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Abstract. In this paper, we develop a residual-based a posteriori error estimator for
the time-dependent Maxwell’s equations in the cold plasma. Here we consider a
semi-discrete interior penalty discontinuous Galerkin (DG) method for solving the
governing equations. We provide both the upper bound and lower bound analysis
for the error estimator. This is the first posteriori error analysis carried out for the
Maxwell’s equations in dispersive media.
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1 Introduction

Dispersive electromagnetic media are those materials with wavelength dependent
physical parameters (such as permittivity). Examples of dispersive media include
human tissue, soil, snow, ice, plasma, optical fibers and radar-absorbing materials.
Hence, the study of wave interaction with dispersive media is very important to our
daily life.

In recent years, there is a growing interest in the finite element modeling and anal-
ysis of Maxwell’s equations (see books [10,17,30] and references cited therein). How-
ever, most work is restricted to the discussion of simple medium such as air in the free
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space. Work on dispersive media is still very limited. In 2001, Jiao and Jin [22] initi-
ated the application of time-domain finite element method (TDFEM) for the dispersive
media. Then in 2004, Lu et al. [28] developed a discontinuous Galerkin (DG) method
for solving Maxwell’s equations in dispersive media. In 2005, Banks and Browning [5]
considered a Debye medium problem solved by finite element method. Unfortunately,
no any error analysis has been carried out for Maxwell’s equations in dispersive me-
dia. Since 2006, we carried out some a priori error analysis of TDFEM for dispersive
media [21,23-27]. In this paper, we initiate our effort on developing a posteriori error
estimation for Maxwell’s equations in dispersive media. For simplicity, we only con-
sider the cold plasma model in this paper. Analysis of other dispersive media can be
carried out similarly.

A posteriori error estimation plays an important role in adaptive finite element
methods (FEMs), and the literature on this is vast (see books [1,3,4,34], reviews [11,13]
and references cited therein). However, to our best knowledge, there are only dozens
of papers devoted to the study of posteriori error estimation for Maxwell’s equations
[6-9,16,19,20,29,32,35]. No any paper has discussed the posteriori error estimation for
dispersive media yet. Here we want to fill the gap by carrying out the first posteriori
error analysis for the Maxwell’s equations in dispersive media.

The governing equations that describe electromagnetic wave propagation in isotropic
nonmagnetized cold electron plasma are [25]

€0Eit + V x (g 'V x E) + eowE —v] (E) =0, (1.1)

where E is the electric field, € is the permittivity of free space, i is the permeability of
free space, w) is the plasma frequency, v > 0 is the electron-neutral collision frequency,
and the polarization current density ] is represented as

t
J(x,t;E) = J(E) = eow;%/o e VI S)E(x,s)ds. (1.2)

Moreover, we assume that the boundary of () is a perfect conductor so that
nxE=0 on 0Qx(0,T), (1.3)

where n denotes the unit outward normal of 0Q). Furthermore, we assume that the
initial conditions for (1.1) are given as

E(x,0) = Eo(x) and E;(x,0) = E1(x), (1.4)

where Ej(x) and E;(x) are some given functions.

The rest of the paper is organized as follows. In Section 2, we describe the semi-
discrete DG formulation for the plasma model. In Section 3, we construct our a poste-
riori error estimator and present the main result. Detailed proof of the error estimator
is given in Section 3.1. Here we adopted many ideas and techniques from [20] orig-
inally developed for Maxwell’s equations in the simple medium. Then in Section 4,
we prove some lower bounds for the local error estimators. We conclude the paper
in Section 5. In this paper, C (sometimes with subindex) denotes a generic constant
which is independent of both the time step T and the finite element mesh size h.
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2 Semi-discrete DG formulation

We consider a shape-regular mesh T, that partitions the domain (2 into disjoint tetra-
hedral elements {K}, such that QO = Ugcr, K. We denote the diameter of K by g, and
the mesh size h by h = maxger, hk. Furthermore, we denote the set of all interior faces
by El, the set of all boundary faces by F?, and the set of all faces by F, = F! U FP.

