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OPTIMAL BLOCK PRECONDITIONER FOR AN EFFICIENT

NUMERICAL SOLUTION OF THE ELLIPTIC OPTIMAL

CONTROL PROBLEMS USING GMRES SOLVER

K. MUZHINJI∗

Abstract. Optimal control problems are a class of optimisation problems with partial differ-
ential equations as constraints. These problems arise in many application areas of science and

engineering. The finite element method was used to transform the optimal control problems of

an elliptic partial differential equation into a system of linear equations of saddle point form.
The main focus of this paper is to characterise and exploit the structure of the coefficient matrix

of the saddle point system to build an efficient numerical process. These systems are of large
dimension, block, sparse, indefinite and ill conditioned. The numerical solution of saddle point

problems is a computational task since well known numerical schemes perform poorly if they are

not properly preconditioned. The main task of this paper is to construct a preconditioner the
mimic the structure of the system coefficient matrix to accelerate the convergence of the gener-

alised minimal residual method. Explicit expression of the eigenvalue and eigenvectors for the

preconditioned matrix are derived. The main outcome is to achieve optimal convergence results
in a small number of iterations with respect to the decreasing mesh size h and the changes in δ

the regularisation problem parameters. The numerical results demonstrate the effectiveness and

performance of the proposed preconditioner compared to the other existing preconditioners and
confirm theoretical results.

Key words. Partial differential equations (PDEs), PDE-optimal control problems, saddle point
problem, block preconditioners, preconditioned generalised minimal residual method (PGMRES).

1. Introduction

Optimal control problems associated with partial differential equations arise in
a variety application areas such as social, scientific, industrial, medical and engi-
neering applications including optimal control, optimal design and parameter iden-
tification. In particular real life applications include flow control, reaction-diffusion
problem of chemical processes, shape optimization, problems in financial market-
s and optimal pricing. In this paper we deal with the numerical solution of the
distributed optimal control of elliptic equations that arise in real life application-
s in the optimal stationary heat. We consider the following elliptic distributed
PDE-optimal control problem

(1) min(u,y) J(y,u) :=
1

2
‖ y − yd ‖2L2(Ω) +

δ

2
‖ u ‖2L2(Ω),

subject to the constraints

−∆y = f + u in Ω,
y = g on ∂Ω.

(2)

where Ω ⊂ R2 is the domain with boundary ∂Ω. These problems were theoretically
introduced by [11, 22] comprise of the objective function given by Equation (1) to
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be minimised and the PDE-constraints given by Equations (2). Here we want
to find y the state variable that satisfies the PDE-constraint as close to yd as
possible, the desired state which is known over the domain Ω̄ and u the control
variable on the right hand side. This means that y is the solution of Equation
(2) for a given control u either in the whole domain or on the boundary. The
control functions that are either distributed (defined on Ω) or boundary (defined
on ∂Ω). If control functions are defined on ∂Ω we have boundary control problem
for example the optimal temperature distribution otherwise we have a distributed
control problem like the optimal heat source distributed on the whole domain. The
temperature distribution or state y inside the domain is controlled by the enforcing
heating source u. For some practical purposes, we would like to choose the optimal
control which minimizes the difference between the desired stationary temperature
distribution yd and the achievable temperature distribution y. Mathematically, by
assuming the boundary temperature vanishes. In this paper, we develop a new fast
and efficient solver for the distributed optimal control problem Equations (1-2).
The parameter δ is called the regularization parameter which measures the cost of
the control and is supplied and positive. We refer to [3, 8, 9] on their numerical
developments of such problems.

The optimal control problem has a unique solution (y,u) characterised by the
optimality system called the Karush-Kuhn-Tucker (KKT) system [4, 20]. The first
order optimality system of the PDE-optimal control problem Equations (1-2) con-
sists state equation, adjoint equation and the control equation which is a saddle
point problem as given below

−∆p = y − yd, in Ω p = 0 on ∂Ω adjoint equation,(3)

−∆y = f + u, in Ω y = g on ∂Ω state equation,(4)

δu− p = 0 in Ω control equation.(5)

The optimality system is achieved through the Lagrange multiplier method which
partitions the model problem into three equations namely in the state y, control u
and the adjoint, p. For the numerical solution of the elliptic optimal control problem
we apply the finite element method to the Equations (3 - 5) to get the linear saddle
point problem. The finite element method is the most popular technique for the
numerical solution of the PDE-constrained optimisation problems, see [9, 17, 18].
The finite element method results in the coupled linear algebraic system which has
to be solved by the appropriate solvers. The resulting discrete KKT system is

(6) Kx =

 M O K
O δM −M
K −M O

 y
u
p

 =

 Myd
0
d

 = b,

where K ∈ Rn×n is a stiffness matrix and mass matrix M ∈ Rn×n both symmetric
and positive definite. Both K and M are sparse, hence K is sparse, symmetric and
indefinite. The vector d ∈ Rn contains the terms arising from the boundaries of
the finite element of the state y.

The linear algebraic system of Equation (6) is large scale, indefinite and has
poor spectral properties such that well known Krylov subspace methods perform
poorly [3, 18] and references therein. In recent years, the efficient solvers of the
algebraic system that results from the optimal control problems has attracted a lot
of attention and plenty of algorithms and preconditioners are proposed. The vital
requirement for optimal performance of the Krylov subspace iterative methods is
that the system matrix must have good spectral properties. This has preoccupied
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the computational scientific community for decades to transform and achieve good
distribution of eigenvalues of the system coefficient matrix through preconditioning
techniques and it is still an active area of research [1, 3, 12]. The previous and the
recent work has been devoted to the development of an efficient numerical solution of
a class of block 3×3 linear systems of Equation (6) and the reduced system [1, 3, 18].
The main task in this paper is to develop and analyse a new effective preconditioner
for the algebraic system of Equation (6) and apply the GMRES solver for its solution
process. We refer to [3, 12] for an explicit detailed review of block preconditioners.
There are many different preconditioners that have been developed for the linear
system of saddle point form that exploit their block structure and form. In this work
we present the preconditioners that fall in this class with the main task of achieving
convergence of the iterative scheme in the number of iterations that is independent
of the discretization mesh size parameter h and optimal with respect to the problem
regularisation parameter δ. That is the optimal performance of the iterative scheme
entails convergence independent of the changing and decreasing both the mesh
size and the regularisation parameter. To be successful in attaining this goal the
classical preconditioning techniques are divided into three broad classes, the definite
Hermitian preconditioners where it is possible to retrieve a cluster of eigenvalues
[2, 15] where the MINRES can be applied, indefinite Hermitian preconditioners [19]
and non Hermitian preconditioners [5, 10, 12, 24]. In this paper we focus on the
last approach which benefit from the spectral distribution and the block form of the
coefficient matrix. There are those preconditioners which follow the same structure
of the coefficient matrix but based on the Schur complement form, we refer to
[13, 15, 16, 17, 19, 21] and references therein. The second class of preconditioners is
based on the block structure and does not need approximations where the GMRES
is applied. For more of such preconditioners, specifically, those that were developed
and analysed in [2, 10, 12, 24] that follow the block structure of the system coefficient
matrix. The preconditioner we propose here belongs to this class and is built with
the objective of achieving a performance of the preconditioned iterative solver that
is independent of the number of iterations form the mesh size h and regularisation
δ. The block entries of such preconditioners can be applied exactly and inexactly
in the numerical solution process. For both classes of preconditioners we need
the clustering of eigenvalues whose focus and benefit is the optimal performance
of the preconditioned iterative solver independent of the decreasing parameters.
The preconditioner proposed in this paper does not require the Schur complement
approximation and this makes it easy to construct and less costly to apply. For our
choice we provide a strong clustering of eigenvalues of the preconditioned system.
The goal is to obtain and show that the eigenvalues are clustered while we obtain the
solver convergence in the number of iteration independent from the regularisation
parameter. The main contribution of the work is to develop a block preconditioner
that mimic the structure of the coefficient matrix which result in a robust and an
efficient numerical GMRES scheme whose convergence is h and δ independent.

