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Abstract. This paper considers weak Galerkin finite element approximations on
polygonal/polyhedral meshes for a quasistatic Maxwell viscoelastic model. The spa-
tial discretization uses piecewise polynomials of degree k (k > 1) for the stress
approximation, degree k+ 1 for the velocity approximation, and degree k for the nu-
merical trace of velocity on the inter-element boundaries. The temporal discretiza-
tion in the fully discrete method adopts a backward Euler difference scheme. We
show the existence and uniqueness of the semi-discrete and fully discrete solutions,
and derive optimal a priori error estimates. Numerical examples are provided to
support the theoretical analysis.
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1. Introduction

Let Q C R%(d = 2,3) be a convex polyhedral domain with boundary 9, and T be
a positive constant. We consider the following quasistatic Maxwell viscoelastic model:

—dive = f, (x,t) € Q x[0,T7, (1.1a)
o+o=Ce(u), (z,t)€Qx][0,T], (1.1b)
u =0, (x,t) € 0Q x [0,T7, (1.10)
u(x,0) = ¢o(x), x€Q, (1.1d)
o(x,0) =vYo(z), x€q. (1.1e)
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Here u € R? is the displacement field, o = (0;;)4xq the symmetric stress tensor, e(u) =

w the strain tensor, f the body force, ¢q(z) and vy(x) are initial data, g; :=

% for any function g(x,t), and C denotes an elastic module tensor such that for any
symmetric tensor T = (7;j)qxq a.e. « €  one has

0<Myr:7<Clr:7<Mr7:T1, (1.2)

where M, and M; are two positive constants, and

d

d
LT = E E LTy for o, 7€ R*,
i=1 j=1

Note that for an isotropic elastic medium we have
Ce(ut) =2ue(ur) + A(V - ug)l,

where ;i and A are Lamé constants, and [ the identity matrix.

In material science and continuum mechanics, viscoelasticity is the property of ma-
terials that exhibit both viscous and elastic characteristic when undergoing deforma-
tion. The Maxwell model, characterized by the governing constitutive relation (1.1b),
is one of classical models of viscoelasticity (see, e.g. [2,12-14,16,18,19, 33,40, 41]
for some related works on the development and applications of viscoelasticity theory).
These models, including the Kelvin-Voigt model and the Zener model, are represented
by different combinations of purely elastic springs, which obey Hooke’s law, and purely
viscous dashpots, which obey Newton law. The Maxwell model consists of a spring and
a dashpot connected in series. We note that the general constitutive law of viscoelastic-
ity can be described in a unified framework by using convolution integrals in time with
some kernels [12,16,40].

In [5, 6] Carcione et al. gave the first numerical simulation of wave propagation in
viscoelastic materials, and introduced memory variables to avoid the computation of
convolution integrals in the constitutive relation. Janovsky et al. [25] applied continu-
ous/discontinuous Galerkin finite element methods to discretize a linear viscoelasticity
model involving the hereditary constitutive relations for compressible solids. Ha et
al. [20] proposed a nonconforming finite element method for a viscoelastic complex
model in the space frequency domain. Bécache et al. [1] presented a family of mass
lumped mixed finite element methods, together with a leap-frog scheme in the time
discretization, for the Zener model. In [36-38] Riviere et al. analyzed discontinuous
Galerkin finite element discretizations of the quasistatic linear viscoelasticity and lin-
ear/nonlinear diffusion viscoelastic models, where a Crank-Nicolson temporal scheme
is used in the full discretization. Rognes and Winther [39] considered mixed finite el-
ement approximations with weak symmetric stresses for the quasistatic Maxwell and
Kelvin-Voigt models, where the temporal discretization uses a second backward dif-
ference scheme. In [42] Shi and Zhang applied the standard p-order rectangular finite
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elements to solve a kind of nonlinear viscoelastic wave equations with nonlinear bound-
ary conditions. Lee [26] studied mixed finite element methods with weak symmetry for
the Zener, Kelvin-Voigt and Maxwell models, and employed the Crank-Nicolson scheme
in the temporal discretization. In [33] Marques and Creuso gave an overview of nu-
merical methods of viscoelasticity problems including finite element, boundary element
and finite volume formulations. Li et al. [31] proposed a space-time continuous finite
element method for a 2D viscoelastic wave equation. In [50], Wang and Xie analyzed
a hybrid stress finite element method for the Maxwell model, where a second order
implicit difference was used in the fully discrete scheme. Recently, Yuan and Xie [54]
showed that the mixed finite element framework for Maxwell-model-based problems of
wave propagation in linear viscoelastic solid allows the use of a large class of existing
mixed conforming finite elements for elasticity in the spatial discretization.

This paper is to consider a class of weak Galerkin finite element discretizations of
the quasistatic Maxwell viscoelastic model (1.1). The weak Galerkin (WG) method
was firstly proposed and analyzed by Wang and Ye for second order elliptic prob-
lems [46,47]. Due to adopting weakly defined gradient/divergence operators over
functions with discontinuity, the WG method allows the use of totally discontinuous
functions on finite element partitions with arbitrary shape of polygons/polyhedra, and
allows the local elimination of unknowns defined in the interior of elements. Later
on, this method was extended to some other models of partial differential equations,
such as convection-diffusion equations [4, 8,17,30, 32, 56], linear elasticity problems
[9,23,45,49], Stokes equations [7,48,55,57,58], Maxwell equations [35,44], natural
convection problems [21,22], Biot models [11, 24], biharmonic equations [3, 34, 51]
and p-Laplacian problem [53]. We also refer the reader to [10,27-29] for some WG
fast solvers and to [52] for a low regularity error analysis of a WG discretization.

In this contribution, we develop semi-discrete and fully discrete WG methods for
a velocity-stress system of the quasistatic Maxwell viscoelastic model (1.1) on polygo-
nal/polyhedral meshes, where the velocity variable v = u, is introduced (cf. (2.1)). In
the spatial discretization, the stress variable is approximated by piecewise polynomials
of degree k (k > 1), the velocity variable is approximated by piecewise polynomials of
degree k + 1, and the velocity trace on the inter-element boundaries is approximated
by piecewise polynomials of degree k. In the fully-discrete method, the backward Euler
difference scheme is adopted for the temporal discretization.

The rest of this paper is organized as follows. Section 2 introduces some notations
and the weak variational problem. Sections 3 and 4 are devoted to the stability and
error estimation for the semi-discrete and fully discrete weak Galerkin schemes, respec-
tively. Finally, we report some numerical results to demonstrate the performance of the
proposed WG methods.

2. Weak formulation

We first introduce some notations. For any bounded domain D C R*® (s =d,d — 1)
and nonnegative integer m, we denote by H™ (D) and H}"(D) the usual m-th order
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Sobolev spaces with norm || - ||,,,p and semi-norm | - |,, p. HY(D) = L?*(D) is the
space of square integrable functions defined on D. We use (-, -),, p to denote the inner
product of H™ (D), with (-,-)p = (-,-)o,p. When D = Q, we set || - ||, = || - [lm.0>
| “|m =" |mqand (-,-) := (-,-)q. In particular, for D C R%"!, we use (-,-)p to replace
(-,-)p. For any integer j > 0, P;(D) denotes the set of all polynomials defined on D
with degree no greater than j.