We assume that the finite element space is given by

Vi, ={vel*(Q)P: v|xe (P(K))? KeT,}, 1>1, (2.1)

where P;(K) denotes the space of polynomials of total degree at most ! on K. We want

to remark that all results below hold true for a mesh of affine hexahedral elements, in

which case on each element K, v| is a polynomial of degree at most ! in each variable.
To simplify the presentation, we rewrite the governing equation (1.1) as:

where we assumed that there exists a given external source field j € L?(Q)?, and all
physical parameters €9 = yip = v = wp, = 1, in which case the polarization current
density J of (1.2) becomes as

J(x,t;E) = J(E) = /Ot e~ "9E(x, 5)ds. (2.3)

We can form a semi-discrete DG scheme for (2.2): For any t € (0, T), find E"(-,t) € V,
such that

(Elk, @) +an(E", ¢) — (J(E"), ¢) = (j,¢), V¢ €V}, (2.4)

subject to the initial conditions
E'1—0 = ThEy, Efl—o = ILEy, (25)

where I, denotes the standard L,- projection onto V},. Moreover, the bilinear form a,
is defined on V, X V}, as

Z/qu Vxvotu- vdx—Z/ r-{{V xv}}dA

KeT, FeF,
— ulld d
F;/ {{V x }}A+F;/ (o]l rdA.

Here [[v]] and {{v}} are the standard notation for the tangential jumps and averages
of v across an interior face F = dK™ N dK~ between two neighboring elements K* and
K™

[O]lr=n" xv"+n" x0v", {{v}} =@ +v7)/2 (2.6)

where v* denote the traces of v from within K*, and n* denote the unit outward
normal vectors on the boundaries dK*, respectively.
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While on a boundary face F = 0K N 0Q), we define [[v]]r = n x v and {{v}} = v.
Finally, a is a penalty function, which is defined on each face F € F, as:

alp = 'yh_l,

where hi|p = min{hg+, hg-} for an interior face F = K™ N 9K, and h|r = hg for a
boundary face F = 0K M d). The penalty parameter v is a positive constant.

Furthermore, we denote the space V(h) = Hy(curl; Q) + V}, and define the DG
energy norm by

lol[i = lloll§a+ Y IV xol5+ Y [la"2[[]]r][3F-
KeF, FeF,

In order to carry out the posteriori analysis, we introduce an auxiliary bilinear
form i, on V(h) x V(h) defined as

Z/qu Vxovo+u- vdx—Z/E (V x v)dx

KeTy, KeT,

- ¥ [ ) (v xwdx+ ¥ [ allullr-[fellrdA,

KeT, FeF,

where the lifting operator £(v) € V), for any v € V, is defined by

/ cwdx = Y / - {{w}ldA Yw eV, 2.7)
Q FEF,
Moreover, the lifting operator £(v) can be bounded as follows [20]
1£(0) B < a Csr Y |la2[[0])7]3 ¢ (2.8)
FEF;,

Note that @, = a; on V;, x Vj, and 4, = a on Hy(curl; Q) x Hy(curl; Q). Further-
more, we have

ay(v,0) = ||V x 0|5+ [[2|[5 = |[o[li Vo€ Ho(curl; ). (2.9)

Moreover, it is easy to prove [2,20] that the bilinear form 7, is both coercive and
continuous on V(h), i.e.,

Lemma 2.1. There exists some positive constant Ceops such that
@ (u,0)| < Ceontl|u|[n||o]ln, Vu,veV(h).

Furthermore, provided that oy > 7 yin > 0, where 7y, depends only on the shape-regularity
of the mesh and the approximation order 1 of V(h), we have

i (v,v) > Ceoer||0|2, Vv € V(h).
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3 A posteriori error estimator

One of the main tools in posteriori error estimate is to find a conforming finite element
function close to the discontinuous one. For this purpose, we define the conforming
finite element space

V;l = Vh N Ho(curl; Q), (31)

i.e., Vj, is the second family of Nédélec element [31]. Moreover, we have the following
approximation property [19,20].

Lemma 3.1. For any v" € V), there exists a conforming approximation v!" € V¢, such that

Y IV x (0" = 0)[5x < Capp Y Bz I[[0"171[5 s

KeT, FeF,
10" =050 < Capp 3, helll[0" 7115,
FeF,
_ 1
" = 2|2 < 20 1Copp 1) X llab (eI, 62
FeF,

where the constant Capp > 0 depends only on the shape regularity of the mesh and the approx-
imation order .

To obtain the posterior error estimator, we need the following result.

