
Numer. Math. Theor. Meth. Appl. Vol. 16, No. 1, pp. 230-241

doi: 10.4208/nmtma.OA-2022-0082 February 2023

Constructing Order Two Superconvergent WG

Finite Elements on Rectangular Meshes

Xiu Ye1,* and Shangyou Zhang2

1 Department of Mathematics, University of Arkansas at Little Rock,

Little Rock, AR 72204, USA
2 Department of Mathematical Sciences, University of Delaware,

Newark, DE 19716, USA

Received 13 May 2022; Accepted (in revised version) 22 July 2022

Abstract. In this paper, we introduce a stabilizer free weak Galerkin (SFWG) finite

element method for second order elliptic problems on rectangular meshes. With

a special weak Gradient space, an order two superconvergence for the SFWG finite
element solution is obtained, in both L2 and H1 norms. A local post-process lifts

such a Pk weak Galerkin solution to an optimal order Pk+2 solution. The numerical

results confirm the theory.
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1. Introduction

A new stabilizer free weak Galerkin method is developed to solve the following

second order elliptic problem:

−∆u = f in Ω, (1.1)

u = g on ∂Ω, (1.2)

where Ω is a bounded polygonal domain in R2, which can be subdivided into rectan-

gular meshes.

The weak Galerkin (WG) finite element methods introduced in [24, 25] provide

a general finite element technique for solving partial differential equations. The novelty

of the WG method is the introduction of weak function and its weakly defined deriva-

tives. The weak functions possess the form of v = {v0, vb} with v = v0 representing the

value of v in the interior of each element and v = vb on the boundary of the element.
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The weak derivative ∇wv for a weak function v is defined as distributions. WG method

uses polynomials (Pk(T ), Ps(e), [Pℓ(T )]
d) to approximate (v0, vb,∇wv) accordingly. The

WG methods have been applied for solving various PDEs such as Sobolev equation, the

Navier-Stokes equations, the Oseen equations, time-dependent Maxwell’s equations,

elliptic interface problems, biharmonic equations, etc, [1,5–17,21–23,26,27,30].

For some special combinations of the WG element (Pk(T ), Ps(e), [Pℓ(T )]
d), stabi-

lizer is no longer needed in the corresponding weak Galerkin finite element formula-

tions, which leads to a stabilizer free weak Galerkin method. The stabilizer free weak

Galerkin method was first introduced in [28] on polygonal/polyhedral meshes and

then has been applied for the second order problems, the Stokes equations and the

biharmonic equation [2,18,29].

This paper has two purposes:

1. Developing a new SFWG method with an order two superconvergence for the

problem (1.1)-(1.2).

2. Providing necessary theory for a subsequent paper, order two superconvergent

conforming discontinuous Galerkin method on rectangular meshes.

A WG element (Pk(T ), Pk+1(e),BDM[k][T ]) on rectangular mesh is used in this sta-

bilizer free weak Galerkin finite element method. We prove that the SFWG method

converges to the true solution of (1.1)-(1.2) with a convergence rate two orders higher

than the optimal order in both an energy norm and the L2 norm theoretically and nu-

merically. We further define a local post-process which lifts such a Pk weak Galerkin

solution to an optimal order Pk+2 solution. It is proved and numerically verified.

2. The weak Galerkin finite element scheme

Let Th be a partition of the domain Ω consisting of rectangles. Denote by Eh the set

of all edges in Th, and let E0
h = Eh\∂Ω be the set of all interior edges. For every element

T ∈ Th, we denote by hT its diameter and the mesh size by h = maxT∈Th hT for Th.

For a given integer k ≥ 1, let Vh be the weak Galerkin finite element space associ-

ated with Th defined as follows:

Vh =
{

v = {v0, vb} : v0|T ∈ Pk(T ), vb|e ∈ Pk+1(e), e ⊂ ∂T , T ∈ Th
}

(2.1)

and its subspace V 0
h is defined as

V 0
h = {v : v ∈ Vh, vb = 0 on ∂Ω}. (2.2)

We would like to emphasize that any function v ∈ Vh has a single value vb on each edge

e ∈ Eh.

On each rectangle T ∈ Th, the BDM finite element space is defined by [4]

BDM[k+1](T ) = Pk+1(T )
2 ⊕ curlxk+2y ⊕ curlxyk+2.
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For v = {v0, vb} ∈ Vh, a weak gradient ∇wv is a piecewise vector valued polynomial

such that on each T ∈ Th, ∇wv ∈ BDM[k+1](T ) satisfies

(∇wv,q)T = −(v0,∇ · q)T + 〈vb,q · n〉∂T , ∀q ∈ BDM[k+1](T ). (2.3)

For simplicity, we adopt the following notations:

(v,w)Th =
∑

T∈Th

(v,w)T =
∑

T∈Th

∫

T
vwdx,

〈v,w〉∂Th =
∑

T∈Th

∑

e⊂∂T

〈v,w〉e =
∑

T∈Th

∫

∂T
vwds.

