditioned linear
system, and a preconditioned GMRES method with an RAS preconditioner Mk

n is used
to solve it inexactly such that

‖F(Xn
k )+Jn

k (M
k
n)
−1Mk

ndn
k‖≤ηk‖F(Xn

k )‖, (2.17)

where ηk is the relative tolerance to control the accuracy of the solution of the linear
system.

The restricted additive Schwarz (RAS) method is an overlapping domain decomposi-
tion method [34] that starts with partitioning the computational domain Ω into np non-
overlapping subdomains Ωi, i= 1,··· ,np, where np is equal to the number of processors
in this paper. Then, the overlapping subdomains Ωδ

i are obtained by extending δ lay-
ers of elements from the neighboring subdomains, where δ represents the overlapping
level. An example of the partition is shown in Fig. 2, where the computational domain,
in which the number of tetrahedral elements is approximately 2.0×105, is decomposed
into 8 subdomains and assigned to 8 processors for parallel solving. Note that since the
partition is related to the load balancing in subsequent parallel computing, the number of
degrees of freedom (DOFs) in each subdomain needs to be close to guarantee the parallel
performance of the algorithm. The RAS preconditioner is defined as the summation of
the subdomain preconditioners such that

(Mk
n)
−1=

np

∑
i=1

(R0
i )

T(Bk
n)
−1
i Rδ

i ,

where R0
i and Rδ

i are restriction operators from the global domain Ω to the non-
overlapping subdomain Ωi and overlapping subdomain Ωδ

i , respectively. (Bk
n)
−1
i is a

subdomain preconditioner for the subdomain Jacobian matrix (Jk
n)i, and it is computed

approximately by point-block ILU factorization.

2.5 Hardware and software

The original CCTA images are derived from a high-resolution CT scanner (SOMATOM
Force, SIEMENS), and the cardiovascular arteries are reconstructed by Mimics software
(V21.0, Materialise, Ann Arbor, MI, USA) and subsequent manual surface smoothing
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(a) (b)

Figure 2: Schematic view of the computational mesh (a) and domain decomposition (b) for parallel computing.
Each color refers to one subdomain.

processes. The solver is implemented on the top of an open source package PETSc [35].
ANSYS ICEMCFD [36] and ParMETIS [37] are employed for mesh generation and par-
titioning, respectively. Numerical experiments are carried out on the TianHe-2A super-
computer at China’s National Supercomputing Center in Guangzhou. ParaView [38] is
used for visualization of the flow field.

3 Numerical experiments and discussion

In this section, we show the numerical results of the experiment that we conducted to
investigate the FFR changes due to the LT operation and the parallel scalability of the
proposed solver.

This retrospective case is a patient with chronic liver failure who needed to undergo
a liver transplant. Routine CCTA was examined before surgery to assess the cardiovas-
cular risk. The CCTA images show that there are several mild stenoses at the proximal
and middle of the left anterior descending (LAD) artery and the proximal right coronary
artery (RCA) due to multiple spotty calcifications. After assessment of the CCTA diagno-



1234 Z. Yan, D. Shang, J. Li and R. Chen / Adv. Appl. Math. Mech., 14 (2022), pp. 1225-1245

Table 1: Heart rate, systolic blood pressure (SBP) and diastolic blood pressure (DBP) measured in the brachial
artery during the CCTA scan, anesthesia MHR and anhepatic phase. The unit of the heart rate is beats per
minute (BPM), and the unit of pressure is mmHg.

Stage Heart Rate SBP DBP Cardiac Cycle (s) T (s) ∆t (s)
CCTA Scan 80 124 58 0.75 3.00 0.075
Anesthesia MHR 95 135 75 0.63 2.52 0.063
Anhepatic Phase 90 60 40 0.67 2.68 0.067

sis, the doctors decided that the patient had a low risk of CAD. Echocardiography shows
that the mean velocity of blood flow at the aorta v̄aorta =100mm/s.