This paper is organized as follows. In Section 2 we preview the existing classes
of block preconditioners based on the Schur complement form and the block form
of the coefficient matrix. In Section 3, we discuss our proposed new block pre-
conditioner that are in the structure of the coefficient matrix of Equation (6) and
give the explicit eigenvalue expressions of the preconditioned systems. In Section 4
we present the numerical experiments to demonstrate how well the new proposed
preconditioner works and finally we draw the conclusion in Section 5.
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2. Existing block preconditioners

In this section we outline the several existing preconditioners for the linear al-
gebraic system of Equation (6). For this system, the following Schur complement
based preconditioners were developed. In [17] the block diagonal preconditioner

PBD(S1) =

 M O O
O δM O
O O S1

 ,

was developed and applied with the MINRES solver where S1 = KM−1K is the
Schur complement approximation and in [15] the block diagonal preconditioner

PBD(S2) :=

 M O O
O δM O
O O S2

 ,

and block triangular preconditioner

PBT (S2) :=

 M O O
O δM O
K −M S2

 ,

with Schur complement approximation S2 = (K + 1√
δ
M)M−1(K + 1√

δ
M). In [13]

the block diagonal preconditioner was presented with the new approximation of the
Schur complement approximation form S3 = (

√
δK +M)(δM)−1(

√
δK +M)

QS3
:=

M O O
O δM O
O O S3

 .

The preconditioners that follow the structure of the system matrix of the Equation
(6) were developed in [5] and were used to precondition the GMRES method

PN :=

O δK O
O δM −M
K −M O

 ,

and

PBCT :=

O O K
O δM −M
K −M O

 .

Below we have the preconditioners developed for system involving the coefficient
matrix of the form

(7) K1 =

 2δM O −M
O M K
−M K O

 ,

which emanates form the finite element discretization of the similar elliptic optimal
control problem. For the system coefficient matrix in Equation (7) the following
preconditioners were presented. In [18] the Schur complement based block triangu-
lar preconditioner was developed

PBT :=

2δM O O
O M O
−M K KM−1K

 .
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Bai in [2] developed the block counter diagonal preconditioner for the GMRES

PBCD :=

 O O −M
O M O
−M O O

 ,

and block tridiagonal preconditioner

PBCT :=

 O O −M
O M K
−M K O

 ,

The other pair of preconditioners, block symmetric and block lower triangular
were developed in [24]

PBS :=

2δM O −M
O M O
−M O O

 ,

and

PBLT :=

2δM O −M
O M O
−M O − 1

2δM

 .

Ke and Ma in [10] proposed the following four preconditioners

P1 :=

2δM O −M
O O K
−M K O

 , P2 :=

2δM O −M
O M K
O K O

 ,

P3 :=

2δM O −M
O M O
−M K O

 , P 4 :=

2δM O −M
O M K
M O O

 ,

where P1 and P2 are well suited for δ ≥ 10−6 while P3 and P4 are well suited for
δ ≤ 10−6 and recently Mirchi and Salkuyeh in [12] developed a new preconditioner

P :=

 O K O
O M K
−M K O

 .

The main observation from the application of some preconditioners like PBD(S2),QS3
,

PN ,P3,P4 is that the computational performance of the numerical schemes is inde-
pendent of the regularisation parameter δ. In some cases the numerical scheme fails
to converge for the decreasing regularisation parameter and performs well for large
values of the regularisation parameter. The computational performance of numeri-
cal schemes incorporated with the preconditioners like PBD(S1),PBCT ,PBLT ,P1,P2

strongly relies on the regularisation parameter. The trade in between the size of
the regularisation parameter and the convergence of the iterative solvers inspired
this work. In this paper we present efficient preconditioners which enhance the
optimal performance of the iterative solvers. We demonstrate this by deriving the
explicit eigenvalues expressions of the preconditioned system that clearly exhibit
the clustering of the eigenvalues. We solve the algebraic system (6) and apply
preconditioners designed for such systems.
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3. Proposed preconditioner

In this section we present our proposed preconditioner Q1 and investigate the
spectral distribution of the preconditioned system Q−1

1 K. We propose the following
preconditioner

(8) Q1 :=

M O K
O O −M
K −M O

 ,

for the system coefficient matrix of Equation (6). The main task here is to find
the numerical solution of the system Q−1

1 Kx = Q−1
1 b using the GMRES solver.

We want to achieve good convergence properties for the GMRES iterative solver
by clustering of most of the eigenvalues of Q−1

1 K around a unit disc and away from
zero [3].

We present the following results for preconditioner Q1. The mass matrix M and
the stiffness matrix K in equation (6) from the Q1 finite element discretization of
the equations (3-5) are symmetric and positive definite. This means that they are
nonsingular and it follows that the preconditioner Q1 is also nonsingular

(9) Q−1
1 =

 M−1 M−1KM−1 O
M−1KM−1 M−1KM−1KM−1 −M−1

O −M−1 O

 .