Algorithm 2.1 (Weak Galerkin algorithm). A numerical approximation for (1.1)-(1.2)

can be obtained by seeking uh = {u0, ub} ∈ Vh satisfying ub = Qbg on ∂Ω and the

following equation:

(∇wuh,∇wv) = (f, v0), ∀v = {v0, vb} ∈ V 0
h . (2.4)

3. Well posedness

For any v ∈ Vh, a semi-H1-like semi-norm is defined as follows:

|||v|||2 = (∇wv,∇wv). (3.1)

We introduce a discrete semi-H1 norm as follows:

‖v‖21,h = (∇v0,∇v0)Th +
〈

h−1
T (v0 − vb), v0 − vb

〉

∂Th
. (3.2)

For any function ϕ ∈ H1(T ), the trace inequality holds true

‖ϕ‖2e ≤ C
(

h−1
T ‖ϕ‖2T + hT ‖∇ϕ‖2T

)

. (3.3)

Next we will show that ||| · ||| also defines a norm for V 0
h by proving the equivalence of

||| · ||| and ‖ · ‖1,h in Vh. For q ∈ H(div,Ω), by [4], we define a BDM interpolation Πh

such that Πhq|T ∈ BDM[k+1](T ) for T ∈ Th satisfies

〈

(q−Πhq) · n, pk+1

〉

e
= 0, ∀pk+1 ∈ Pk+1(e), e ⊂ ∂T , (3.4)

(q−Πhq,pk−1)T = 0, ∀pk−1 ∈ [Pk−1(T )]
2. (3.5)

Lemma 3.1 ([4]). Let q ∈ Hk+2(Ω)2.

‖q−Πhq‖ ≤ Chk+2|q|k+2, (3.6)

‖∇ · (q−Πhq)‖T ≤ Chk+1
T |∇ · q|k+1,T . (3.7)
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Lemma 3.2. There exist two positive constants C1 and C2 such that

C1‖v‖1,h ≤ |||v||| ≤ C2‖v‖1,h, ∀v ∈ Vh. (3.8)

Proof. We prove the upper bound first. By the definition of weak gradient (2.3),

letting w = ∇wv, we have

|||v|||2 =
∑

T∈Th

−(v0,∇ · ∇wv)T + 〈vb,∇wv · n〉∂T

=
∑

T∈Th

(∇v0,∇wv)T + 〈vb − v0,∇wv · n〉∂T

≤
∑

T∈Th

(∇v0,∇wv)T + ‖vb − v0‖∂T ‖∇wv‖∂T

≤
∑

T∈Th

(

‖∇v0‖T +
‖vb − v0‖∂T

Ch
1/2
T

)

‖∇wv‖T ≤ C2‖v‖1,h|||v|||,

where we applied the trace inequality (3.3) and the inverse inequality.

To prove the lower bound, we need to choose an appropriate q in the definition of

weak gradient (2.3) so that the above inequality can be reversed. Let q ∈ BDM[k+1](T )
be defined, similar to the BDM interpolation Πh in (3.4)-(3.5), by

(q−∇v0,pk−1)T = 0, ∀pk−1 ∈ Pk−1(T )
2, (3.9)

〈

q · n− h−1
T (v0 − vb), pk+1

〉

e
= 0, ∀pk+1 ∈ Pk+1(e), e ⊂ ∂T . (3.10)

By (3.4)-(3.5), (3.9)-(3.10) define a unique q. Further, by finite dimensional norm

equivalence and scaling argument,

‖q‖ ≤ C‖v‖1,h. (3.11)

Using this q in (2.3), we have

‖v‖21,h = (∇v0,∇v0)Th +
〈

h−1
T (v0 − vb), v0 − vb

〉

∂Th

= (∇v0,q)Th + 〈v0 − vb,q · n〉∂Th

= (∇wv,q)Th ≤ |||v|||‖q‖ ≤ C−1
1 |||v|||‖v‖1,h.

The lemma is proved.

Lemma 3.3. The weak Galerkin finite element scheme (2.4) has a unique solution.

Proof. Let u
(1)
h and u

(2)
h be the two solutions of (2.4), then εh = u

(1)
h − u

(2)
h ∈ V 0

h

would satisfy the following equation:

(∇wεh,∇wv) = 0, ∀v ∈ V 0
h .