After CCTA examination, the patient underwent liver transplant surgery, and the
heart rate, SBP and DBP were measured during the surgery. Table 1 shows the three
sets of monitoring data, heart rate, SBP and DBP, corresponding to the CCTA examina-
tion stage, the moment of the maximum heart rate (MHR) during anesthesia, and the
anhepatic phase (liver replacement, portal vein and hepatic artery from closure to open-
ing). The patient received urgent treatment because of experiencing a sudden myocardial
infarction during the anhepatic phase. We want to use the proposed method to confirm
the myocardial infarction.

The inflow rate Qin is calculated using the mean velocity of the blood flow at the aorta
v̄aorta and the heart rate. We assume that the stroke volume (the volume of blood pumped
from the left ventricle per heart beat) is constant at all stages. Therefore, the profile of Qin
changes with the change in heart rate at each stage, as shown in Fig. 3. For each stage, the
simulation runs for four consecutive cardiac cycles. The total simulation time T of each
stage is dependent on the heart rate. The time step size is set to ∆t=1/(Heart Rate).
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Figure 3: The time-varying inflow rate in a cardiac cycle at each stage of LT.
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3.1 Fractional flow reserve calculation

The FFR is a time-averaged value over one or multiple cardiac cycles and is calculated
by using the pressure distal to the stenosis Pd and the aortic pressure Pa as follows:
FFR = Pd/Pa. Clinically, the FFR is measured at the three major branches: the left an-
terior descending (LAD) coronary artery, the left circumflex (LCX) coronary artery, and
the right coronary artery (RCA). The percutaneous coronary intervention (PCI) guide-
lines suggest that patients are at high risk of myocardial ischemia and should undergo
myocardial revascularization if FFR < 0.8 [39]. In our numerical simulation, four mon-
itoring points (P1∼ P4) were placed to observe the pressure and FFR. The point P1 is at
the entrance of the coronary artery, which is used to obtain the proximal pressure Pa, and
P2∼P4, which are used to obtain the distal pressure Pd, are at the distal end of the LAD,
LCX and RCA, respectively. The reconstructed vessel geometry shows that there are sev-
eral mild stenoses caused by calcifications in the LAD and RCA, and we therefore refine
the meshes near the lesions to better capture the flow pattern, as shown in Fig. 4.

We simulate the blood flow on two different grids M1 and M2 for each stage, and the
maximum mesh size on the wall for these two grids is set to 0.4mm and 0.2mm, respec-
tively. Correspondingly, the numbers of tetrahedron cells are approximately M1:6.99×106

and M2 : 1.47×107, and the numbers of degrees of freedom (DOFs) are approximately
M1 : 5.81×106 and M2 : 1.22×107, respectively.

Unless otherwise specified, the parameters of the solver in the numerical experiments

Stenosis in RCA

Stenosis in LAD

P1

P2

P3

P4

Refined mesh in RCA

Refined mesh in LAD

(a) (b)

Figure 4: Positions of monitoring points and computational mesh.
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Figure 5: The pressure comparison with M1 and M2 at the four monitoring points.

are set to the overlapping size δ=1 and the level of ILU fill-ins `=1. The restarted iter-
ation k=400 in the restart GMRES(k) algorithm. The relative tolerances of the nonlinear
iteration and the linear iteration in the Newton step are set to 1.0×10−6 and 1.0×10−4,
respectively.

The pressure curves at aorta, LAD coronary artery, LCX coronary artery and RCA
are presented in Fig. 5. With different mesh resolutions, M1 and M2, the pressure values
at the peaks slightly deviate. Nevertheless, the comparison illustrates that the pressure
history with the coarse mesh M1 is almost the same as that of the fine mesh M2, which
means that the pressure almost reaches the mesh convergence on M2.

We next put the pressure values at different stages together to analysis. Correspond-
ing to the measured brachial artery mean pressure in Table 1, as shown in Fig. 6, at the
monitoring points on the four coronary artery branches, the pressure at different stages of
the CCTA scan and anesthesia MHR are a little higher than those in the anhepatic phase.
The pressure waveforms presented at different stages are slightly different, which may
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Figure 6: Pressure history at the four monitoring points under different stages of the liver transplant procedure
(Aorta, LAD, LCX and RCA correspond to P1∼P4, respectively).

be due to the different cardiac cycle and outlet boundary conditions. Compared with
those of the LAD coronary artery and RCA, the peak values and time-averaged values of
the LCX pressure in all the three stages are relatively higher than the other arteries.