Theorem 3.1. Let the coefficient matrix K defined in (6) with matrices M and
K nonsingular and the preconditioner Q1. Assume that λ is an eigenvalue of the
preconditioned coefficient matrix Q−1

1 K and x = (xT1 ,x
T
2 ,x

T
3 )T ∈ C3n is the cor-

responding eigenvector. Then the eigenvalues of the preconditioned system ma-
trix Q−1

1 K are 1 of multiplicity 2n with corresponding eigenvectors of the form

x =

 x1

0
x3

 for ∀x1, x3 6= 0 and the remaining eigenvalues are of the form

(10) λ = 1 + δ
xT1 KM

−1Kx1

xT1 Mx1
.

and the corresponding eigenvector x =

 x1

M−1Kx1

K−1Mx1

 , x1 6= 0

Proof. Let (λ,x) be an eigenpair of the matrix Q−1
1 K where x 6= 0. The eigenvalue

problem Kx = λQ1x is given by

(11)

 M O K
O δM −M
K −M O

 x1

x2

x3

 = λ

 M O K
O O −M
K −M O

 x1

x2

x3

 .

The equation 11 reduces to

(1− λ)Mx1 = (λ− 1)Kx3,(12)

δMx2 = (1− λ)Mx3,(13)

(1− λ)Kx1 = (1− λ)Mx2.(14)

From the above equations we note that if λ = 1 then equations (12) and (14) are
always satisfied and equation (13) takes the form x2 = 0. This gives an eigenvector
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x =

 x1

0
x3

 , with non zero vectors x1 and x3 corresponding to λ = 1 with algebraic

multiplicity 2n.
Now assume that λ 6= 1, then equations (12 - 14) reduce to

x3 = −K−1Mx1,(15)

δx2 = (1− λ)x3,(16)

x2 = M−1Kx1.(17)

This entails that x1 6= 0 because from equations (15) and (17) if we have x1 = x2 =
x3 = 0 which gives x = 0 which is a contradiction for an eigenvector. Substituting
x2 and x3 from equations (15 and 17) into equation (16) we get

(18) δKM−1Kx1 +Mx1 = λMx1.

Multiplying by xT1 and dividing by xT1 Mx1 6= 0 both sides gives

δxT1 KM
−1Kx1 + xT1 Mx1 = λxT1 Mx1,(19)

λ = 1 + δ
xT1 KM

−1Kx1

xT1 Mx1
.(20)

with the corresponding eigenvector

x =

 x1

M−1Kx1

−K−1Mx1

 with x1 6= 0.

We now give the clear eigenvalue bounds which are dependent on PDE problem
and the finite element used. In this paper we used the bilinear Q1 finite element
approximations to discretise the system of Equations (3-5). We use the following
results of Theorems (3.4) and (3.5) in [17] and which were also used by [10, 12]
which are frequently used to derive the eigenvalue bounds of the preconditioned
system.

Theorem 3.2. [17] For the problem Equation (6) in Ω ∈ R2 with the degree of
approximation Qm or Pm with m ≥ 1 the following bounds hold

(21) α1(m)h2 ≤ vTMv

vTv
≤ α2(m), h2

where α1 and α2 are real constants independent of h and δ but dependent on m.

Theorem 3.3. [17] For the problem Equation (6) in Ω ∈ R2 with the degree of
approximation Qm or Pm with m ≥ 1 the following bounds hold

(22) θ1(m)h2 ≤ vTKv

vTv
≤ θ2(m),

where θ1 and θ2 are real constants independent of h and δ but dependent on m.

Here m=1. Since the mass matrix M and the stiffness matrix K are symmetric
and positive definite then from Equation (21) we have the following equations also
used in [10, 12, 17]

1

α2h2
≤ vTv

vTMv
≤ 1

α1h2 ,(23)

1

α2h2
≤ vTM−1v

vTv
≤ 1

α1h2 ,(24)

α1h
2 ≤ vTv

vTM−1v
≤ α2h

2,(25)
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and from (22) we have

1

θ2
≤ vTv

vTKv
≤ 1

θ1h2
,(26)

1

θ2
≤ vTK−1v

vTv
≤ 1

θ1h2
,(27)

θ1h
2 ≤ vTv

vTK−1v
≤ θ2.(28)

With the above techniques, we obtain the following theorem.

Theorem 3.4. [10, 12, 24] For Q1 approximation, let the preconditioner Q1 and
assume that λ is an eigenvalue of the preconditioned system matrix Q−1

1 K. Then
λ = 1 with multiplicity 2n or λ satisfies the following bound

(29) λ = 1 + δ
xT1 KM

−1Kx1

xT1 Mx1
.

Proof. Let λ be an eigenvalue of Q−1
1 K corresponding to the eigenvector x =

(xT1 ,x
T
2 ,x

T
3 )T . From Theorem 3.1 we have λ = 1 with algebraic multiplicity 2n and

the remaining n eigenvalues satisfy

(30) δKM−1Kx1 +Mx1 = λMx1.

Since K and M are symmetric and positive definite and x1 6= 0, rearranging
equation (30) we get

(31) λ = 1 + δ
xT1 KM

−1Kx1

xT1 Mx1
.

Further we consider the expression
xT
1 KM

−1Kx1

xT
1 Mx1

(32)
xT1 KM

−1Kx1

xT1 x1
=

xT1 KM
−1Kx1

xT1 x1
· xT1 x1

xT1 Mx1
.

Let y = Kx1 then yT = xT1 K and x1 = K−1y then xT1 = yTK−1. Substituting in
equation (32)

xT1 KM
−1Kx1

xT1 Mx1
=

yTM−1y

yTK−2y
· xT1 x1

x1Mx1
,(33)

=
yTM−1y

yTy
· yTy

yTK−2y
· xT1 x1

xT1 Mx1
.(34)

Let z1 = K
−1
2 y and zT1 = yTK

−1
2 ,y = K

1
2 z1 and yT = zT1 K

1
2 and substituting in

equation (34)

yTM−1y

yTy
· yTy

yTK−2y
· xT1 x1

xT1 Mx1
=

yTM−1y

yTy
· zT1 K

1
2K

1
2 z1

zT1 K
1
2K−2K

1
2 z1

· xT1 x1

xT1 Mx1
,(35)

=
yTM−1y

yTy
· zT1 Kz1

zT1 K
−1z1

· xT1 x1

xT1 Mx1
,(36)

=
yTM−1y

yTy
· z

T
1 Kz1

zT1 z1
· zT1 z1

zT1 K
−1z1

· xT1 x1

xT1 Mx1
.(37)

Using the equations (21-22) and (23-28) we get
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(38)
θ2

1

α2
≤ xT1 KM

−1Kx1

xT1 Mx1
≤ θ2

2

α2
1h

4
.

Hence the result

(39) 1 + δ
θ2

1

α2
≤ λ ≤ 1 + δ

θ2
2

α2
1h

4
.

This completes the proof.