For any vector-valued ( or tensor-valued) space X, defined on D, with norm || - || x,
we set

LP([0,T); X) == {v : [0,T] = X; ||v]lp(x) < 00},

T 1
P
p .
lvllzex) == </0 Hv(t)Hx> ; if 1<p< oo,

€SS SUP<;<7 lo®)|lx, if p=oo,

and wv(t) abbreviates v(x,t). For simplicity, we set LP(X) := LP(0,7;X). For any
integer » > 0, the spaces H"(X) := H"(0,7;X) and C"(X) := C"([0,T]; X) can be
defined similarly.

For convenience, throughout this paper we use a < b to represent a < Cb, where C'
is a generic positive constant C' independent of the spatial mesh size h and the temporal
mesh size At.

Introducing the velocity variable v = u;, we reformulate the quasistatic Maxwell
viscoelastic model (1.1) in the velocity-stress form

where

—dive = f(t), (x,t
o+ oy =Ce(v), (x,t
v =0, (x,t
o(0) = po(z), we

€ Q x[0,7],
€ Qx1[0,7T],

)

) (2.1)
) €99 % [0,7T],

Q.

It is easy to see that
t
wla,t) = do(o) + [ ola,s)ds.
0

Define

dxd

L3(9) = {7 = (ryj)axa € [A@Q)] " |7y = 730, 62 = 1,.....d}.

Then, based on the system (2.1), we can get the following weak problem: Find (o, v) €
HY(L%(Q)) x L2([H(2)]9) such that for any ¢ € (0,77,

CL(O't, T) + CL(O', T) - b(Ta ’U) = 0, VT € Lg(Q), (22&)
b(o, w) = (f,w), vw € [HA ()], (2.2b)
o (0) = 1po(z), x € Q, (2.2¢)

where a(o,T) := (Clo,7) and b(T,w) := (7,e(w)).
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Introduce a norm || - ||, on L%(Q2), with || - ||2 := a(-,-). Then from (1.2) it follows:
Mol (|3 < ||I7l2 < Mull7llg, VT € LE(Q). (2.3)

Thus, we have
Mo| 7|3 < a(r,7), a(o,7) < Melolltllo, VY 0 € LE(Q). (2.4)

For the bilinear form b(-, -), the Korn inequality indicates the inf-sup condition

b(r,
fwls < le@)lo < s T v e @) 25)
ozreri@) [ITlo
We need the following continuous Gronwall’s inequality.
Lemma 2.1. Let ¢(t) be such that
do(t
% +p()$(t) S e(t), 0<t<T
where p(t),(t) € L([0,T)]). Then it holds
t t s
B(t) < e Jopls)ds <¢(0) + / P(s)elo p(T)de8> , Vtelo,T). (2.6)
0
In particular, if p < 0 is a constant and ¥ (t) > 0, then
T
pt) < e P <¢(o) + / w(s)d8> , Vte[o,T]. 2.7
0

By following a similar routine to that in [39] for a weak formulation of the Maxwell
model with weak symmetry, we can derive existence, uniqueness and stability results
for the system (2.2).

Lemma 2.2. Assume that
feCH[L*(Q)]Y), o € L*(Q). (2.8)

The weak problem (2.2) has a unique solution (o,v) € C*(L%(Q)) x CO([H} (Q)]%), and
the following stability results hold:

Mg t My s
IIU(t)\I3§6_WtIIwo|I3+/O e (I F)3 + 1£:(5)15) ds, (2.9)
lo @)1 + lloe@®)§ < llo @I + £ )15 (2.10)

for any t € (0,T), where My and M are positive constants given in (1.2).
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Proof. On one hand, the conditions (2.4),(2.5),(2.8) and the Babuska-Brezzi’s
theory for saddle-point formulations imply that there exist o.(t) € C'(L%(f)) and
ve(t) € CH[HL(9)]9) solving the elasticity problem

{a(ae,f) —b(r,v.) =0, VreLE(Q), 2.11)

b(oe, w) = (£, w), Vw € [HE ()]
for any ¢ € [0, T]. Introduce
S = {T € LA(Q) | b(r,w) = 0, Vw € [H&(Q)]d} .

From (2.4) and the standard theory of ordinary differential equations we know that
there exists og € C'!(X) satisfying the ordinary differential equation

(2.12)

a(oot, 7) +alog, 7) = —a(oeyr, 7), V7T € X,
0'0(0) = ¢0 - 0'6(0)-

On the other hand, the inf-sup condition (2.5) yields the existence of vy € CO([H}(22)]%)
such that for ¢ € [0, T,

a((o0+ 0e), T) + a(og, ) — b(T,v0) =0, V7 € LE(). (2.13)

As the result, o0 = o + 0. and v = v + v, solve the weak problem (2.2).

To prove the uniqueness of the solution, it suffices to establish the stability results
(2.9) and (2.10). We first prove (2.10). Take 7 = o in Eq. (2.2a) and differentiate
Eq. (2.2b) with respect to ¢ to obtain

a(a,0¢) + otz = (fi,v). (2.14)
In light of Eq. (2.2a), the inf-sup condition (2.5), the Cauchy-Schwarz inequality and
(2.3), we have
1
lo@)lr < BME (llo(t)lla + llow(t)]la),
which, together with (2.14), implies

@I + loe @17 < Clle®Z + £ (2.15)

Here C is a positive constant depending only on 3, My, M;. Thus, from (2.3) the de-
sired estimate (2.10) follows.
The thing left is to show (2.9). Take 7 = o and w = v in (2.2) and employ the
Young’s inequality and (2.15) to get
1d

- 2 2 _
S Sla @2 + @2

—~

Fo) < LIFOIR + z—lquvw%

<

NSRS

£ + 5 (I @12+ 1£0)13).
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MC
2M1— My

Then, taking ¢ = > 0 in this inequality implies

%Ila(t)\lﬁ + %IIU@)H?L <c(IF I+ 1£017) -

Here c is a positive constant depending only on 3, M, M;. Hence, using the Gronwall’s
inequality (2.6), we obtain

2 — ot 2 ! — 2 (t—s) 2 2\ 4
lo()llz <e ™Yol +c e (IF )G+ 11Fe(3)15) ds,

which, together with (2.3), yields (2.9). This completes the proof of the lemma. O

3. Semi-discrete weak Galerkin method

3.1. Semi-discrete WG scheme

Let .7}, = [J{K} be a shape-regular decomposition of the domain Q € R? (d = 2, 3)
consisting of polygons/polyhedrons, in the sense that the following two assumptions
hold (cf. [9]):

(A1) There exists a positive constant 6, such that for each element K € .7, there is
a point My € K with K being star-shaped with respect to every point in the ball
of center M and radius 0,.hx.

(A2) There exists a positive constant [, such that for every element K € .7}, the dis-
tance between any two vertexes is no less than [, h.

Let &, be the set of all edges/faces of all elements in .7,. For any K € 9}, and F €
&y, we denote by hi and hg the diameters of K and F, respectively, and set h :=
maxge g, hi. Let V), be the piecewise-defined gradient with respect to .7,. Moreover,
let

V(K) = {v = {vo, v} : vo € L2(K), v € H%(aK)} :

W(K) = {v = {vo,vp} : vo € [LA(K)]%, vy -ny € Hfé(aK)}

We follow [46] to introduce the definitions of discrete weak gradient/divergence
operators.