Then by letting v = εh in the above equation, we arrive at

|||εh|||
2 = (∇wεh,∇wεh) = 0.

It follows from (3.8) that ‖εh‖1,h = 0. Since ‖ · ‖1,h is a norm in V 0
h , one has εh = 0.

This completes the proof of the lemma.
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4. Error estimates in energy norm

We start this section with a useful lemma. First let Q0 and Qb be the two element-

wise defined L2 projections onto Pk(T ) and Pk+1(e) on each T ∈ Th respectively. De-

fine Qhu = {Q0u,Qbu} ∈ Vh. Let Qh be the elementwise defined L2 projection onto

BDM[k+1](T ) on each T ∈ Th.

Lemma 4.1. Let φ ∈ H1(Ω), then on any T ∈ Th,

∇w(Qhφ) = Qh∇φ. (4.1)

Proof. Using (2.3) and integration by parts, we have that for any q ∈ BDM[k+1](T ),
as ∇ · q ∈ Pk(T ) and q · n ∈ Pk+1(e),

(∇wQhφ,q)T = −(Q0φ,∇ · q)T + 〈Qbφ,q · n〉∂T

= −(φ,∇ · q)T + 〈φ,q · n〉∂T

= (∇φ,q)T = (Qh∇φ,q)T ,

which implies the Eq. (4.1).

Next we derive an equation for the error eh = Qhu− uh.

Lemma 4.2. For any v ∈ V 0
h , the following error equation holds true:

(∇weh,∇wv) = ℓ(u, v), (4.2)

where

ℓ(u, v) =
〈

(∇u−Qh∇u) · n, v0 − vb
〉

∂Th
.

Proof. For v = {v0, vb} ∈ V 0
h , testing (1.1) by v0 and using the fact that

〈∇u · n, vb〉∂Th = 0,

we have

(∇u,∇v0)Th − 〈∇u · n, v0 − vb〉∂Th = (f, v0). (4.3)

It follows from integration by parts, (2.3) and (4.1) that

(∇u,∇v0)Th = (Qh∇u,∇v0)Th
= −

(

v0,∇ · (Qh∇u)
)

Th
+ 〈v0,Qh∇u · n〉∂Th

= (Qh∇u,∇wv)Th + 〈v0 − vb,Qh∇u · n〉∂Th
= (∇wQhu,∇wv) + 〈v0 − vb,Qh∇u · n〉∂Th . (4.4)

Combining (4.3) and (4.4) yields

(∇wQhu,∇wv) = (f, v0) + ℓ(u, v). (4.5)
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The error equation follows from subtracting (2.4) from (4.5),

(∇weh,∇wv) = ℓ(u, v), ∀v ∈ V 0
h .

This completes the proof of the lemma.

Next we will bound ℓ(u, v).

Lemma 4.3. For any w ∈ Hk+3(Ω) and v = {v0, vb} ∈ V 0
h , we have

|ℓ(w, v)| ≤ Chk+2|w|k+3|||v|||. (4.6)

Proof. Using the Cauchy-Schwarz inequality, the trace inequality (3.3), and (3.8),

we have

|ℓ(w, v)| =

∣

∣

∣

∣

∑

T∈Th

〈

(∇w −Qh∇w) · n, v0 − vb
〉

∂T

∣

∣

∣

∣

≤
∑

T∈Th

‖∇w −Qh∇w‖∂T ‖v0 − vb‖∂T

≤

(

∑

T∈Th

hT ‖(∇w −Qh∇w)‖2∂T

)
1

2
(

∑

T∈Th

h−1
T ‖v0 − vb‖

2
∂T

)
1

2

≤ Chk+2|w|k+3|||v|||.

We have proved the lemma.

Theorem 4.1. Let uh ∈ Vh be the SFWG finite element solution of (2.4). Assume the

exact solution u ∈ Hk+3(Ω). Then, there exists a constant C such that

|||Qhu− uh||| ≤ Chk+2|u|k+3. (4.7)

Proof. By letting v = eh in (4.2), we have

|||eh|||
2 = (∇weh,∇weh) = |ℓ(u, eh)|. (4.8)

It follows from (4.6) that

|||eh|||
2 ≤ Chk+2|u|k+3|||eh|||,

which implies (4.7).