Remark 3.5. The theoretical results for Theorems 3.4 show that if the regulariza-
tion parameter δ is small the eigenvalues of the preconditioned matrices Q−1

1 K are
clustered around 1..

Algorithm 3.6. Application of Preconditioner Q1

Let w = (wT
1 ,w

T
2 ,w

T
3 )T be any given vector, we can compute the residual vector

v = (vT1 ,v
T
2 ,v

T
3 )T and Q1v = w using the following procedures:

(1) Mv3 = −w2 solve for v3.
(2) Mv1 = w1 −Kv3 solve for v1.
(3) Mv2 = Kv1 −w3 solve for v2.

Remark 3.7. We note form the Algorithm 3.6 that the construction of the precon-
ditioner Q1 is simplified since it does not require approximation of the possible Schur
complements of the coefficient matrix. Moreover we have shown that this precondi-
tioner provides a strong cluster around 1 for the eigenvalues of the preconditioned
coefficient matrix independent from the regularisation parameter δ. We consider the
numerical experiments with the following preconditioners PBD(S1),PBD(S2),QS3

,
PBCT ,PN and compare their effectiveness in accelerating of the right preconditioned
GMRES with our new proposed preconditioner Q1. Below are the subsystems that
are involved in their application.

Algorithm 3.8. Application of Preconditioners PBD(S1),PBD(S2),PBCT ,PN ,
QS3

.
Let w = (wT

1 ,w
T
2 ,w

T
3 )T be any given vector, we can compute the residual vector

v = (vT1 ,v
T
2 ,v

T
3 )T and Pv = w using the following procedures:

(1) PBD(S1)v = w.
(a) Mv1 = w1.
(b) δMv2 = w2.
(c) KM−1Mv3 = w3.

(i) Ku = w3.
(ii) Kv3 = Mu.

(2) PBCTv = w.
(a) Kv1 = w1.
(b) δMv2 = Kv1 − w3.
(c) Mv3 = δMv2 −w2.

(3) PNv = w.
(a) δKv2 = w1.
(b) Mv3 = δMv2 −w2.
(c) Kv1 = w3 +Mw2.

(4) PBD(S2)v = w.

(a) Mv1 = w1.
(b) δMv2 = w2.
(c) (K + 1√

δ
M)M−1(K +

1√
δ
M)v3 = w3.

(i) (K + 1√
δ
M)u = w3.

(ii) (K+ 1√
δ
M)v3 = Mu.

(5) QS3v = w.
(a) Mv1 = w1.
(b) δMv2 = w2.

(c) (
√
δK+M)(δM)−1(

√
δK+

M)v3 = w3.

(i) (
√
δK +M)u = w3.

(ii) (
√
δK + M)v3 =

δMu.
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Remark 3.9. In the application of the preconditioners we propose further the ap-
proximation of the mass matrix M with M̃ and K with K̃. For example the ap-
proximation of our proposed preconditioner becomes

Q̃1 :=

M̃ O K̃

O O −M̃
K̃ −M̃ O

 .

When applying the exact preconditioner for GMRES we approximate M̃ and K̃ by
Cholesky factorisation and for the inexact preconditioner for the GMRES we ap-
proximate M̃ by 10 Chebyshev semi iterations and K̃ can be produced by 2 algebraic
multigrid (AMG) cycles with 2 smoothing steps [2, 15, 17, 24].

Theorem 3.1 above clearly shows that the decreasing mesh size h and the regu-
larisation parameter δ leads to the clustering of eigenvalues of the preconditioned
coefficient matrix Q−1

1 K around 1. The iterative solver is expected to converge
with changes in the problem parameter and discretization parameter. In the next
section we carry out numerical tests to verify the theoretical findings and compare
the performance of the GMRES solver with the block preconditioners discussed
above.

4. Numerical results

In this section we test the application of some of the preconditioners outlined in
Section 2 that were formulated to accelerate the GMRES iterative solvers applied
the saddle point coefficient system of Equation (6) and our proposed preconditioner
analysed in Section 3. To achieve this, we consider the following problem

(40) min(y,u) J(y,u) :=
1

2
‖ y − yd ‖2L2(Ω) +

δ

2
‖ u ‖2L2(Ω),

subject to the constraints

−∆y = u in Ω,
y = 0 on ∂Ω.

(41)

where Ω = (0, 1)×(0, 1), yd ∈ L2(Ω). Our methods are illustrated on the distributed
control problems, which is

Problem 4.1. yd = sin(πx1) sin(πx2) defined on the domain Ω. For more infor-
mation, we refer to Example 5.1.3 in [7] and Example 2 in [10].

and [2] and Example 5.1 in [17, 18] with the following information

Problem 4.2. yd =

{
(2x− 1)2(2y − 1)2 if (x, y) ∈ [0, 1

2 ]2

0 if elsewhere

The results of the numerical experiments are presented to demonstrate the effec-
tiveness of our proposed new preconditioner for the elliptic PDE-constrained opti-
misation problem. All numerical simulations and implementations were performed
on a Windows 10 platform with Intel(R)Core(TM)i5-3230M CPU @2.6 GHz 6.00
GB speed intel(R) using Matlab 7 programming language. We use the IFISS mat-
lab package developed in [6] to generate a discrete block linear algebraic system.
The block matrix entries M , K and system coefficient matrix K sizes are shown in
Table 1 below

We compute the solution using the right preconditioned restarted GMRES solver
with a zero vector as initial guess to achieve a tolerance of 10−6 on the residual to
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Table 1. Mesh sizes and corresponding sizes of the matrices.

mesh(h) size of M size of K size of K
2−3 81× 81 81× 81 243× 243
2−4 289× 289 289× 289 867× 867
2−5 1089× 1089 1089× 1089 3267× 3267
2−6 4225× 4225 4225× 4225 12675× 12675
2−7 16641× 16641 16641× 16641 49923× 49923
2−8 66049× 66049 66049× 66049 198147× 198147

measure the number iterations and the CPU time in seconds. The goal is to check
the effectiveness of the preconditioned GMRES numerical scheme with the changes
in mesh size and problem regularisation parameter, that is to achieve parameter in-
dependent convergence. Table 2 below gives the costs for different preconditioners
during the preconditioning process at each iteration step for computing the resid-
ual vector. We get the solution by solving the preconditioner subsystems in the

Table 2. The costs of different preconditioners.

PBD(S1) PBD(S2) QS3 PBCT PN Q1

Matrix vector multiplications 1 1 1 2 2 2
Number of subsystems 4 4 4 3 3 3

Algorithms (3.6 and 3.8) in Section 3. Table 2 gives the cost of the application of
each preconditioner in the form of the subsystems and matrix vector multiplication.
The application of the preconditioners PBD(S1), PBD(S2) and QS3 are involved in
the solution of 4 subsystems and the other preconditioners involve the solution of
3 subsystems in accelerating the GMRES solver.