Definition 3.1. For any K € 7,,v € V(K) and integer j > 0, the discrete weak gradient
Vo, kv € [P;(K)]? of v is defined by

(V'w,j,K/U’ q)K = _(UOa V- Q)K + </Ub’ q- nK>8K’ vq € [P](K)]d’ (31)
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where ny is the unit outward normal vector along OK. The global discrete weak gradient
operator V., j on V(J,) :={v: v|g € V(K), VK € 9} is defined by
Vwjlk =Vujkx, VK € .
For a vector v = (v, -+ ,va)t € V()] its discrete weak gradient V,, jv is defined as
ViV = (Vi V1, s Vi jVa) -

Definition 3.2. For any K € Z,,v € W(K) and integer j > 0, the discrete weak
divergence V, j i - v € Pj(K) of v is defined by

(Vujk - v,k =—(vo, V@)K + (vp - K, Q)or, Vg€ Pj(K). (3.2)
The global discrete weak divergence operator V., ;- is defined by
Vuwj |k =Vujk, YK€
For any K € 9}, E € &, and any integer j > 0, let
Q} : L*(K) — Pj(K), Q}:L*(E) = F;(E)

be the usual L? projection operators. For convenience, vector and tensor analogues of
QY and Q* are still denoted by QY and @, respectively.
For any integer k£ > 1, we introduce the following finite dimensional spaces:

Sh o= {m € L3() s 1 | € [P(K)™, VK € 73}, (3.3)
Vi = {Uh = {Vh0, Vhb} : Vo |k € [Pet1(K)]% vns | € [Pe(E))Y,

VK € %, E € 5h}, (3.4)
VY = {vp € Vi, : vpp 90 = 0}. (3.5)

The semi-discrete WG scheme reads as follows: For any ¢ € [0, T}, find o (-, t) € X,
(-, t) = {vno(-,1), vas (- 1)} € V) such that

an(Oh,ts Th) + an(Ohs Th) — bp(ThyvR) =0, V7h € Xp, (3.6a)
br(ohy wh) + sp(vh, wh) = (f, who), Yy, € V2, (3.6b)
on(0) = QLvo, (3.60)
where
an(Oh,Th) = (C'on,Th),  bn(Th,wn) = (fwk(wh), h),
sn(Vh, wh) = ((Q}vho — Vhb), Qhwho — whb>8yh
with

(Vw,kwh + (Vw,kwh)T) s <" '>8yh = Z <" '>8K
Ke,

N |

Ew,k(wh) =

and the stabilization parameter a|r = 2uh}' for any E € &,.



Weak Galerkin FEMs for Quasistatic Maxwell Viscoelastic Model 87

Remark 3.1. Notice that by the definition of the discrete weak gradient we have

bn(Thy Wh) = (Vw,kWhs Th) = —(Who, V * Th) 7, + (Whbs ThT) 0.7, - (3.7)
Then the Egs. (3.6a) and (3.6b) lead to the relations
an(Oh,ts Th) + an(Oh, Th) + (Vho, V - ) — (Vns, Th) 0.5, = 0,
~(V - o, who) + (a(Qvho — Vhb), Who) 55 = (> Who),
{opn — a(Qhvno — th)7whb>a__a7h =0
for all (75, {wno, wrp}) € Tp, x V2.

By using standard techniques, we can show the existence and uniqueness of the
semi-discrete solution.

Theorem 3.1. The semi-discrete scheme (3.6) has a unique solution (o, vp) € Xp, X V,?.

Proof. Let {®;}/1, and {{¢o;}/2,, {¢wi};2,} be the basis functions of ¥} and V},
respectively. We write

on(t) =Y ni(t)®i, wvro(t) =Y _ Bi(t)doi,
=1 i=1

vnb = > %i)dei,  Fi = (£ ¢0)),
i=1

and denote by 7(t), 5(t),v(t) the corresponding vectors of 7;(t), 5;(t),vi(t), respectively.
Let M, ;; the (¢, j)-th components of matrix M, (s =0,1,...,6) be given by

Moz = (C1o;,@;), My = (@05, V - D),
Maij = —(duj, Pin)og,, Msij = <04QZ¢0]‘,¢0¢>8__%,

Muij = —(ady, doi)oz,, Msi = —(aQbdoj, dvi)oz,,
Meij = (ady;, Obi)o7, -

Then the system (3.6) can be written as the following matrix forms:

Modz—(tt) + Mon(t) + M16(t) + May(t) = 0, (3.8)
—MIn(t) + M3B(t) + Myy(t) = F(t), (3.9)
—M3n(t) + MsB(t) + Mey(t) = 0. (3.10)

Here we have used the relation (3.7) for the terms b;(-, -) in the scheme. Since M, and
M are symmetric positive definite, we can eliminate §(¢) and ~(¢) from (3.8)-(3.10)

to get

Mo—dz(tt) +P(t) = Q1) (3.11)
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where
P = Mo+ MoMg ' MT + (Mg — MaMg ' Ms)
x (Mg — MaMG' Ms) " (MT = MuMGIME),
Q = (MaMg M5 — My) (Ms — MyMg " Ms) F(1).

By the standard theory of ordinary differential equations (cf. [15]), the above system
has a unique solution 7(¢). And the existence and uniqueness of 3(t) and ~(t) follow
from (3.9) and (3.10). This completes the proof. O

3.2. A priori error estimation

To establish error estimates for the proposed WG scheme, we need the following
properties of the Lo-projections Q?, Q? with nonnegative integer j.

Lemma 3.1 ([9]). It holds the commutative property
Vui{Q%1v, Q) = QVo forall wve [H'(K)]" (3.12)

Lemma 3.2 ([9,43]). Let m be an integer with 1 < m < j+ 1. Forany K € 9}, FE € &,
it holds

H”_Q?”HO,K""}LKW_Q?”‘LKf<v Klvlm i, Vv e H™(K),
_1
HU_Q?”HO,@K Shy 2ol Vv e H™(K),
v—Q%| . <Kk, Vo e HYK), 0<s<m,
§lokc S PR 0lm, (K)
1Q50]lg. 5 < ll0llo,x Vo € LX(K),
1Q5v ]l 5 < llvllo,, Vo € LY(E).

For the bilinear forms ay(+,-) and b, (-, -), we easily get the following continuity and
coercivity results.

Lemma 3.3. For all o, Th € X}, vy, = {Vho, Vnp} € V}, it holds

an(ohos Tho) < Mil|lonollol|Trollo,
br(Thy wh) < || Th|lol|€w,k (W) |0,

an(Thys Th) > Mol Thl[5-
We also need the following inf-sup stability condition for the bilinear form by (-, -).

Lemma 3.4 ([9]). For any wp, = {wpro, Whp} € V4, it holds

b
lew,k(wr)lo S  sup on(Th, wn)

(3.13)
ozmes,  mnllo
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Lemma 3.5 ([9]). For any wp, = {wpho, Whb} € V,? and sufficiently small h, it holds

1
IV nwnoll§ 5 llen(wno) 5 + |2 (@Fwno — who) 5.5 (3.14)
1
len(wnro)ll5 < lew,k(wn)llg + [|o2 (QRwro — whb)Hfmh7 (3.15)
where
1 T AR
en(w) := 3 (Vhw + (Vaw)™), - llog, = ()34,

The following lemma shows the error equations of the weak solution (o, v) and its
projection (Q)a, {Q} v, Q}v}).