Lemma 3.2. (i) [18, Lemma 2.4] For any w € Hy(curl; Q)), there exists the regular decom-
position
w = w’ + Vu!, (3.3)

where w® € Ho(curl; Q) NHY(Q)? and w' € HY(QY). Moreover, there is a constant Cyy, > 0
depending only on Q) such that

||ZUOH1 < Chip”churl/ ||w1||1 < Chiprchrlr (3.4)

where and in the following we define the norm
1/2
(] ewrt = (|[20][ + 1V x 2] ) "

(ii) [7] For any w® € Ho(curl; Q) N H'(Q)3, there exists the quasi-interpolation w) €
V, such that

> (17 x (@ = w1k + 2w — w13 + i w0 = w13 3¢
KeT,

< Chocl w13, (3.5)

bec

where the constant Cp,. > 0 depends only on the shape regularity of the mesh.
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(iii) [14, Sec..A.3] For any w' € H}(Q), there exists a piecewise linear approximation
w}, € H}(Q) such that

Y (19"~ wh) B+ il — wh B + hic o' — b
KeTy,

< Callw'[l,

cle

(3.6)
where the constant C.;, > 0 depending only on the shape regularity of the mesh.

Before we state the main theorem, we first introduce some local error indicators.
Let

T = Willjy — Bl — ¥ x V x B~ E' 4 J(E") o
which measures the residual of the governing Maxwell’s equations (2.2). We denote
1

> L elllV x Bl 3
FeoK\T

2 _
N1, =

for the face residual about the jump of V x E". To measure the tangential jumps of the
approximate solution E", we denote

1 1
W%KZE Yo a2 [[EMIrl[§p-
FEdK\T

Noting that V - V x (V x E") = 0, hence
N, = H&l|V - Gy — Eiy — E" + J(E") [«

measures the error in the divergence of the governing Maxwell’s equations (2.2). Fur-
thermore, we denote

1 .
M =5 3 hlllliy — Efb —E" + J(EMIN[G e
2
FEoK\T

for measuring the normal jump of j, — El, — E" + J(E") over the interior faces.
Similarly, we can define the following local estimators:

,712{% =h%||(j, —Ely =V x V x E" —E" + J(E")|[3 ¢,

1
77%";( =5 Yo eIV x EfIrl[5 5
FEIK\T
1 1
= > Yo laz[[Ef)rlf5 e
FEdK\T

by, = M&IV - (s — Ef = E" + J ("))l .

1 .
1712\];< =5 Y hkl|[(Gy, — El = E" + T(E") NI -
FEK\T
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In the rest of this section, we denote w = E — E' € Hpy(curl; ), where E! is
the conforming approximation of E". Before we can prove the main result, we need
prepare some estimates.

Lemma 3.3. Let
Erry = (j— Bl + J(E"), @’ — ] ) (£) = (E", w” — w]) (1),

where w' is the first part of the regular decomposition (3.3), and w) is the corresponding
quasi-interpolation (Lemma 3.2). Then we have

1
. . 2
Erry < C( X (11 = jullSk + nke + 1 + 1) (8L (37)
KeTy,

Proof: Using the definition of i, and the fact that [[w® — w)]]; = 0, we have

Err; = (j— Ef+ J(E") — E" v’ —wl) — Y /K(V X E') - (V x (@’
KeTy,

—wg))dx-l-KZ; /KE(Eh) (V% (@ — w?))dx.

Using integration by parts and the conformity of w® — w?, we obtain

hl
—KZ% /K(Vth)-(Vx (w® —w?))dx
:_Kz;/K(vaXEh)-(wO—wg)dx

+2/ ng % (V x E") - (w0 — wl)dA
KeT, /9K

_ Z/K<V><V><Eh)-( 0 w)dx

KeT,

Y Y 5 [V E - wf)aa.

KeT}, FEOK\T

Therefore, we have

Erry = (jh —El -V XVxXE' —E'+ J(E"),w - w2>
1
+ L L 5 LIV xETr (w —wf)da

KeT}, FEOK\T

S [ L) (V% () + (— jyw — w])

KeTy

4
=) _Erry;. (3.8)
i=1
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By Cauchy-Schwarz inequality and Lemma 3.2, we have

Errn <Y ngy - b |w® — wj [ox

KeT,
1
2
< E IRk 'CHonl,K < ( E 77122,<> 'C||churl~
KeT, KeTy,
Similarly, we have
1 2 1, _ 2
Ern< Y (8 IV xENrlige) (X ohitllw® —whlifr)
KET, " Fedk\I FedK