We first display the distribution of eigenvalues of the coefficient matrix and pre-
conditioned coefficient matrix with different preconditioners for (h, δ) = (h−4, 1e−
9) and (h−4, 1e − 1) for Q1. To do this, we display (i, λi) for i = 1, 2, 3, ..., n,
where λi and for complex (imaginary, real) ordered eigenvalues for these matrices
in Figure 1.

Figure 1 presents the eigenvalue distribution of K, PBD(S1)−1K, PBD(S2)−1K,
P−1
BCTK, P−1

N K, Q−1
1 K and Q−1

S3
K for regularisation parameter δ = 1e − 9 at h =

2−4. For δ = 1e − 3, the preconditioned matrix Q−1
1 K has eigenvalues outside

the spectrum. The most important observation is that the eigenvalue distribution
of PD(S2)−1K, Q−1

S3
K and Q−1

1 K are clustered around 1 for smaller regularisation
parameter. This agrees with the theoretical findings in [13, 15] and the Theorem
3.1 for the eigenvalues of our proposed preconditioner. It is expected that for
the decreasing regularisation parameter the inexact preconditioned GMRES by the
preconditioners performs extremely well. The preconditioned GMRES will perform
well for large values of δ with other preconditioners since there is no clustering
of eigenvalues for small values of δ. The eigenvalue distribution of K and for the
preconditioned systems PBD(S1)−1K, P−1

BCTK and P−1
N K we note that most of the

eigenvalues are not clustered around 1 for smaller regularization parameter. This
means that the inexact GMRES with these preconditioners will not perform well.

We compare the numerical results of the proposed preconditioner Q1 with the
those presented in Figure 1 for the Problems 4.1 and 4.2. The preconditioners
in Figure 1 have been considered because they were developed for that coefficient
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Figure 1. Eigenvalues distribution of the coefficient matrix and
preconditioned coefficient matrix with different preconditioners,
δ = 1e− 9 with h = 2−4.
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Table 3. Number of iterations taken by MINRES solver with the
block diagonal preconditioners PBD(S1),PBD(S2),QS3

for differ-
ent values of h and δ, tolerance = 10−6 for Problem 4.1.

PBD(S1) PBD(S2) QS3

h δ δ δ
10−3 10−5 10−7 10−9 10−3 10−5 10−7 10−9 10−3 10−5 10−7 10−9

2−4 9 23 35 35 13 5 3 3 13 5 3 3
2−5 11 29 71 99 13 9 3 3 13 9 3 3
2−6 11 33 111 101 13 11 5 3 13 10 5 3
2−7 13 33 133 107 15 11 7 5 15 10 5 3
2−8 17 33 139 103 15 11 7 5 15 10 5 3

Table 4. CPU times(sec) taken by MINRES solver with the block
diagonal preconditioners PBD(S1),PBD(S2),QS3

for different val-
ues of h and δ, tolerance = 10−6 for Problem 4.1.

PBD(S1) PBD(S2) QS3

h δ δ δ

10−3 10−5 10−7 10−9 10−3 10−5 10−7 10−9 10−3 10−5 10−7 10−9

2−4 0.14 0.266 0.297 0.166 0.188 0.109 0.078 0.078 0.081 0.063 0.078 0.047
2−5 0.283 0.581 1.317 1.457 0.312 0.25 0.141 0.156 0.297 0.325 0.11 0.109
2−6 0.594 1.297 4.168 3.579 0.625 0.530 0.500 0.556 0.510 0.381 0.272 0.532
2−7 2.169 5.171 17.27 15.59 2.54 2.00 1.48 1.64 2.42 2.05 1.45 1.531
2−8 10.58 21.79 78.92 60.50 10.59 8.43 5.97 5.54 8.64 7.47 4.95 4.02

matric Equation 6. We start by extracting the results from [13] where the MIN-
RES solver applied with the block diagonal preconditioners based on the Schur
complement forms PBD(S1),PBD(S2),QS3 for comparison purposes.

We now give the numerical experiment results from the GMRES iterative solver
preconditioned with the block preconditioners PBD(S1), PBD(S2), QS3

, PBCT ,
PN , Q1 for problems 4.1 and 4.2 to demonstrate that our proposed preconditioner
Q1 is applicable, competitive, robust and cost effective. We concentrate on the
performance in terms of the number of iterations and the CPU time in seconds
for comparison purposes. In a sequel we present two sets of numerical experiment
results. We first present the set of results of the numerical experiments obtained
from using the preconditioned GMRES solver for solving Equation (6) with inexact
approximations of the preconditioners. In this case all the subsystems are solved
using a fixed 10 Chebyshev semi iterations [13, 14, 17, 23] for the mass matrix M
and two algebraic multigrid iterations with two pre-and post-smoothing steps of
the Jacobi method for the matrix involving K.

In Tables (5, 6, 7, 8, 9, 10), we report the number of iterations and computing
times (in braces) with respect to preconditioners PBD(S1), PBD(S2), QS3

, PBCT ,
PN , Q1 employed to precondition the GMRES solvers for the system 6. The sub-
systems associated with the application of preconditioners are solved by iterative
solvers. In Tables (5, 6, 8, 9), we observe that the computing efficiency of the
preconditioned iterative solvers associated with PBD(S1),PBCT ,PN are dependent
on the regularisation parameter. The dash (-) means the solver did not converge
for the maximum number of iterations set at 1000. It is clear from the numerical
results that for large values of δ the preconditioners are efficient and for decreasing
δ they are not efficient. We also observe in Tables (7, 10) that the preconditioners
PBD(S2), QS3 , Q1 are very efficient and their application in the numerical process
with the GMRES resulted in both mesh and regularisation parameter independent
convergence. The inexact GMRES with the preconditioners PBD(S2), QS3

, Q1
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Table 5. Number of iterations and CPU times(sec) taken by inex-
act preconditioned GMRES solver with the block preconditioners
PBCT ,PN for different values of h and δ, tolerance = 10−6 for
Problem 4.1.

PBCT PN

δ δ

10−3 10−5 10−7 10−9 10−3 10−5 10−7 10−9

h Iter(cpu) Iter(cpu) Iter(cpu) Iter(cpu) Iter(cpu) Iter(cpu) Iter(cpu) Iter(cpu)

2−3 7(0.141) 7(0.188) 8(0.125) 8(0.125) 4(0.093) 8(0.156) 8(0.156) 8(0.156)
2−4 18(0.281) 12(0.1870) 17(0.235) 17(0.125) 5(0.125) 16(0.265) 40(0.093) 53(0.859)
2−5 40(0.833) 24(0.630) 17(0.235) 34(0.687) 6(0.281) 19(0.453) 69(1.756) 126(2.789)
2−6 84(2.845) 44(1.640) 33(1.235) 62(2.072) 6(0.437) 22(1.022) 86(3.631) 212(9.415)
2−7 170(21.02) 70(8.327) 40(4.565) 79(9.178) 6(1.244) 22(0.954) 104(15.264) 283(46.29)
2−8 344(28.15) 132(38.21) 63(33.53) 87(78.03) 7(5.575) 23(19.2) 107(72.57) -

Table 6. Number of iterations and CPU times(sec) taken by inex-
act preconditioned GMRES solver with the block preconditioners
PBD(S1),PBD(S2) for different values of h and δ, tolerance = 10−6

for Problem 4.1.