Lemma 3.6. Let (o,v) € CY(L%(Q) N H(div,Q)) x CO([H}(2)]?) be the weak solution
of system (2.2), then, for all T, € %), and wp, = {who, wrp} € V) it holds

an(Qhos, ) + an(Qho, 1) — by, (Th, {Q%HU,QZv})

=ap ((Qho — ), Th) (3.16a)
by (Qho, wh) + s, ({Q2+1U7sz}7wh>
= (f,wno) + li(o, wr) + l2(v,wp), (3.16b)

where

li(o,wp) == <who — Whp, 0T — ng’">ayh )
lo(v,wp) = ((QRQR 1Y — Q4v), QL Who — Whp)y 7 -

Proof. By the commutative property (3.1) and the definitions of a(-,-) and bs(-, ),
we obtain

an (Qhow, ) + an (Qho, ) — by (Th, { Q) 1v, Qv })
= (C'QRov, 1) + (CT' QYo ) — (Vi { Qhyrv, Qhv }, )
= (C o1, mh) + (C'Qe, 1) — (QUVw, ) + (C(Qho — ), 7n)
= (C_lo't,Th) + ((C_lo',’rh) — (V'U,Th) + ((C_l(an — a)t,’rh)
= (CY Qo — o), h)- (3.17)
From the definition of weak gradient, the projection property and the Green’s formula,
it follows:
bi (Qho, wh) + s, ({ Q) 410, Qhv}, wp)
= (Vw,kwha ng’) + <a(Q2Q2+1v - sz)’szhO - whb>a,7h
= —(who, Vi - QL) + (whe, ann>af]h

+ <04(QZQ2+1U - sz)anwhO - whb>a,7h
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= (Vhwho, Qo) — (who — Whs, Q20n>agh
+ ((QhQR 1 1v — Q4v), QL who — Whp )y,
=(-V-o,wp) + <wh0 — Whp, (0' — an)n>8%
+ ((QhQR11v — Q4v), Qlwho — Whp )y,
= (fawh) +l1(0’,wh) —|—l2('U,’th)- (318)
This finishes the proof. O
Lemma 3.7. Let (o,v) € CY(L%(Q) O[HFHE(Q)]9%4) x CO([HE(Q) N H 2(Q)]7) be the
weak solution of system (2.2) and wp, = {wpo, W} € Vp, it holds
1
(o, wn)| S B o liyr [ Vawnollo + 4 |0k |2 (Qhwno — whb) ||
1
2 (v, wp)| S W vlkga]| 02 (QRwho — whs) Hay‘h'

Proof. Using the Cauchy-Schwarz inequality, the projection properties, the trace
inequality and the triangle inequality, we obtain

(o, wh)| < who — whblloz, |lon — Qhon||,,,
= o (wno — wns) | 5, 0= (o = Qhern) |,
< W o o (wno — wis)|
< th!O'!kHHa% (who — szhO)Haﬂh
+ ol Ha% (Qhwno — whs) Haf]h
< hk+1!0!k+1h_% |who — szhOHaﬁh
+ 1ol || o (QRwno — whb) ||,

< WY o1 [ Vawnollo + 5ol || o2 (QRwno — wh) loz (319

Similarly, by the Cauchy-Schwarz inequality and the projection properties we get

o (v, wn)| < [|a (QRQR1v — Qv) ||, (o2 (Qhwno — whb) | .
S HO‘% (QRs1v — v) Hay‘hHO‘% (szhO — Whp) Hay‘h

< B )] a2 (Qhwno — whs) o, (3.20)

This completes the proof. O

The following lemma gives an estimate of the error between the semi-discrete so-
lution (o, v, = {who, vpe}) and the projection (QYo, {Q}, v, Q}v}) of the weak solu-
tion.
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Lemma 3.8. Let (o, v) € C(L3(Q) N[H*()]44) x CY([HL () () HF2()]4) be the
weak solution of (2.2) and (o, {vho,vm}) € CHEp) x CH(VY) be the semi-discrete
solution of the WG scheme (3.6). Then it holds

where

with

and

1CRlIE + sn(&n, &) S ¥ (My(o,v) + Ma(o,v)), (3.21)

len(€ro) I} S W22 (Mo (o, v) + M (o, v) + Ma(o,v)), (3.22)
Ch= Qo — o, &n = {€ho, &}

0 b
Eno = Qk+1V — Yho, &b = Qpv — Vnp,

My(o,v) = ’U(O)‘iﬂ + ‘U(O)’zw + lat(0)1i+17

Mi(o,v) = |oli 1 + [vili g,

t
A@www:A(w@H+w@2+wﬁﬂ+w&Hw&

Proof. Subtracting (3.6a) and (3.6b) from (3.16a) and (3.16b), respectively, we

obtain

an(Crtsh) + an(Chy Th) — br(7h, &) = an((QRo — &), 7h), (3.23)

b

Taking

h(Chs wr) + Sh(&nswr) = li(o, wy) + la(v, wy). (3.24)

(Thy wn) = (Thy {who, wab}) = (Chy {€n0s Enb}) = (Chs&n)

in the above equations yields

%%ah(@u Cn) + an(Ch, Ch) + sn(&nsn)
= ap((Qho — 0),.C) + (0, &) + 1a(v, &), (3.25)

From Lemmas 3.7, 3.5 and the Young’s inequality with any x > 1 it follows:

IN

IN

1d
§EHChHZ + 116112 + sn(&nsén)

1 1

Sl (@R =), I2 + SIGHIIE + CH* i | Viwnollo
+ O ol Ha% (Q%&no — Emv) Haﬂh
n hk+1|’v|k+2HO‘% (Q%&no — Enb) Haﬂh

1 1
o2 @k = ), flo + 316G + RCH 2 (ol + ol o)
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C C, 1 2
+ ﬁth&ng + ;Hm (Q%eno — &) 152,
C

1
2o + k
< Q—MOhQ 2| tli+1 5”(}1”3 + Ch? +2(|0|i+1 |’U|i+2)

C, 1 C
|z (QRéno — &) I35, + 5. llen (0.

which implies that
d 2 2
aHChHa +1I¢nlla + sn(ns&n)
C
N h2k+2("7’z+1 + ‘U‘i+2 + ’Ut‘iﬂ) + ;st,k(fh)ug- (3.26)

By Lemmas 3.4, 3.2 and Eq. (3.23), we have

br(Thy &
lewn(@n)llo < sup n{ThSh)
0#TRED, HThHO

~ s an(Cn,ts Tn) + an(Chy Th) — an((QR — )1, )
0#7, €D I7allo
< c(llGnello + 1 llo + H*ore k1) (3.27)

Here c is a positive constant independent of k. To bound the term ||(j,+||o, substitute
Tn, = (¢ into (3.23) and take wy, = &, in (3.24) after differentiating in time, then we
get

an(Cht: Chyt) + an(Chy Cht) = br(Chts €n) = an((QRo — ), Cht)

1d
br(Chts En) + 5%3h(§h7§h) = l1(o1,&n) + la(vr, &n)-
Summing up the above two equalities and using Lemmas 3.7, 3.5, the Cauchy-Schwarz

and the Young’s inequality, for any x > 1 we have

1d 1d
2, 1@ 2, 1@
Ch,tlla + 5 27 lIGhlla + 5 7 sn(&ns €n)

= ah((an - O')t, Ch,t) + ll(at,é.h) + lQ(Utaé.h)
1 1

= §H (Qho — o) II2 + §\|Ch,t||2 + Ch* oy |1 ll€w ke (6n) llo
+ CHF Y (|oy ki + |vilira) sn(€ns €n) 7