5. Error estimates in L
2 norm

The duality argument is used to obtain L2 error estimate. Recall eh = {e0, eb} =
Qhu− uh. The corresponding dual problem seeks Φ ∈ H1

0 (Ω) satisfying

−∆Φ = e0 in Ω. (5.1)

Assume that the following H2-regularity holds:

‖Φ‖2 ≤ C‖e0‖. (5.2)
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Theorem 5.1. Let uh ∈ Vh be the SFWG finite element solution of (2.4). Assume that the

exact solution u ∈ Hk+3(Ω) and (5.2) holds true. Then, there exists a constant C such

that

‖Q0u− u0‖ ≤ Chk+3|u|k+3. (5.3)

Proof. Testing (5.1) by e0, we obtain

‖e0‖
2 = −

(

∇ · (∇Φ), e0
)

= (∇Φ,∇e0)Th − 〈∇Φ · n, e0 − eb〉∂Th , (5.4)

where we have used the fact 〈∇Φ · n, eb〉∂Th = 0. Setting u = Φ and v = eh in (4.4)

yields

(∇Φ,∇e0)Th = (∇wQhΦ,∇weh) + 〈Qh∇Φ · n, e0 − eb〉∂Th . (5.5)

Substituting (5.5) into (5.4) and using (4.2) give

‖e0‖
2 = (∇weh,∇wQhΦ) +

〈

(Qh∇Φ−∇Φ) · n, e0 − eb
〉

∂Th

= (∇weh,∇wQhΦ)− ℓ(Φ, eh) = ℓ(u,QhΦ)− ℓ(Φ, eh). (5.6)

Using the triangle inequality, we obtain

|ℓ(u,QhΦ)| =

∣

∣

∣

∣

∑

T∈Th

〈

(∇u−Qh∇u) · n, Q0Φ−QbΦ
〉

∂T

∣

∣

∣

∣

≤
∑

T∈Th

‖∇u−Qh∇u‖∂T ‖Q0Φ−QbΦ‖∂T

≤

(

∑

T∈Th

hT ‖∇u−Qh∇u‖2∂T

)
1

2
(

∑

T∈Th

h−1
T ‖Q0Φ−Φ‖2∂T

)
1

2

. (5.7)

From the trace inequality (3.3) we have

(

∑

T∈Th

h−1
T ‖Q0Φ− Φ‖2∂T

)
1

2

≤ Ch−1‖Q0Φ− Φ‖ ≤ Ch‖Φ‖2,

(

∑

T∈Th

hT ‖∇u−Qh∇u‖2∂T

)
1

2

≤ C‖∇u−Qh∇u‖ ≤ Chk+2|u|k+3.

Combining the above two estimates with (5.7) gives

|ℓ(u,QhΦ)| ≤ Chk+3|u|k+3‖Φ‖2. (5.8)

It follows from (4.6) and (4.7),

|ℓ(Φ, eh)| ≤ Ch‖Φ‖2|||eh||| ≤ Chk+3|u|k+3‖Φ‖2. (5.9)

Substituting (5.8) and (5.9) into (5.6) yields

‖e0‖
2 ≤ Chk+3|u|k+3‖Φ‖2.

Using the estimate above and the regularity assumption (5.2), we obtain the error

estimate (5.3) of order two superconvergence.
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6. A locally lifted Pk+2 solution

In last section, we proved that the Pk weak Galerkin solution is two-order super-

convergent, i.e., it converges at order k+3 in L2 norm. We define a local post-process,

which lifts the Pk solution to an optimal-order Pk+2 solution.

On each element T , we compute a solution ûh ∈ ΠT∈ThPk+2(T ) by

(∇ûh −∇wuh,∇v)T = 0, ∀v ∈ Pk+2(T ) \ P0(T ), (6.1)

(ûh − u0, v)T = 0, ∀v ∈ P0(T ). (6.2)

We show next the uniqueness of the above square linear system of equations (6.1)-

(6.2). When uh = 0, (6.1) implies ‖∇ûh‖
2 = 0 and ûh is a constant on each T . By

(6.2), the constant is zero. As the linear system is square and finite dimensional, the

uniqueness implies the existence of solution.

Theorem 6.1. Let u ∈ H1
0 (Ω) ∩ Hk+3(Ω) be the exact solution of (1.1)-(1.2). Let

uh ∈ Vh in (6.1)-(6.2) be the weak Galerkin finite element solution of (2.4). Let ûh ∈
ΠT∈ThPk+2(T ) be locally lifted solution of (6.1)-(6.2). Then there exists a constant C

such that

‖u− ûh‖0 ≤ Chk+3|u|k+3. (6.3)

Proof. In the proof, we use Πk to denote the elementwise L2 orthogonal projection

onto either ΠT∈ThPk(T ) or ΠT∈Th [Pk(T )]
2. Eq. (6.2) means that

Π0ûh = Π0uh,

where Π0 is again the L2 orthogonal projection onto P0(T ), on T . We consider the

error in two parts

‖u− ûh‖0 ≤ ‖Π0(u− ûh)‖0 + ‖(I −Π0)(u− ûh)‖0.