PBD(S1) PBD(S2)
δ δ

10−3 10−5 10−7 10−9 10−3 10−5 10−7 10−9

h Iter(cpu) Iter(cpu) Iter(cpu) Iter(cpu) Iter(cpu) Iter(cpu) Iter(cpu) Iter(cpu)

2−3 9(0.141) 9(0.171) 13(0.172) 13(0.187) 13(0.172) 9(0.250) 3(0.156) 3(0.078)
2−4 13(0.250) 39(0.609) 86(1.312) 95(1.537) 13(0.266) 18(0.312) 3(0.060) 3(0.094)
2−5 15(0.460) 43(1.172) 151(3.630) 189(4.736) 15(0.481) 19(0.50) 3(0.090) 3(0.265)
2−6 17(0.891) 47(2.163) 186(8.860) 310(16.43) 17(0.875) 20(1.061) 17(0.223) 3(0.563)
2−7 19( 3.26) 49(7.755) 186(30.80) 310(15.98) 19(3.565) 22(3.928) 21(1.472) 10(5.370)
2−8 24(16.90) 56(39.20) 195(161.0) - 21(16.335) 26(19.288) 26(20.717) 10(17.53)

Table 7. Number of iterations and CPU times(sec) taken by inex-
act preconditioned GMRES solver with the block preconditioners
Q1 for different values of h and δ, tolerance = 10−6 for Problem
4.1.

QS3 Q1

δ δ

10−3 10−5 10−7 10−9 10−3 10−5 10−7 10−9

h Iter(cpu) Iter(cpu) Iter(cpu) Iter(cpu) Iter(cpu) Iter(cpu) Iter(cpu) Iter(cpu)

2−3 11(0.120) 9(0.194) 3(0.0156) 3(0.125) 3(0.360) 2(0.110) 2(0.125) 2(0.109)
2−4 11(0.178) 11(0.272) 3(0.026) 3(0.203) 3(0.156) 2(0.125) 2(0.109) 2(0.125)
2−5 15(0.366) 17(0.535) 3(0.190) 3(0.235) 6(0.266) 3(0.175) 2(0.125) 2(0.114)
2−6 15(0.622) 17(0.538) 11(0.406) 3(0.422) 9(0.422) 3(0.438) 2(0.281) 2(0.247)
2−7 17(4.856) 19(4.840) 11(4.634) 5(3.519) 15(5.560) 5(0.594) 2(0.340) 2(0.319)
2−8 17(11.936) 19(12.834) 15(11.830) 6(11.639) 33(7.536) 7(0.534) 2(0.480) 2(0.453)

yield good computing results in the form of very small iteration steps and comput-
ing times and the number of iterations are δ and h independent. Comparing the
performance of the new preconditioner Q1 and QS3

from the Tables (3 and 4) we
observe that the new preconditioner is superior in terms of the number of iterations
and the CPU times. To sum up, the GMRES method applied with he new precon-
ditioner converges in a small number of iterations and CPU times for different mesh
sizes h and regularisation parameter δ. This is a different case with other precon-
ditioners where the number of iterations and CPU time increase with the changes
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Table 8. Number of iterations and CPU times(sec) taken by inex-
act preconditioned GMRES solver with the block preconditioners
PBCT ,PN for different values of h and δ, tolerance = 10−6 for
Problem 4.2.

PBCT PN

δ δ

10−3 10−5 10−7 10−9 10−3 10−5 10−7 10−9

h Iter(cpu) Iter(cpu) Iter(cpu) Iter(cpu) Iter(cpu) Iter(cpu) Iter(cpu) Iter(cpu)

2−3 69(2.223) 64(2.398) 58(2.112) 53(2.123) 14(0.239) 30(0.0.520) 54(0.578) 59(0.997)
2−4 250(7.853) 202(9.115) 510(25.110) - 14(0.298) 36(0.723) 96(1.250) 146(3.942)
2−5 692(30.923) - - - 13(0.385) 37(1.030) 119(3.298) 271(2.789)
2−6 - - - - 13(0.797) 37(4.723) 142(6.950) 517(8.021)
2−7 - - - - 13(2.335) 32(9.500) 160(28.530) -
2−8 - - - - 13(15.657) 30(19.2) 166(13957) -

Table 9. Number of iterations and CPU times(sec) taken by inex-
act preconditioned GMRES solver with the block preconditioners
PBD(S1),PBD(S2) for different values of h and δ, tolerance = 10−6

for Problem 4.2.

PBD(S1) PBD(S2)
δ δ

10−3 10−5 10−7 10−9 10−3 10−5 10−7 10−9

h Iter(cpu) Iter(cpu) Iter(cpu) Iter(cpu) Iter(cpu) Iter(cpu) Iter(cpu) Iter(cpu)

2−3 15(0.062) 31(0.110) 52(3.950) 70(0.186) 15(0.219) 14(0.265) 15(0.204) 10(0.141)
2−4 15(1.25) 36(0.250) 96(4.971) 369(5.055) 15(0.250) 15(0.252) 16(0.283) 12(0.211)
2−5 15(0.260) 43(0.725) 116(2.220) 670(116.7) 13(0.318) 15(0.568) 16(0.531) 12(0.554)
2−6 15(1.640) 43(1.910) 134(5.430) - 13(0.766) 16(0.856) 16(0.872) 13(0.334)
2−7 17( 7.368) 44(7.800) 153(24,20) - 13(2.921) 16(0.919) 15(1.548) 13(1.598)
2−8 17(15.904) 44(40.543) 165(112.5) - 13(3.675) 15(2.843) 15(2.830) 13(2.354)

Table 10. Number of iterations and CPU times(sec) taken by
inexact preconditioned GMRES solver with the block precondi-
tioners Q1 for different values of h and δ, tolerance = 10−6 for
Problem 4.2.