1 1 C

§H Qo — o), + §HCh,tH¢21 + %st,k(fh)”%

+ ﬁ p2k+2
2

1 C C
< CH**2(joufE o + 01l 42) + 3 16hal? + o lewb (€I + -5 (6n: 1),

IN

C
(loelfer + lveliie) + ﬁSh(&uéh)
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which implies

d
el + 7 (Ihllz + sn(€n, n))
C C
< OW***2(|oli + |vilisn) + ;st,k(ﬁh)ﬂg +—sn(&n: En). (3.28)
From (3.27) and the norm equivalence (2.3), we have

€wk(ER)IIG < 3 (ICh el + ICAlIG + P22 |oel7 1)
3c2
< ﬁo(HCh’tHZ +1Cull2) + 3R 2oy 34,

which, together with (3.28), yields

3c2 d

€w,k (€l + L dt (I¢ull2 + sn(&ns&n))

3¢? o d 2 3c? 2 27 2k+2 2
A ||<h,t”a+E(HChHa‘{'Sh(ghagh)) +EHChHa+3C ot
3c?

My

IN

IN

C C
[Ch%“(yatyiH + |vili ) + ;Hew,k(fh)H% + —5n(&hs€n)

3c?

+ m”(h”g + 3R oy R4

Then we get

M C d
22 (1= ) lewa(@nli + 5 (112 + 16 60)

C
< OW**2 (|0t + |vil i) + 1Cull + —sn(&n: En). (3.29)

By taking a sufficiently large positive constant « in this inequality and using the norm
equivalence (2.3), from (3.26) and (3.27) it follows:

G+ 5n&n, 80) + 16112 + sn(€.€0)
S (lolfn + [0l + loelin + [ol)- (3.30)
By the continuous Gronwall’s inequality (2.6), we can get
1Ch ()12 + s1(Ens €n) S 1R O)I[2 + 51 (64(0), €A (0))
#1292 [ (ot ol + ol + ol o)ds. @31
In view of (3.6c¢), it holds

¢n(0) = Q) (0) — o, (0) = 0.
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The thing left is to estimate the term s,(&;,(0),£,(0)). To this end, we take w;, = &, in
(3.24) and use Lemma 3.7 to get

sh(€1(0),€1(0)) = 11(0(0),£,(0)) + 12(v(0),£1(0)) — by (¢r(0), £ (0))
=11(0(0),£,(0)) + l2(v(0),£,(0))
S HE e (0) kg1 - 1V RER(0)]lo
+ W0 (0) 1 [l a7 (QRRo(0) = € 0)) 1.,
+ B 0(0) k]2 (QF€ro(0) — €1 (0)) [l 5,
which, together with (3.14) and (3.15), leads to

sn(€0(0),£,(0)) S P2 (lo(0) 741 + [0(0) 715 + |o¢(0)[741)- (3.32)

Combining this estimate with (3.31) indicates the desired result (3.21).
Now let us prove the estimate (3.22). From (3.15) and (3.29) with a sufficiently
large x, we get

d
llen (o)l + E(HCth + 51(6n, En))

1 d
S llewk (€5 + |2 (Qh&no — &ns) H?Hh + a(”(h”g + sn(€n, &n))
SNGlIZ + snén, &) + W2 (Joufiiy + [vilisa),

which, together with (3.21), yields the desired estimate for |lep,(£40)||3. This finishes
the proof. O

Applying Lemmas 3.8, 3.2 and the triangle inequality gives the following error esti-
mate for the semi-discrete WG scheme.

Theorem 3.2. Let (or,v) € CY(L3(Q) N[HF(Q)]44) x C([HL(Q) N H2(2)]%) be
the weak solution of system (2.2) and (o, vp,) € CH(E)) x C1(V?) be the solution of the
WG scheme (3.6). Then

o — anllo + lle(v) — en(vro)llo
1

,S hk—H (MQ(O',’U) + Ml(O', ’U) + MQ(O', ’U))E, (333)

where My(o,v), My (o,v) and Ms(o,v) are defined in Lemma 3.8.

4. Fully discrete weak Galerkin method

4.1. Backward Euler fully discrete scheme

We consider a full discretization of the quasistatic viscoelastic Maxwell model based
on backward Euler scheme. Given a positive integer N,let0 =to <t; < --- <ty =T
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be a uniform division of time domain [0, 7], with ¢, = nAt and At = £ For any vector
or tensor-valued function ¢(¢) and any n, we set

n n—1
Based on the semi-discrete scheme (3.6), the backward Euler fully discrete WG
scheme is given as follows: forn = 1,..., N, find (o, v}) = (o, {v},, v }) € Tpx VP
such that
(525 oy, Th) + ah(aﬁ, Th) — bh(Th,’UZ) =0, V1, €y, (4.1a)
bp(oy,, wn) + sp(vy, wn) = (f", wno), Vwp, € VY, (4.1b)
O'h = kao (4.1C)

Theorem 4.1. The backward Euler fully discrete WG scheme (4.1) has a unique solution
(op,vp),n=1,...,N.

Proof. Since this is a square system, it suffices to show that the homogeneous system

{ ap(oy, ™) + Atay (o), Th) — Aty (1, v) =0, V7 € X, (4.2a)
br(oy, wr) + sp(vy, wp) = 0, Vawy, € V0 (4.2b)

only admits a zero solution. In fact, taking (7, wy) = (o}},v}}) and summing up the
above two equations, we obtain

(1+ At)ay (o, 03) + Atsy, (vy,vy) =0, 4.3)

which gives o) = 0 and sp(vy,v}!) = 0. Then, take 7, = &, x(v}) in Eq. (4.2a)
leads to e, 1(v}}) = 0, which, together with s, (v}, v}) = 0 and (3.15), implies v}’ =
{v}y, vi} = 0. This completes the proof. O

We have the following stability results for the fully-discrete WG scheme (4.1).

Theorem 4.2. Assume that At < 1, then forany 1 <n < j < N it holds

j A j j
Z ot = an 2+ lledlls + 23 Atlloq |l +2at > su(vf, vp)

n=1 n=1

= [|oh]I2 +Z i), (4.4)

] . .
AtZHEh(”ho)Ho+23h n—vpT ,v,ﬁ‘—vﬁfl) + sp(vi,v})

J J
S Ho-hH +5h 'Uh"vh +Z 'UhO Z atf ’Uho (4.5)
n=1 n=1
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Proof. Taking (75, wy) = (o}, v}}) in the scheme (4.1), we get
{ an @y, of) + an(of, of) = bu(oh vf) = 0, “4.6)
br (o, vp) + sn(vp, o) = (£, v5)-
Applying the relationship
2p—q,p)=(P-apr+ta)+P—q¢pr—1q)
and adding the above two equalities, we have

1

1 2 —12
ol = a2 s (o — o R)

+ oz + sn(vh, o) = (7, vh)- 4.7)

For any j < N, summing up the above inequality with n = 1,...,j, we finally obtain

the desired result (4.4). Applying (3.15), we get

len(ho)llg < llew (@R)G + s (oR, k). (4.8)
Using the inf-sup condition (3.13) and Eq. (4.1a), we obtain

b n 3 n n
ewss(v2)]|, < sup bu(rns o) _ o an(@rof mh) + an(e )
mey mllo nes, 7llo