< ¥ il = wflloar < (X2 B) - Cllwllan

KeTy, KeT,

By Cauchy-Schwarz inequality, Lemma 3.2 and (2.8), we have

Err < (T ILENR) (X119 x @ - i)’

KeT, KeTy,
1 1

_1 1 2 2
<a 3G ( L (Bl ) " (X 11V x (w0 — ) B

FeF, KeTy,
_11 3
2C 21 (Z W]K) 'CHchurl-

KeTy,

Similarly, we have

1
. . _ . 2
Errms < X ellj — llog I e —wfllox < (X 11— il k) - Clleoleun
KeTy, KeTy,

The proof is completed by substituting the above estimates into (3.8). 0
Lemma 3.4. Let

Errg = (] —ElL 4+ J(EM, V(0! — w%)) (t) —ay (Eh,V(w1 — wi)) (1),

where w' is the second part of the reqular decomposition (3.3), and wj, is the corresponding
piecewise linear approximation (Lemma 3.2). Then we have

Errs < C(Ili = filloa+ X (rh, +18)?) lleo(®) leur (39)

KeT,

Proof: By the definition of 4;, and integration by parts, we obtain
Err = (j— Ely+ J(E") — ", V(w' - w}))
= (] —jp V(w' - w},)) + (]h —ElL+ ](Eh) E" v (w! - wh)>

= (=i V' —wh) - & [V (s = Eh = B+ J(EY ) (@' — )
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+yY ¥ 2/ CElL B4 J(EY) (@' — w))dA = ZErr& (3.10)

KET}, FEOK\T

By the Cauchy-Schwarz inequality and Lemma 3.2, we easily have

Errgt < ||f = julloll V(@' — wp)lloa < |Ij = julloq - Cllwl|cun,

Errg < Y iV - (i — Ely— E'+ J(E") ) llohic! 1! — i lox

KET;,
1
< C( Z WDK) ‘churl/
KETh
1
Brn< ¥ (5 ghelll—Eh—E'+ JE N I)
KeT,, FeaK\r
1. 1 1
( Z EhKluwl _w}lH%’F)z < C( Z 17Nz<> ‘churl/
FeoK\T KeTy,

substituting which into (3.10) concludes the proof. 0
With the above preparations, we can state our main result.

Theorem 3.1. Let E be the solution of (2.2) and E" be the DG solution of (2.4) withy > Ypin.
Then the following estimation holds:

[1E = E"[5(6) + [|(E = E")l[5()

< C[IIE - E'IR© + 1B~ ENGO)] +C [ & he (BRI
FeF,

+IUEN1 + 1o )t + C X [1lat [E NI )

a2 [(EX )71 £ (1) + ||a* [[E"]] ] 5 £(0) + (a2 [EN] 113 £ (0)]

+C[llj = il Ba®) + X Ok, + 1 + 1+ by + 1k ) ()]

KeTy
+C[H] _]hHOQ + Z ’7RK +77T,< +’7],< +77D,< +77N,<)( )]
KeTy,
t
+C/O [K;Th(nﬁrk o+ )+ G - idBlde 6D

Proof: Recall that w = E — E". Then for any ¢ € Hp(curl; ), we have
(Wi, ¢) + dn(w, ¢)
= (E-E'"+E'—E)w,¢) +a(E—-E' + E' — El, ¢)
= (En — Eiy, @) +an(E, ¢) — an(E", ¢) + ((E" — EC)u, )
+ay(E" — EL, ). (3.12)
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Using the fact that 4, (u,v) = [ (V xu-V x v+ u-v)dx on Hy(curl; Q) x Ho(curl; ),
we can write the weak formulation of (2.2) as: Find E € Hy(curl; Q) such that

(E, @) +an (E,¢) — (J(E), ¢) = (7, ¢), V¢ € Ho(curl; ). (3.13)

Using the fact that 4, = a; on V), x V), we can rewrite the semi-discrete scheme (2.4)
as

(Elvgn) +a (B ) = (JE)90) = Gop), YueVie (314
From (3.13) and (3.14), we have

(Ett — Ej, ¢) +ay (E, ¢) — ay (Ehzﬁb)
= (i +1E) — Bl ) —an (E"90) —a (E".9 — 1)
= (j+1E") —Elg—gn) + (TE-E,0) —ar (E'p— ),
substituting which into (3.12), we obtain
(wr, @) + an (w, ¢)
= (j+IE) ~Elp— ) + (J(w+ B~ E"),9)
—ay (B9 — ) + (B' — EN 9) + 2 ("~ EL, ). (3.15)