Table 2 and Fig. 7 present the simulated FFR of the three major branches of the coro-
nary arteries at each stage of the operation. We have the following observations: (1) At the
CCTA scan stage, although mild stenosis causes the FFR of the RCA and LAD coronary
artery to be lower than that of the LCX coronary artery, the FFR > 0.8 for all branches,
which indicates that there is no risk of myocardial infarction. The clinical manifestations
of the patient during CCTA also confirm that the blood supply of the entire myocardium
is adequate. (2) The FFR of each branch is analyzed separately: FFR > 0.8 for the LCX
and LAD coronary arteries (slightly higher than 0.8) at all stages of operation, but for the
RCA, the FFR drops significantly and is less than 0.8 during the anhepatic phase. These
ischemic FFR values explain why the patient suffered a myocardial infarction during the
anhepatic phase. (3) The results show that even if the patient is not diagnosed with coro-
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Table 2: FFR values for each coronary artery branch obtained by numerical simulation for each stage of liver
transplant surgery.

Stage M1 : DOFs=5.81×106 M2 : DOFs=1.22×107

LAD LCX RCA LAD LCX RCA
CCTA Scan 0.841 0.936 0.809 0.855 0.935 0.826

Anesthesia MHR 0.852 0.939 0.822 0.861 0.941 0.834
Anhepatic Phase 0.809 0.925 0.771 0.822 0.924 0.789

nary artery disease due to only a few mild stenoses, fluctuations in hemodynamics can
cause myocardial ischemia, which can cause myocardial infarction in severe cases. (4)
This phenomenon is in line with the clinical perspective; that is, mild stenosis of multi-
ple vessels can be associated with postoperative hemodynamic instability and increased
mortality [3].

Compared with the single-point FFR measured by the clinical pressure wire, the nu-
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Figure 7: FFR history at the three monitoring points during different stages of the LT procedure.
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Figure 8: Simulated FFR distributions at Anhepatic phase.

merical simulation can obtain the FFR distribution of the entire coronary tree, as shown
in Fig. 8, with which we can find all the possibly unhealthy arteries at Anhepatic phase.

3.2 Parallel performance

Simulation time is very important in clinical applications. A parallel scalable solver is
able to reduce the simulation time by increasing the number of processors used in the
simulation. In this section, we investigate the parallel performance of the proposed
solver. Based on the simulation of the CCTA scan stage, the strong scalability results
of the proposed solver are reported in Table 3. As shown in the table, the solver scales up
to 3840 processors for the two grids M2 and M2. The parallel efficiency decreases with
the increase of the number of processors, and with the same number of processors, the
parallel efficiency for solving M2, which has larger loads per processor, is higher than
that of M1. The reason is that the proportion of the interprocessor communication and
subdomain solving time of the large mesh M2 is smaller than that of the small mesh M1,
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Table 3: Strong scaling results of the solver. “np” is the number of processors, “NI” and “LI” denote the
average number of nonlinear iterations per time step and the average number of GMRES iterations per Newton
step, respectively. “Time” is the average total computation time in seconds per time step, “Ideal” is the ideal
speedup, and “Eff” is the parallel efficiency.

np
M1 : DOFs=5.81×106 M2 : DOFs=1.22×107

NI LI Time Eff NI LI Time Eff
240 3.8 346.8 129.1 100.0% 3.8 410.1 331.9 100.0%
480 3.8 348.6 73.9 87.3% 3.8 434.4 161.7 102.7%
960 3.7 388.6 42.0 76.9% 3.8 462.1 96.0 86.4%

1920 3.7 426.9 27.5 58.7% 3.8 512.1 59.6 69.6%
3840 3.7 512.0 21.1 38.3% 3.8 558.9 37.5 55.4%

and the interprocessor communication is the main factor that influences the parallel ef-
ficiency. More intuitively, the scalability results are reported in Fig. 9, where the results
show that an almost linear speedup is obtained for the proposed solver. Based on the
results of np = 240, the table shows that for the case M2, the proposed solver performs
with over 55% parallel efficiency when the number of processors reaches 3840.