S okl + Nkl

which, together with (4.8), yields
len (oRo)[ly < [Brehll, + lon 7 + sn(or vR). (4.9)
In light of (4.6), we have

ap (EO‘Z,@O’Z) + ap (o-}?agto-g) - bh (@O’Z,U}?) = Oa
bn (Bhoy, vpy) + sn(Opvf, vfy) = (O™, vi)-

Summing up these two equalities and using the identity
2p(p—q) = (p—0)* +1° - &,
we arrive at

P+ 2 oo (o =+ ok~ i)

n—1 ., n

b (sn (o = v v = ) s wpg) — su (o) L)) = @47 o).
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This identity plus (4.9) implies

1 —
Jen (ool < € (ot 2+ (01 of) ~ ok — o7

n—1 _n n—1

1 n 1 i
pe Gl L v CIC R R

+Sh(’UZ,’Uh) sh('vZ 1 v 1))) + (Ef",vﬁo)

forn = 1,...,j, where C is positive constant independent of h, At and n. Thus, we
have

J J
AtZHEh(Uﬁo)!!§+ZH0h—0h o+l
n=1

+ D sn(vh — i vh — o) + su (v, v7)

M“

[y

J
| hH +AtZSh ’Uh,’vh +HO'hH +Sh(vh,’vh)

2/\
M“' =

n=1 n=1
J J
+) (£ v00) + Y (O vi)
n=1 n=1
J J .
S lloflls + sn(vhwh) + > (£ who) + Y (@ef", vfo),
n=1 n=1

where in the second estimate we have used the stability result (4.4). Hence, the desired
result (4.5) follows. O

4.2. Error estimation

By following the same line as in the proof of Lemma 3.6, we can derive the following
lemma.

Lemma 4.1. Let (o,v) € CH(L%(Q) N H(div,Q)) x CO([H}(Q)]%) be weak solution of
system (2.2), then for all T, € ¥}, and wp, = {wro, wrp} € VY, it holds

ah(ggggUn,Th)4‘ah0920n,7h)“bh(Th,ﬂ22+1”nﬂgz”n})

= ap(0,Qho™ — o}, 1), (4.10a)
by (Qho™, wr) + s, ({ Qs v™, Qhv™ }, wp)
= (f",wn) + li (", wp) + l(v", wp) (4.10b)

forn=1,..., N, where the bilinear forms l1(), l2() are defined in Lemma 3.6.
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Lemma 4.2. Let (o,v) € C*(L%(Q) N [H*1(Q)]9) x CH[H(Q) N H*2(Q)]) be
the solution of (2.2), and let (o}, v}!) = (o}, {v},,vi,}) be the solution of (4.1) for
n=1,...,N. Then it holds

6 1o + 288 > [IGallo + sn (&R, €1) + 28> sn (€1, 63)
J=1 j=1
< BT (Mo (0) + My (ty) + Ma(ty)) + A2 Ms(t,), (4.11)

A |len (o) 1P S W32 (NI (0) + My (t) + Ma(t)) + AN (t,),  (4.12)

where
G= Qo —op, &= & &}
with
Eho = QR 0" —vjly, &y = Qo™ — v,
and

Mo(0) = |0 (0)[E1 + [0(0) R 42 + |oe(0) 741,

N (1) = 2 2
1(tn) tje[o%f’ifgjgn (lo7 i1 + [V [£42),

tn
Ms(t,) == /0 (’Ut’zﬂ + "Ut‘im)dsa
~ tn 2
ty(t) = [ loulfs

0

Proof. The proof is similar to that of Lemma 3.8 for the semi-discrete scheme. For
completeness, we show it as following. We mention that the notation C; in this proof
for any ¢ denotes a generic positive constant independent of h and At.

Our proof mainly divides into 4 steps.

Step 1. From (4.1) and (4.10) it follows, forany 1 < j < n,

ahp (EC/‘?N Th) +ap (C}jla Th) - bh(Tha gi) = ap (EQ%UJ - o.ga Th)7 (4133)
by, (41]1, wh) + Sp, (52, wh) =1 (O'j, wh) + 19 ('vj, wh) . (4.13b)

Taking 7, = C}i and wy, = 5{;, and summing up the above two equations, we obtain
an (Beh, G1) + an(Gh, 6h) + sn (&7, €1)

=1i(07.&) + (v'.§) + an(BQRo” — o?. ()
=: B} + E} + Ej. (4.14)
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Taking 7, = 8;¢}, in equality (4.13a) gives
an (06, 9iG1) + an (G, 0e¢l) — b (963, €) = an (B (QRe? — 07), Bi¢)

In light of (4.10b) and the fact that —V - 9,6" = 0, f", we have

b (3:G;, €) + 51(9e8h, €7) = L (Do, &) + (B, &)
Summing up the above two equalities, we obtain

an (B¢, 0iG) + an (G, 0:G) + sn (848, €0)
(B(QVo7 — 079),9,¢)) + 11 (Bro?,€]) + 12 (B, €)), (4.15)

which shows
H@C;JLHQ + an( C;Z,EC;Z) + 510,61, €)
1
< sl (@e’ o). +—H@tChH + [|a2 (Qh&ho — &o) I,
X HOF%g(QkU] - UJ)Ha% + HW Qkfho - 5hb)Ha7h
(lo 5387 ~ o) + 02 QD@17 — )] )

Thus,
1. . L
S 1, + an (G 9i6h) + s (Brg. )
1,— A A 1 . . -
Hat Qpo? _U])HEJF Haé(QZSiLo_gio)Ha%Ha éat(Qk‘Tj — o’ Haﬂh

+ la# (Qhéla = )l (o *01(@he” = ),
el A ) p5) 410

By the projection properties of QY, we obtain

|19:Qie” =i’ 5,

o= i = 1 [t 0
= @130’ ~Tiely 5 = 5], |houts) —outsas
B olends < P ([ lns) ' @1
< o kr1ds S </ o ds> , 4.17
At / Tl \/A_ Ak
1
__ . . 2
[0:QRe? = 0|, S ( los(s \Hlds) : (4.18)
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Similarly, we have

[2:Q4v7 — D’ MO
0:Qv’ — Do Ha% ~ VA

In light of (4.17)-(4.19), the projection properties of @Y, the Young’s inequality, the
norm equivalence (2.3) and Lemma 3.5, we further apply (4.16) to get

|vt<s>|i+2ds) . 4.19)

1, . o L
S 1GL, + an (G 906h) + s (Brg. )

1 A2 Ly (e ¢ e 2 > 9

< ]—)H&?w,k(fh)Ho+]—)8h(§h,§h) +C0—; (loe(s) 51 + [v(9)[§42) ds,  (4.20)

ti—1

where p > 0 is an arbitrary positive constant.