Choosing ¢ = w; in (3.15), then integrating both sides from 0 to t, multiplying
both sides by 2, and using the property (2.9), we obtain

5
[l (®)[[7; + [lwe (D)5 < [[w(0)][[7 + [l (0)[§ + }_ Erri. (3.16)

In the following, we just need to estimate all Err;,i = 1,--- ,5. Let us first estimate
Erry. Using Cauchy-Schwarz inequality and the definition of J(E), we have

2 [ wiat < [ @B+ [l
<c/ </ ||w(s Hods> dt—i—/tHth%(t)dt

<t [ ()it + [ lfwio) Bt

Similarly, by Cauchy-Schwarz inequality and Lemma 3.1, we have
2 / ), w) dt
t
sa/uﬂ—#mtw+/nm%ww

< Ct [ X helllE el pde + [ los(e) .

FeF,
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Therefore, we have
Err2—2/ w+Eh ) t)dt

< Ct [ lws)lfids +2 [ o (5) s+ Ct [ X mellIEE" (s

FeF,

Using Cauchy-Schwarz inequality and Lemma 3.1, we have
t t
Erry = 2/ ((B" — B, wr) dt < 2/ (E" = E" e [o]|ao¢ | odt
< [~ Euliar + [ ()]

< Capp [ X helllIEATI2I ()t + [ Jlwn(o) 3

FeF,

Similarly, we can obtain
t
Errs = 2/0 , (Eh - E?,wt) dt = 24, ((Eh - E?)(t),w(t))
~ h h ! ~ h h
—23, ((E" — EL)(0), (0) ) —2/0 iy (B — El)y ) dt

< 2Caoml|(B" = ED(E) I [w(8) 1+ 2Ccon | (" = ED(O)] s |0 (0)
t t
+Coont| [N = EDMIR@de+ [ fleo(t) 2]

<cls ¥ i (IE B e(t) + IE I3 (©) + (@) ] + a1l wo(t)

FGF

+Ceon [ X HelIELN AR () + [ feo(o) ]

FeF,

Finally, note that

%(Errl + Errs)
_ /Ot | (7 — B+ T(E"), (w0 — wp), ) = (E", (w0 — 7wy ) |t
= (G = Bl + JEN)®), (w0 —wi) () = (" (1), (0 — ) (1))
— (G — Bl + J(E")(0), (w = ,)(0) ) + & (E"(0), (w0 — ;) (0))
_ /Ot (G- B+ TE))w —wy) = (B w0 —wy) ] d. (317)

Let
Errg = (;—E +J(E )w—wh> (t) — a, (Eh,w—wh) (f).
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To bound Errs, we need the regular decomposition (3.3), which splits Erre into a sum
of Erry and Errg, where

Erry = (j —El 4 J(EM), 0 — w2> (t) — a, (Eh,wo - wg) (1),
Errg = (j— Ely+ J(E"), V(w' - w;)) (t) — & (Eh,V(wl - w;)) (t).

Combining the estimates of Err; and Errg obtained by Lemmas 3.3 and 3.4, respec-
tively, we have the estimate for Erre:

. . 1
€lp

Let
Errg = (j —El 4+ J(E"), w — wh> 0) — &, (Eh, w— wh) (0).

Hence the estimate of Errg will be all the same as Errg except now all error terms are
for t = 0. Denote

Errg = — /Ot (G — Bl + J(E"))i,w — o) — (B, w0 — wy)] .

By similar arguments as used for Errg, we have

Erryp < / || (t tht-l—C/ ’7Rf +’7Tf

I+ g+ 1) + 11 —fh>f||o]dt.