4 Conclusions

Myocardial infarction is the main coronary artery disease affecting liver transplants.
Therefore, aggressive pre-LT ischemic evaluation is necessary to assess cardiac function
and identify clinically significant cardiovascular disease. However, the current gold-
standard indicator, fractional flow reserve, which is based on invasive techniques, is
contraindicated for most liver transplant candidates. This paper introduces a scalable
CFD-based method to obtain the FFR noninvasively. A real case, which was diagnosed
with several mild coronary stenoses by CCTA scan but experienced acute myocardial in-
farction during liver transplant, was used to evaluate the detailed hemodynamics and
parallel performance of the solver.

The numerical results show that even if there is no obstructive (≤50%) coronary steno-
sis by the CCTA examination, the coronary FFR could drop below 0.8, which is a reliable
cut-off for hemodynamic-relevant stenoses, due to hemodynamic fluctuations after anes-
thesia during liver transplantation and could cause myocardial ischemia. Abnormal car-
diac indicators are observed during LT, and this state is underestimated with current
clinical diagnostic tools. In this case, the simulated FFR indicated that ischemia occurred
in the anhepatic phase, and the FFR of the coronary artery branches with mild stenosis,
LAD coronary artery and RCA in this case, decreased more than that of the branches with
normal vessel anatomy.

Two scales of the problem, with 6.99×106 and 1.47×107 tetrahedral cells, are used to
evaluate the parallel performance of the Newton-Krylov-Schwarz-based solver with up
to 3840 processors. The results verified that the parallel efficiency is over 55% when the
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Figure 9: The average total computation time per timestep (a) and the speedup (b).

number of processors reaches 3840, the average simulation times per time step is reduced
to approximately 20 seconds, and the total simulation time can be concluded in 1 hour if
one cardiac cycle is considered.

5 Limitations

Although many studies have indicated the presence of an abnormal heart response dur-
ing liver transplantation, its definition, prevalence, and clinical significance are unknown.
Related numerical research is almost nonexistent. Thus, as a pilot study, this work has
many limitations. According to the framework of the simulation and the clinical charac-
teristics, we list some of the shortcomings below:

Clinical perspective: (1) Since numerical FFR research so far has only been performed
with stable CAD patients. For the nonacute or nonserious diseases such as LT cases,
its accuracy in patients with acute complicated coronary syndrome remains unknown.
Numerous prospective studies in the LT patient population will significantly increase the
body of available data regarding the integration of noninvasive FFR measurements into
clinical decision-making. (2) More clinical monitoring data, such as real-time aortic blood
flow velocity and continuous pressure monitoring, are required to model the boundary
condition better for verification.

Numerical perspective: (1) The computational domain is the reconstructed geometry
based on the CCTA image data, and therefore, image noise, artifacts from calcifications
and motion, segmentation parameters and doctor experience can influence the accuracy
of the reconstructed vascular morphology; (2) The turbulence model, non-Newtonian as-
sumptions, and fluid-structure interactions need to be considered further to understand
the blood flow motion in greater depth; and (3) To improve the algorithm’s parallel per-
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formance, some multilevel techniques need be applied to the blood flow simulation to
insure the scalability for large number of processors.

Despite the limitations, this work is, to the authors’ best knowledge, the first attempt
to use the noninvasive hemodynamic gold-standard indicator FFR to assess the risk of
myocardial ischemia during liver transplantation. Subsequent improvements through
image segmentation, vascular geometry reconstruction, boundary conditions based on
clinical data, and prospective clinical trials with a large number of cases may provide
valuable reference for rapid and accurate noninvasive risk assessment in real clinical ap-
plications.

Abbreviations

BPM beat per minute;
CAD coronary artery disease;
CCTA coronary computed tomography angiography;
CFD computational fluid dynamics;
CVD cardiovascular disease;
DOFs degrees of freedom;
EF ejection fraction;
FFR fractional flow reserve;
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LCX left circumflex;
LT liver transplantation;
MHR maximum heart rate;
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RCA right coronary artery;
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SV stroke volume;
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