For the P0 part of error, by (5.3) we have

‖Π0(u− ûh)‖0 = ‖Π0(Πku− uh)‖0 ≤ C‖Πku− uh‖0 ≤ Chk+3|u|k+3.

For the P0-orthogonal error, we separate it further into two

‖(I −Π0)(u− ûh)‖0 ≤ Ch‖∇(u− ûh)‖0

≤ Ch‖∇(u−Πk+2u)‖0 + Ch‖∇(Πk+2u− ûh)‖0

≤ Chk+3|u|k+3 + Ch‖∇(Πk+2u− ûh)‖0.

By (4.1), i.e., Πk+1∇u = ∇wQhu, (6.1), i.e., ∇ûh = ∇wuh, and (4.7), letting

q = ∇(Πk+2u− ûh),

we get

‖∇(Πk+2u− ûh)‖
2
0 =

(

∇(Πk+2u− u),q
)

+ (∇u−Πk+1∇u,q) + (∇wQhu−∇wuh,q)
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≤
(

‖∇(Πk+2u− u)‖0 + ‖∇u−Πk+1∇u‖0 + |||Qhu− uh|||
)

‖q‖0

≤ Chk+2|u|k+3‖∇(Πk+2u− ûh)‖0.

Combining above three inequalities yields (6.3).

7. Numerical experiments

Consider problem (1.1) with Ω = (0, 1)2. The source term f and the boundary

value g are chosen so that the exact solution is

u(x, y) = sinπx sinπy. (7.1)

Function f and g in (1.1)-(1.2) cannot be valid to all functions for nonlinear PDEs. The

conditions for valid f and g are discussed in [3,19,20].

We use the uniform square meshes shown as in Fig. 1. The results of P1, P2, P3 and

P4 WG methods are listed in Table 1. Two orders of superconvergence are obtained for

new element, in both L2 and H1-like norms.

As we have order two superconvergence, we lift each Pk weak Galerkin finite el-

ement solution uh to a Pk+2 solution ûh elementwise. From Table 2, the lifted Pk+2

solution converges at order k + 3 in L2 norm, two orders above that of the original Pk

solution (which is from solving a linear system of equations.)

Table 1: The error and the convergence rate for problem (7.1).

Grid ‖Qhu− uh‖ Rate |||Qhu− uh||| Rate

The P1 weak Galerkin element

6 0.770E-06 4.00 0.170E-03 3.00

7 0.482E-07 4.00 0.213E-04 3.00

8 0.301E-08 4.00 0.266E-05 3.00

The P2 weak Galerkin element

5 0.600E-06 4.99 0.112E-03 3.99

6 0.188E-07 5.00 0.703E-05 4.00

7 0.586E-09 5.00 0.440E-06 4.00

The P3 weak Galerkin element

4 0.170E-05 5.98 0.221E-03 4.98

5 0.267E-07 5.99 0.693E-05 5.00

6 0.419E-09 5.99 0.217E-06 5.00

The P4 weak Galerkin element

3 0.160E-04 6.93 0.138E-02 5.94

4 0.127E-06 6.98 0.218E-04 5.99

5 0.995E-09 6.99 0.341E-06 6.00
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Table 2: The errors of Pk WG solution uh and lifted Pk+2 solution ûh, and the convergence rate for
problem (7.1).

Grid ‖u− uh‖ Rate ‖u− ûh‖ Rate

P1 WG solution Lifted P3 solution

6 0.175E-02 2.00 0.102E-05 4.00

7 0.438E-03 2.00 0.636E-07 4.00

8 0.109E-03 2.00 0.397E-08 4.00

P2 WG solution Lifted P4 solution

5 0.271E-03 3.00 0.674E-06 4.99

6 0.339E-04 3.00 0.211E-07 5.00

7 0.424E-05 3.00 0.659E-09 5.00

P3 WG solution Lifted P5 solution

4 0.237E-03 3.98 0.176E-05 5.98

5 0.149E-04 4.00 0.275E-07 6.00

6 0.930E-06 4.00 0.432E-09 5.99

P4 WG solution Lifted P6 solution

3 0.700E-03 4.95 0.161E-04 6.93

4 0.221E-04 4.99 0.128E-06 6.98

5 0.691E-06 5.00 0.100E-08 6.99

Figure 1: The first three levels of square grids used in the computation.
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