Summation of Errg, Errg and Erryg gives the estimate for Erry 4 Errs. Substituting
all above estimates into (3.16), we have

[l (&) + [l (1)
< C(!!W(O)H%JrHwt(O)H%)Jrcl/o (Il (1[5 + [z ($)][5) dt

+Co [ he (ERA e + TN B+ NEE 2l )
FeF,

Cs 1 1
+51Hw<f)H%+5— Y. a2 [[E"Irl[§ s+ Ca Y- [laz[[E"(0)])7|[5 e
1 Fth FeF,

48l (O] By + - (I = i B+ T O+, + 1+ B + ) ()
KeTy,

485l + 5 (1= iulRa(0) + L O, + 18, + 1, + 1, + ) 0]
KeTy,

t
+C [ [ X (mh + g+ + by + ) +11G = 7il ] ot (3.19)
KETh
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By the definition of || - ||, and Lemma 3.2, we easily have

I(E" = E) (1]} < CFZIDD a2 ((E"]}7 |13 ¢,

1
I(E" = EF):(1)|2 < C Y [az[[E])7| B,
FeF,

which, along with (3.19), the triangle inequality, and the Gronwall inequality (choos-
ing 61 and d, small enough), concludes the proof. O

4 Lower bounds of the local error estimators

To prove the lower bounds, we need to use the bubble function technique introduced
by Verfurth [33]. We denote bk for the standard polynomial bubble function on ele-
ment K, and br for the standard polynomial bubble function on an interior element
face F, shared by two elements K and K’. For simplicity, in the following we denote
UF = {K,K'} for the union of elements K and K. With these notation, we have the
following estimates.

Lemma 4.1. For any polynomial function v on K, there exists a constant C > 0 independent
of v and hg such that

1
[[bxollox < Cllvllok, [|ollox < Cllbgolloxk, (4.1)
||V (bko)[lo.x < Chitl[v]lok- (4.2)

On the other hand, for any polynomial function w on F, there exists a constant C > 0 inde-
pendent of w and hr such that

1
[[wllo,r < Cl[bzw]|o,F, (4.3)
1
HWbHO,K < Chf;”w”o’p VK e UF, (44)
_1
HVWBHO,K < ChFZHZUHO,F vV K € UF, (4.5)

where Wy, € HY((KUXK')°) is an extension of brw such that Wy| = brw.
The same estimates as (4.1)-(4.5) hold true for vector functions. Moreover, for a vector
ploynomial function v on K, there exists a constant C > 0 independent of v and hy such that

IV x (bko)|Jox < Cht|[v][ok- (4.6)

Similarly, for any vector polynomial function w on F, there exists a constant C > 0 indepen-
dent of w and hr such that

1
||v><wbHO,K§Chp2||wHO,F Vv K € UF, 4.7)

where Wy € HE(KUK')®)3 is an extension of brw such that W = brw.
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Proof: The proof of (4.1), (4.3), and (4.4) can be found in [33, Lemma 4.1]. The proof
of (4.2) and (4.5) can be obtained from Egs. (2.35) and (2.39) of [1], respectively. The
proof of (4.6) and (4.7) can be obtained by similar arguments as the proof of (4.2) and
(4.5). O

Theorem 4.1. Let E be the solution of (2.2) and E" be the DG solution of (2.4) with vy > Ypin-
Then the following local bounds hold:

t
D) 7rg < C[hKH(E— Eh)ttHo,K+hK||E—Eh||o,I<+hI</O ||E — E"||o(s)ds
k17, = llox + 11V x (E = E"llox],

() 71 <C Y [kl = E"ullox + il [E = E"llox
KeUF

t
+h1</0 ||E" — E|lo,x(s)ds + x|y, — jllox + ||V x (E" — E)Ho,K}/
(iii) #pg < C(Hih —jllox + |I(E = E")ullox + ||E = E"|ok
t
+ [ B~ Ellox(s)ds),
0

(iv) 7N <C ) (||ih—i||o,K+H(E—Eh)ttHo,K-i‘||E—Eh||o,1<
KeUF

t
+ 1B = Ellox(s)ds).
0

Proof: (i) Letvy, = j, — El, —V x V x E" — E" + J(E"), and v, = byvy,. Using the
governing equation (2.2), we have

oboulii = [ (s~ Bh~ V% ¥ x B B4 J(EY) oy
:/K[(E—Eh)tt—i-VXVx (E— E")+ (E— E")
~J(E~E")] - vpdx + /K(jh —7) - opdx
= [ [E= B+ (E—E) = J(E—E") + Gy — )] - v
[ (Tx (BE-EN) (7 x o),

where in the last step we used integration by parts and the fact that v, = 0 on JK.
Then by Lemma 4.1, we have

t
lollox < C[I1(E = E)l o +11E = E"llox + [ [1E—E"|jox()ds

1 = illox + B IV x (E = E"llok],
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which leads to
t
s < Clel|(E = Eullox + el [E = E*lloc+ I 11 = E*llox(s)ds
g7, = fllox + |1V x (E = E")llox]-