A similar proof of sw,k(gi) as that of (3.27) implies

i 9 —_ 9 j 9 h2k+2 tj 5
Hew,k(’fh)HOSCQ HatChHa—i_HChHa—i_ﬁ . \Ut’kﬂ . (4.21)

Hence, if we choose p sufficiently large such that p > 4C5, then the above two inequal-
ities give

1,— L .
NG + an(6h.36) + su (@1, 1)

1 L C - C h2k+2 t;
< Jol6h)+ G+ (0 F) T [ ool + o))
(4.22)
and from (4.21) we get
i 9 j y j 9 h2k+2 tj 9 9
st,k(fh)uo <Cs <5h( h’gh) + HChHa + At /t (|0t(5)|k+1 + |"’t(5)|k+2)d5
j—1
- (3G - 51 (@) ). 4.23)

Step 2. The next thing is to estimate the terms E{, Eg and Eg in (4.14), respectively.
From Lemma 3.7 and 3.5, it follows:

Bl =11(09,6]) < 1ol ([lews(€) |y +sn (€, 60)?)

which, together with the Cauchy inequality, the Young’s inequality and (4.23), indicates

h2k+2

. . 4 . .
B < (1o + P [ (o + i n)ds - an @67 61) - (@61 6)
-1

1. . 1 o
+ G+ on€l€0). (4.24)
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where p/ is an arbitrary positive constant. For the term EJ, by Lemma 3.7 and the
Young’s inequality we also have

. o ) 1 o
B} =1y(v7, &) < Csh* P2 vl |2, + S (&.€). (4.25)

Applying the Taylor formula and the Cauchy inequality gives

_ ) 1 [t
B~ il = 53 [ (6= tlowto)lods < V([
-1

which, together with (4.17), shows
B} = ap(0,Q00” — 01,¢)) = an(9Qho? — 0,07, G) + an(9ro? — o, ()

< M (|[i@he’ = 8o ||, 5, + B0’ = il 5 ) 16l 5

p2kt2 , t
SC(;( / lo] ds—i—At/
At " k+1 .

j—1

t

1
2
Hatt(S)H%dS> ,

ti—1

1 .
Hattuads) + ]2 (4.26)

Step 3. The equality (4.14) plus the estimates (4.24)-(4.26) implies

an (3G, ¢) + an(¢l. G + sn(€].€))
2k+2 12 112 h2k+2 ti 2 2
<Cy <h (lo? i1 + 107 [fya) + NS /t (lotliys + [vilf o) ds
j—1

tj 2. . 2 o
ot loulfas) + SIGIE + Son(eh6)

j—1
— Cy (an(3i6h G3) + 5n (D61, 1) ) -
Taking p’ = 4 in this inequality, we further obtain
. . 1., . 1 o
(1 + C)an (06, Ch) + Casn (9}, &1,) + 5“%”2 + 55n (& €h)

Wt2 (| 12 12 O 2 2
<Cy <h (1o i + V7 7e) + Tt/ (lotlpis + [vili o) ds

ti—1
tj 5
+at [ Joulds ).
ti—1
which means

an(B¢], ) + s (D&, €) + I GIIZ + sn (€0, €0)
%2 (| —j12 i\2 h+2 ot 2 2
< Cy <h (lo? i1 + 107 [fya) + AL /t (loelfss + |Ut|k+2)d5
-1

t; 9
+ At/ HattHOds)
ti—1
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This estimate and the equations

. 1 : . ) .
on (@164, 61) = gz (16 =G+ Il 1)

. 1 . L o o o
30 (P16, €0) = 57 (sn(6l -l — &7 +sn(€ ) —sn( 607

yield
I6ills = 1ln 1% + s (€0, €0) — sn(&607") + 2A]|Gh + 2A¢sn (8, €1)

. ) tj
< 2Cy (Ath2k+2(\0]‘z+1 + ’”J‘Zm) + h2k+2/ (‘Ut’iJrl + [veli40)ds
1

t]’,
t;
+ (At)Z/ HattHgds)
ti—1

Summing up the above inequality for j = 1,...,n, we arrive at
G2+ sn (i &) + 286> (16112 + sn(gh€0) )
j=1

< [IGR1[5 + sn (R, €R) + 205 (hwt*&%’% (I 1 + [0 li42)
J )

tn tn
#0220y o o)ds + (a02 [ HattH%ds>, (4.27)
0 0

which, together with (4.1c) and (3.32), leads to desired estimate (4.11).

Step 4. Finally, let us prove (4.12). From inequalities (3.15) and (4.23), we get
len(€10)llo S llew (6)[lg + 51 (&, 61)
) ) g h2k+2 t; ) )
(@) + G+ 5 [ (o + o)
j—1
— a (01, ) — sn (D6, s,{)) +5n(8,6),
which implies

X 1 ) . S . .
len(&o)lls + 557 (1112 = 16712 + s (el &) — sn(edl ™ 67Y)

h2kt2 2 2 J i 7|12
< Cg( A7 /t (loelE i1 + |veliio)ds + sn (&7, &) + HChHa>'
-1

Summing up the above inequality for j = 1,...,n, we have

208 Y [len (&ho)llo + IGh Il + sn (&5 €5)
7=1
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S IR +sn(ehoeh) + 0747 [ (o + ol o)
2003 (G + sn(66). @.28)
j=1
which, together with (4.1c), (3.32) and (4.11), yields the desired result (4.12). O

Applying Lemmas 4.2, 3.2 and the triangle inequality leads to the following error
estimate for the fully discrete scheme.

Theorem 4.3. Let (o,v) € C3(L%(Q) N [H*1(Q)]*9) x CY([HE(Q) N H*2(Q)]?) be
the solution of (2.2), and let (o}, v}}) = (o}, {v}y,vi,}) be the solution of (4.1) for
n=1,...,N. Then it holds

o (ta) = il + Atlle(w(tn)) = en(vho) I
5 p2k+2 (MQ(O) + Ml (tn) + Mz(tn)) + AtQMg(tn), (4.29)

where My(0), M, (t,,), My (t,) and Ms(t,) are defined in Lemma 4.2.

5. Numerical examples

In this section, we provide two 2-dimensional examples and one 3-dimensional
example to verify the performance of the proposed fully discrete weak Galerkin method
(4.1) with k = 1, 2. In all the examples, we take 7' = 1 and assume the elastic medium
to be isotropic with 1 = 1 and A\ = 1. For the spatial domain, we take 2 = [0, 1]? in the
first two examples with M x M uniform triangular meshes and €2 = [0, 1]3 in the third
example with M x M x M uniform tetrahedral meshes; see Fig. 1 for the meshes with
M =4.

Figure 1: The domains: 4 x 4 mesh (left) for Q = [0,1]® and 4 x 4 x 4 mesh (right) for Q = [0, 1]>.
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Example 5.1. The exact displacement field u(x, t) and symmetric stress tensor o (z,t) =
(0ij)2x2 are respectively given by

—e ! (m‘ll — 273 + x%) (430;’ — 623 + 2302)
TN et (af - 203 4 02) (423 — 62 + 201)

. 16te~* (203 — 303 + x1) (225 — 323 + x2)
( o1 ) = | 2te [(2F — 2% + 22) (623 — 622 + 1) + (ah — 223 + 23) (622 — 621 + 1)]
16te" (223 — 3x% + 21) (223 — 323 + x2)

Notice that the velocity field v = wu;.

To verify the spatial accuracy, we take the time step At = 0.0005 for £ = 1 and
At = 0.00005 for k = 2, respectively. Numerical results of relative errors for the
discrete stress o, and discrete strain ey, (vy,) at the final time 7" = 1 are presented in the
Tables 1 and 2. We can see that spatial convergence orders of the stress and strain are
(k 4+ 1)-th, as is conformable to the theoretical prediction in Theorem 4.3.