QS3 Q1

δ δ

10−3 10−5 10−7 10−9 10−3 10−5 10−7 10−9

h Iter(cpu) Iter(cpu) Iter(cpu) Iter(cpu) Iter(cpu) Iter(cpu) Iter(cpu) Iter(cpu)

2−3 13(0146) 15(0.262) 14(0.162) 10(0.125) 29(0.072) 10(0.063) 2(0.047) 2(0.031)
2−4 15(0.250) 16(0.212) 16(0.295) 11(0.214) 162(1.343) 15(0.218) 3(0.063) 2(0.047)
2−5 13(0.525) 16(0.525) 16(0.666) 11(0.619) 771(14.94) 25(0.693) 3(0.143) 2(0.079)
2−6 15(0.810) 15(0.628) 15(0.969) 13(0.886) - 32(0.995) 3(0.642) 2(0.141)
2−7 15(1.368) 15(0.866) 15(1.461) 13(1.458) - 35(1.392) 3(1.109) 2(0.336)
2−8 15(2.264) 15(1.982) 15(2.675) 13(2.639) - 35(2.357) 3(2.157) 2(0.725)

in parameters. This agrees with the results in Figure 1. From the results stated in
Tables (5, 6, 7, 8, 9, 10) show that we should choose PBD(S2), QS3

, Q1 for inex-
act preconditioning of the GMRES solver. We now present the second set of the
numerical experiment results exact preconditioned GMRES, that is approximat-
ing the preconditioners subsystems in Algorithms (3.6 and 3.8) using incomplete
Cholesky factorisation.

In Tables (12, 11, 13, 14, 15, 16) we list the number of iterations and computing
times with respect to the preconditioners PBD(S1), PBD(S2), QS3

, PBCT , PN , Q1
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Table 11. Number of iterations and CPU times(sec) taken by ex-
act preconditioned GMRES solver with the block preconditioners
(PBCT ,PN ) for different values of h and δ, tolerance = 10−6 for
Problem 4.1.

PBCT PN

δ δ

h 10−3 10−5 10−7 10−9 10−3 10−5 10−7 10−9

h Iter(cpu) Iter(cpu) Iter(cpu) Iter(cpu) Iter(cpu) Iter(cpu) Iter(cpu) Iter(cpu)

2−3 2(0.079) 2(0.063) 2(0.062) 2(0.062) 2(0.063) 2(0.078) 2(0.079) 2(0.094)
2−4 2(0.078) 2(0.078) 2(0.062) 2(0.094) 2(0.078) 2(0.0.78) 2(0.078) 2(0.078)
2−5 2(0.094) 3(0.094) 3(0.094) 2(0.078) 2(0.125) 2(0.410) 2(0.099) 2(0.188)
2−6 8(0.422) 8(0.406) 8(0.922) 9(0.466) 2(0.359) 2(0.328) 2(0.328) 2(0.360)
2−7 20(5.588) 20(5.632) 19(5.310) 23(6.356) 2(1.410) 2(1.587) 2(1.179) 2(1.333)
2−8 20(10.888) 20(10.72) 19(10.60) 23(10.56) 2(6.20) 2(5.687) 2(5.709) 2(5.324)

Table 12. Number of iterations and CPU times(sec) taken by ex-
act preconditioned GMRES solver with the block preconditioners
PBD(S1),PBD(S2) for different values of h and δ, tolerance = 10−6

for Problem 4.1.

PBD(S1) PBD(S2)
δ δ

h 10−3 10−5 10−7 10−9 10−3 10−5 10−7 10−9

h Iter(cpu) Iter(cpu) Iter(cpu) Iter(cpu) Iter(cpu) Iter(cpu) Iter(cpu) Iter(cpu)

2−3 3(0.078) 3(0.063) 3(0.063) 3(0.078) 3(0.063) 3(0.063) 3(0.046) 3(0.047)
2−4 3(0.109) 3(0.094) 3(1.312) 3(1.534) 3(0.063) 3(0.078) 3(0.078) 3(0.078)
2−5 3(0.124) 3(0.110) 3(3.633) 3(4.737) 3(0.078) 3(0.094) 3(0.094) 3(0.109)
2−6 3(0.266) 3(0.218) 3(8.866) 3(16.41) 3(0.243) 3(0.250) 3(0.265) 3(0.281)
2−7 3( 0.354) 3(1.410) 3(30.82) 3(15.98) 3(1.402) 3(1.410) 3(1.387) 3(1.374)
2−8 3( 1.544) 3(4.410) 3(35.28) 3(37.28) 3(2.423) 3(2.341) 3(3.743) 3(3.647)

Table 13. Number of iterations and CPU times(sec) taken by ex-
act preconditioned GMRES solver with the block preconditioners
QS3

and Q1 for different values of h and δ, tolerance = 10−6 for
Problem 4.1.

QS3 Q1

δ δ
10−3 10−5 10−7 10−9 10−3 10−5 10−7 10−9

h Iter(cpu) Iter(cpu) Iter(cpu) Iter(cpu) Iter(cpu) Iter(cpu) Iter(cpu) Iter(cpu)
2−3 3(0.056) 3(0.056) 3(0.039) 3(0.033) 2(0.062) 2(0.078) 2(0.078) 1(0.063)
2−4 3(0.056) 3(0.064) 3(0.059) 3(0.068) 2(0.062) 2(0.079) 2(0.078) 1(0.062)
2−5 3(0.064) 3(0.078) 3(0.079) 3(0.065) 1(0.140) 2(0.158) 1(0.078) 1(0.094)
2−6 3(0.159) 3(0.228) 3(0.240) 3(0.236) 1(0.406) 1(0.406) 1(0.406) 1(0.266)
2−7 3(0.720) 3(0.825) 3(0.823) 3(0.847) 1(0.574) 1(0.388) 1(0.398) 1(0.241)
2−8 3(0.910) 3(0.921) 3(0.973) 3(0.978) 1(0.673) 1(0.390) 1(0.388) 1(0.255)

which are applied to precondition the GMRES solver for different δ and h for Prob-
lems (4.1 and 4.2). The subsystems in the application of the preconditioners are
solved exactly using the incomplete Cholesky factorisation. We can observe from
the results in the tables above that the computing efficiency of the precondition-
ers approximated exactly are independent of the h and δ for Problem 4.1 because
it has a smooth data. For Problem 4.2 the exact application of preconditioners
PBD(S1), PBCT , PN , the GMRES failed to converge for the small values of the
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Table 14. Number of iterations and CPU times(sec) taken by ex-
act preconditioned GMRES solver with the block preconditioners
(PBCT ,PN ) for different values of h and δ, tolerance = 10−6 for
Problem 4.2.