(i) Letwv, = [[V x E"]]r and v, = brvy,. Using the fact that [V x E]]r = 0 on
interior faces, we have

HbévhHg,F = /FHV x EM]r - vpds = /F[[V x (E" — E)|]r - vpds

ZK;;IF[/KVXVX(Eh—E)-Vbdx—/KVx(Eh—E)-Vvadx}, (4.8)

where in the last we used integration by parts and the fact that V;, = 0 on dK. Here V,
is an extension in H} ((KU K’)O)3 of v;,. Note that

/K(VxVth—VxVxE)-Vbdx
:/K[VxVxEMEﬁJrE—](E)—j}Vbdx
:/K[VxVxEh—I—Eh—I—E’ft—](Eh)—jh—i—(Ett—E’ft)

+(E—E") + J(E" — E) + (j, — /)] Vid
<|lj = Bty =V x V X E" — E" + J(E") [V llox + (||[Et — Ef[ox

HE = E"lox + [[T(E" = E)[lox + |l — illos)l Vs llox- (49)
Substituting (4.9) into (4.8) and using Lemma 4.1, we obtain

l — . .
oul[§r < ChE Y (hKlﬂRK +[|(E = EMullox + [|E — E"|ox + |1j, — fllox
KeUF

t _1
+/0 HEh—EHO,K(S)d5>th||o,F+C Y IV x (E" = E)llox - hr 2| |onllo,r
KeUF

which along with the estimate (i), yields

1
nre = hE||[[V x EM]zllor < C Y [hKH(E — E"ullox + hk||E — E"||ok
KeUF

t
+h1</0 ||E" — El|ok(s)ds + hk|j), — jllox + |V x (E" —E)Ho,K}/

from which the proof completes.
(iii) Let v, = V- (j, — Ei — E" + J(E")), and v, = bkwvj. Using the fact that
V-(j—Ey—E+J(E)) = 0and Lemma 4.1, we have

1
lonl[§x < ClIbzonll§x = C/KV' (]'h—]'+Ett—Elft+E—Eh+](Eh—E)> vpdx
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= —C [ [Gy= 1)+ (E=Eu+E— '+ J(E' ~ E)| - (Vo )dx
< C|Ilj = llox + 1(E = E"al lox + IE = E"llox
t
+ [ 1" — Ellox(s)ds] - i oulo,
which leads to
1o = hil|vnllox < C(Hih = jllox + [1(E = EMllox
HIE=Eloxc+ [ 1E" =~ Ello(s)ds).
(iv) Letvy, = [[j, — El, — E" + J(E")]]n, and v, = brvy,. Using the facts that

[[j —Ex+ — E+ J(E)]]n = 0 oninterior facesand V - (j — E; — E+ J(E)) = 0in K, we
have

1
lofoul = [ [, — Bl — E*+ J(E") ]y - vuds

= [ iy =i+ (E— E"+ E—E"+ J(E"  E)llw - s

= ¥ [V Gi- BB g dx+ L [ (-
keur’/K keur’K
H(E—E"y+E—E'+J(E"' - E)> Voudx

<C ¥ itnollosllox+ Y [l = illox + 1E = E"ullox
KeUF KeUF

t
HIE = E'llosc+ [ 1E" = Ellox(s)ds] [ Voy o

Using Lemma 4.1 and the estimate (iii), we have

l . .
g = hEllonllor <C Y (UDK + 1, — llox + [[(E = E"utl o
KeUF

t
+HE—EhH0J<+/ HEh—EHo,K(S)dS) <C ) (H]'h—]'Ho,K
0 KeUF

t
+(E = E")u]lox + ||E — E"|[ox +/O ||E" — EHo,K(S)dS>r

which concludes the proof of Theorem 4.1. 0

5 Conclusions

In this paper, we initiated the study of a posteriori error estimator for a cold plasma
model. We only obtain the result for the semi-discrete DG scheme. Since this is our
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first work in this area, many interesting issues worth exploring and will be explored
in the future: for example, how to obtain a posteriori error estimator for the fully-
discrete scheme; numerical tests of the proposed error estimator; extensions to more
complicated dispersive media models.
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