Table 1: Convergence rates for Example 5.1 with At = 0.0005: spatial accuracy.

mesh % order | le (q;l)e)(;(eq",)(;"rU(T)) lo | order
2x2 4.8559e-01 - 2.4777 -
4 x4 1.6332e-01 1.57 6.3838e-01 1.96
k=1 8 x 8 4.6361e-02 1.82 1.7095e-01 1.90
16 x 16 1.2528e-02 1.89 4.6659e-02 1.88
32 x 32 3.2939e-03 1.93 1.2930e-02 1.86

Table 2: Convergence rates for Example 5.1 with At = 0.00005: spatial accuracy.

mesh % order | le (ﬂ)e)(;(ef")(;)\ro(ﬂ) lo | order
2% 2 1.3765e-01 - 1.0564 -
4 x4 3.0684e-02 2.17 1.8662e-01 2.50
k=2 8 x 8 4.3824e-03 2.81 2.5445e-02 2.87
16 x 16 5.6970e-04 2.94 3.2646e-03 2.96
32 x 32 7.2100e-05 2.98 4.1377e-04 2.98

To test the temporal accuracy, we use a very fine spatial mesh with M = 64. Nu-
merical results of the errors at the final time 7" = 1 are listed in Table 3. We can observe
the first order temporal convergence rate for the stress approximation, as is consistent
with Theorem 4.3, and a better rate than first order for the strain approximation.
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Table 3: Convergence rates for Example 5.1 with M = 64: temporal accuracy.

S| T | orde | ST T oo

0.5 3.5128e-01 - 2.4956e-01 -

0.25 1.4792e-01 1.25 7.4798e-02 1.74

A 0.125 6.7960e-02 1.12 2.4631e-02 1.60
0.0625 3.2583e-02 1.06 8.5896e-03 1.52
0.03125 1.5954e-02 1.03 3.1565e-03 1.44
0.015625 | 7.8951e-03 1.01 1.2511e-03 1.34

0.5 3.5128e-01 - 2.4839e-01 -

0.25 1.4792e-01 1.25 7.3962e-02 1.75

b — 9 0.125 6.7961e-02 1.12 2.4028e-02 1.62
0.0625 3.2583e-02 1.06 8.1460e-03 1.56
0.03125 1.5954e-02 1.03 2.8205e-03 1.53
0.015625 | 7.8944e-03 1.02 9.8692e-04 1.52

Example 5.2. The exact displacement field © and symmetric stress tensor o are of the

following forms:
u— ( —e tsin(may) sin(rzs) )
= t

—e tsin(mzy ) sin(mxy)
and
o1t mte ! (3 cos(mzy) sin(rzy) + sin(mwzq) cos(raz))
o1z | = | mte !(sin(mz1) cos(mws) + cos(mz) sin(rzz))
022 mte ! (3sin(may) cos(mwy) + cos(may) sin(mraz))

Tables 4 and 5 show that the scheme (4.1) yields the (k£ + 1)-th spatial convergence or-
ders for the stress and strain approximations, and Table 6 shows the first order temporal
convergence rate for the stress approximation. These are conformable to Theorem 4.3.
In particular, Table 6 also shows a better convergence rate than first order for the strain
approximation.

Table 4: Convergence rates for Example 5.2 with At = 0.0005: spatial accuracy.

[e(T)—cr(T)lo le(@(T)) —en(wn(T))lo

mesh IEealn order IECIen order
2x2 1.2181e-01 - 5.8905e-01 -
b1 4 x4 3.3882¢e-02 1.85 1.5300e-01 1.95
8 x 8 8.7967e-03 1.95 3.9273e-02 1.96
16 x 16 2.2206e-03 1.99 1.0160e-02 1.95
32 x 32 5.5614e-04 2.00 2.7133e-03 1.91
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Table 5: Convergence rates for Example 5.2 with At = 0.00005: spatial accuracy.

mesh | 120220 | order | IECTD—enlalIL | order
2x2 | 24575e-02 - 1.5894e-01 -

4x4 | 33115e03 | 2.89 2.1071e-02 2.92

k=2| 8x8 | 4.237le04 | 297 2.7122¢-03 2.96

16 x 16 | 5.3390e-05 | 2.99 3.4421e-04 2.98

32x 32| 6.6913e-06 | 3.00 4.3500e-05 2.98

Table 6: Convergence rates for Example 5.2 with M = 64: temporal accuracy.

[ BT e | ST T oo

0.5 3.5128e-01 - 2.4872e-01 -
0.25 1.4792e-01 1.25 7.4196e-02 1.75
E—1 0.125 6.7961e-02 1.12 2.4194e-02 1.62
0.0625 3.2583e-02 1.06 8.2635e-03 1.55
0.03125 1.5954e-02 1.03 2.9041e-03 1.51
0.015625 | 7.8944e-03 1.02 1.0467e-03 1.47

0.5 3.5128e-01 - 2.4839e-01 -
0.25 1.4792e-01 1.25 7.3962e-02 1.75
i — 9 0.125 6.7961e-02 1.12 2.4028e-02 1.62
0.0625 3.2583e-02 1.06 8.1460e-03 1.56
0.03125 1.5954e-02 1.03 2.8205e-03 1.53
0.015625 | 7.8944e-03 1.02 9.8680e-04 1.52

Example 5.3. This is a 3-dimensional example, and the domain and mesh are shown in
Fig. 1. The exact displacement field u(z,¢) and symmetric stress tensor o = (O’Z‘j)i =1
are respectively given by

and

ﬂ't
te™

mte

—etsin(mry) sin(7ay) sin(rx3)
u= | —e lsin(rzy)sin(rzs)sin(nws)

—e tsin(mry) sin(mao) sin(rx3)
te~t (3 cos(mz1) sin(raws) sin(rxs) + sin(wzy) cos(m(za + x3)))
te~t (3sin(rz1) cos(maa) sin(mas) + sin(wx2) sin(r(z1 + 3)))
te~ ! (3sin(mzq) sin(ras) cos(mxs) + sin(wzs) sin(r(zq + 22)))
“tsin (m(x1 + z2)) sin(rzz)
Esin (7(z1 + 23)) sin(rzs)
“tsin(mzq) sin (7(z2 + z3))

Numerical results are presented in Tables 7 and 8 for £ = 1. We can observe that the
scheme (4.1) yields the second order accuracy for the stress and strain approximations,
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Table 7: Convergence rates for Example 5.3 with At = 0.001: spatial accuracy.

mesh | I20L2a 0 | order | IECD—en ol | order

Ix1x1| 6.0913e-01 - 3.2443e+00 -
2x2x2| 25567e-01 | 1.25 7.4786e-01 2.18
k=1|4x4x4]| 72373e-02 | 1.82 1.6944e-01 2.14
8x8x8 | 118782-02 | 1.95 4.1371e-02 2.03

Table 8: Convergence rates for Example 5.3 with M = 16: temporal accuracy.

VAte((T))—en (vn(T)llo

At W order ECEwIn order
1 1.0000e+00 - 4.2956e+00 -
0.5 3.5131e-01 1.51 3.5815e-01 1.49
k=11 0.25 1.4796e-01 1.25 1.5490e-01 1.21
0.125 6.7998e-02 1.12 7.5133e-02 1.04
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and the first order temporal accuracy for the stress approximation. These are also
conformable to the theoretical results.

6. Conclusion

In this paper, we have developed a class of semi-discrete and fully-discrete WG finite
element methods for the quasistatic Maxwell viscoelastic model, and shown theoreti-
cally and numerically that the methods are of optimal convergence rates.
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