PBCT PN

δ δ

h 10−3 10−5 10−7 10−9 10−3 10−5 10−7 10−9

h Iter(cpu) Iter(cpu) Iter(cpu) Iter(cpu) Iter(cpu) Iter(cpu) Iter(cpu) Iter(cpu)

2−3 60(2.223) 64(2.398) 58(2.112) 53(2.113) 14(0.239) 30(0.578) 54(0.909) 59(0.994)
2−4 172(7.853) 202(9.115) 510(25.11) - 14(0.278) 36(0.728) 146(3.033) 146(2.942)
2−5 448(30.924) - - - 13(0.385) 37(1.030) 129(3.299) 264(8.021)
2−6 - - - - 35(1.859) 35(4.328) 123(16.32) 517(77.360)
2−7 - - - - 34(9.335) 30(93.587) 125(93.53) -
2−8 - - - - 34(19.20) 32(120.687) 125(121.79) -

Table 15. Number of iterations and CPU times(sec) taken by ex-
act preconditioned GMRES solver with the block preconditioners
PBD(S1),PBD(S2) for different values of h and δ, tolerance = 10−6

for Problem 4.2.

PBD(S1) PBD(S2)
δ δ

h 10−3 10−5 10−7 10−9 10−3 10−5 10−7 10−9

h Iter(cpu) Iter(cpu) Iter(cpu) Iter(cpu) Iter(cpu) Iter(cpu) Iter(cpu) Iter(cpu)

2−3 15(0.062) 31(0.110) 84(3.95) 70(0.178) 11(0.063) 13(0.078) 7(0.047) 7(0.054)
2−4 15(0.125) 36(0.250) 354(4.912) 369(5.534) 13(0.125) 13(0.125) 13(0.111) 9(0.111)
2−5 15(0.264) 40(0.750) - - 13(0.318) 13(0.268) 13(0.354) 11(0.354)
2−6 15(1.646) 37(3.918) - - 13(1.243) 13(0.750) 12(0.865) 11(0.781)
2−7 15(2.354) 34(21.410) - - 11(9.402) 11(1.410) 11(1.387) 11(1.374)
2−8 17(7.544) 34(46.410) - - 11(12.423) 11(9.341) 11(9.543) 11(3.647)

Table 16. Number of iterations and CPU times(sec) taken by ex-
act preconditioned GMRES solver with the block preconditioners
QS3 and Q1 for different values of h and δ, tolerance = 10−6 for
Problem 4.2.

QS3 Q1

δ δ
10−3 10−5 10−7 10−9 10−3 10−5 10−7 10−9

h Iter(cpu) Iter(cpu) Iter(cpu) Iter(cpu) Iter(cpu) Iter(cpu) Iter(cpu) Iter(cpu)
2−3 13(0.046) 13(0.062) 11(0.062) 7(0.047) 29(0.672) 2(0.063) 1(0.047) 1(0.031)
2−4 13(0.125) 13(0.112) 13(0.095) 9(0.094) 49(5.92) 1(0.063) 1(0.047) 1(0.037)
2−5 13(0.125) 13(0.125) 13(0.279) 11(0.219) 61(0.0340) 1(0.093) 1(0.043) 1(0.022)
2−6 13(0.559) 13(0.228) 13(0.540) 11(0.636) - 1(0.395) 1(0.170) 1(0.022)
2−7 11(0.620) 11(0.625) 11(0.823) 11(0.847) - 1(0.392) 1(0.042) 1(0.041)
2−8 11(8.710) 11(7.721) 11(7.491) 11(7.458) - 1(0.390) 1(0.053) (0.055)

parameters δ and h. The GMRES with the preconditioners PBD(S2), QS3
, Q1

show excellent results for both problems. We see that the GMRES method incor-
porated with these preconditioners is computationally more efficient in terms of
both iteration counts and computing times but QS3

, QS2
and Q1 produced best

performance results. The preconditioner Q1 produced the best results in terms of
number of iterations and CP time. This shows the superiority of our new proposed
preconditioner to the other preconditioners.
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Table 17. Numerical results using preconditioner with approxi-
mation Q1 with h = 2−6.

δ
Preconditioner Q1

‖ uh ‖2 ‖ uh − u ‖2 ‖ yh − y ‖2 ‖ y − yd ‖2 J(uh, yh)
10−1 1.58e+2 7.63e-4 1.56e-3 3.13e+1 4.07e+2
10−2 1.29e+2 4.75e-4 1.28e-3 2.55e+1 4.07e+2
10−3 4.56e+2 3.53e-4 4.50e-4 8.98 1.44e+2
10−4 6.08e+2 7.43e-4 6.03e-5 1.20 1.92e+1
10−5 6.29e+2 7.98e-4 6.30e-6 1.24e-1 1.98e-1
10−6 6.32e+2 8.03e-4 6.29e-7 1.25e-2 2.0e-2
10−7 6.32e+2 8.03e-4 6.26e-8 1.24e-3 2.0e-3
10−8 6.32e-2 8.03e-4 6.32e-9 1.24e-4 2.0e-4
10−9 6.32e+2 8.03e-4 6.32e-10 1.24e-5 2.0e-5

The results in Table 17 show the behaviour of the cost functional for different
values of the regularisation parameter δ. It is well known that the δ determines how
close the state approaches the desired state yd. The results provide an interesting
observations that ‖ u ‖2 stops increasing at 10−6 with J(y, u) and ‖ y − yd ‖2
decreases with the decrease by a constant factor of the decrease of δ. We observe
that the state variable become very close to the desired state and also that the
control variable ‖ u ‖2 increases as δ decreases. This is a clear indication that the
cost functional will be insensitive to the control variable as δ decreases.

5. Conclusion

The PDE-constrained optimisation problem discretised by the finite element
method results in a large scale linear algebraic system of saddle point form. The
robust and efficient numerical solution of such problems strongly depends on the
preconditioning strategies. The main task of this paper was to contribute to the
long list of block preconditioners by developing a robust and efficient precondition-
ers for solving the saddle point systems. The preconditioners are built on the block
structure of the coefficient matrix and can be employed to precondition the GM-
RES method. The theoretical analysis of the proposed preconditioner Q1 indicate
that the spectral properties of the preconditioned matrix are clustered around 1
and the numerical experimental results confirm this with the preconditioned GM-
RES solver, when both the mesh size h and regularisation parameter δ decrease.
We have compared the numerical results of the proposed preconditioner with those
several preconditioners presented in literature both applied exactly and inexactly.
For both inexact and exact application of the preconditioners applied numerically,
the proposed preconditioner Q1 is the most efficient and effective compared to the
other tested. The numerical results show that our new preconditioner can be an
alternative choice for preconditioning Krylov subspace solvers and must be con-
sidered as a suitable and a better preconditioner for the considered and similar
problems. The techniques and the numerical results highlighted in this paper can
be extended to handle many practical real life problems which results in similar al-
gebraic structure. Furthermore, the numerical results have demonstrated that the
proposed preconditioner can be used practically and can be considered as a viable
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preconditioner for other classes of problems that occur in various fields such as fi-
nance, shape optimization, atmospheric and oceanic sciences, optimal heat control
and among others.
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