Constructing Order Two Superconvergent WG Finite Elements on Rectangular Meshes

Xiu Ye ${ }^{1, *}$ and Shangyou Zhang ${ }^{2}$
${ }^{1}$ Department of Mathematics, University of Arkansas at Little Rock, Little Rock, AR 72204, USA
${ }^{2}$ Department of Mathematical Sciences, University of Delaware, Newark, DE 19716, USA

Received 13 May 2022; Accepted (in revised version) 22 July 2022

Abstract

In this paper, we introduce a stabilizer free weak Galerkin (SFWG) finite element method for second order elliptic problems on rectangular meshes. With a special weak Gradient space, an order two superconvergence for the SFWG finite element solution is obtained, in both L^{2} and H^{1} norms. A local post-process lifts such a P_{k} weak Galerkin solution to an optimal order P_{k+2} solution. The numerical results confirm the theory.

AMS subject classifications: 65N15, 65N30
Key words: Finite element, weak Galerkin method, stabilizer free, rectangular mesh.

1. Introduction

A new stabilizer free weak Galerkin method is developed to solve the following second order elliptic problem:

$$
\begin{array}{cl}
-\Delta u=f & \text { in } \Omega, \\
u=g & \text { on } \partial \Omega, \tag{1.2}
\end{array}
$$

where Ω is a bounded polygonal domain in \mathbb{R}^{2}, which can be subdivided into rectangular meshes.

The weak Galerkin (WG) finite element methods introduced in [24, 25] provide a general finite element technique for solving partial differential equations. The novelty of the WG method is the introduction of weak function and its weakly defined derivatives. The weak functions possess the form of $v=\left\{v_{0}, v_{b}\right\}$ with $v=v_{0}$ representing the value of v in the interior of each element and $v=v_{b}$ on the boundary of the element.

[^0]The weak derivative $\nabla_{w} v$ for a weak function v is defined as distributions. WG method uses polynomials $\left(P_{k}(T), P_{s}(e),\left[P_{\ell}(T)\right]^{d}\right)$ to approximate $\left(v_{0}, v_{b}, \nabla_{w} v\right)$ accordingly. The WG methods have been applied for solving various PDEs such as Sobolev equation, the Navier-Stokes equations, the Oseen equations, time-dependent Maxwell's equations, elliptic interface problems, biharmonic equations, etc, [1, 5-17, 21-23, 26, 27, 30].

For some special combinations of the WG element $\left(P_{k}(T), P_{s}(e),\left[P_{\ell}(T)\right]^{d}\right)$, stabilizer is no longer needed in the corresponding weak Galerkin finite element formulations, which leads to a stabilizer free weak Galerkin method. The stabilizer free weak Galerkin method was first introduced in [28] on polygonal/polyhedral meshes and then has been applied for the second order problems, the Stokes equations and the biharmonic equation [2, 18, 29].

This paper has two purposes:

1. Developing a new SFWG method with an order two superconvergence for the problem (1.1)-(1.2).
2. Providing necessary theory for a subsequent paper, order two superconvergent conforming discontinuous Galerkin method on rectangular meshes.

A WG element $\left(P_{k}(T), P_{k+1}(e), \mathrm{BDM}_{[k]}[T]\right)$ on rectangular mesh is used in this stabilizer free weak Galerkin finite element method. We prove that the SFWG method converges to the true solution of (1.1)-(1.2) with a convergence rate two orders higher than the optimal order in both an energy norm and the L^{2} norm theoretically and numerically. We further define a local post-process which lifts such a P_{k} weak Galerkin solution to an optimal order P_{k+2} solution. It is proved and numerically verified.

2. The weak Galerkin finite element scheme

Let \mathcal{T}_{h} be a partition of the domain Ω consisting of rectangles. Denote by \mathcal{E}_{h} the set of all edges in \mathcal{T}_{h}, and let $\mathcal{E}_{h}^{0}=\mathcal{E}_{h} \backslash \partial \Omega$ be the set of all interior edges. For every element $T \in \mathcal{T}_{h}$, we denote by h_{T} its diameter and the mesh size by $h=\max _{T \in \mathcal{T}_{h}} h_{T}$ for \mathcal{T}_{h}.

For a given integer $k \geq 1$, let V_{h} be the weak Galerkin finite element space associated with \mathcal{T}_{h} defined as follows:

$$
\begin{equation*}
V_{h}=\left\{v=\left\{v_{0}, v_{b}\right\}:\left.v_{0}\right|_{T} \in P_{k}(T),\left.v_{b}\right|_{e} \in P_{k+1}(e), e \subset \partial T, T \in \mathcal{T}_{h}\right\} \tag{2.1}
\end{equation*}
$$

and its subspace V_{h}^{0} is defined as

$$
\begin{equation*}
V_{h}^{0}=\left\{v: v \in V_{h}, v_{b}=0 \text { on } \partial \Omega\right\} . \tag{2.2}
\end{equation*}
$$

We would like to emphasize that any function $v \in V_{h}$ has a single value v_{b} on each edge $e \in \mathcal{\mathcal { E } _ { h }}$.

On each rectangle $T \in \mathcal{T}_{h}$, the BDM finite element space is defined by [4]

$$
\operatorname{BDM}_{[k+1]}(T)=P_{k+1}(T)^{2} \oplus \operatorname{curl} x^{k+2} y \oplus \operatorname{curl} x y^{k+2} .
$$

For $v=\left\{v_{0}, v_{b}\right\} \in V_{h}$, a weak gradient $\nabla_{w} v$ is a piecewise vector valued polynomial such that on each $T \in \mathcal{T}_{h}, \nabla_{w} v \in \operatorname{BDM}_{[k+1]}(T)$ satisfies

$$
\begin{equation*}
\left(\nabla_{w} v, \mathbf{q}\right)_{T}=-\left(v_{0}, \nabla \cdot \mathbf{q}\right)_{T}+\left\langle v_{b}, \mathbf{q} \cdot \mathbf{n}\right\rangle_{\partial T}, \quad \forall \mathbf{q} \in \operatorname{BDM}_{[k+1]}(T) \tag{2.3}
\end{equation*}
$$

For simplicity, we adopt the following notations:

$$
\begin{aligned}
& (v, w)_{\mathcal{T}_{h}}=\sum_{T \in \mathcal{T}_{h}}(v, w)_{T}=\sum_{T \in \mathcal{T}_{h}} \int_{T} v w d \mathbf{x} \\
& \langle v, w\rangle_{\partial \mathcal{T}_{h}}=\sum_{T \in \mathcal{T}_{h}} \sum_{e \subset \partial T}\langle v, w\rangle_{e}=\sum_{T \in \mathcal{T}_{h}} \int_{\partial T} v w d s
\end{aligned}
$$

Algorithm 2.1 (Weak Galerkin algorithm). A numerical approximation for (1.1)-(1.2) can be obtained by seeking $u_{h}=\left\{u_{0}, u_{b}\right\} \in V_{h}$ satisfying $u_{b}=Q_{b} g$ on $\partial \Omega$ and the following equation:

$$
\begin{equation*}
\left(\nabla_{w} u_{h}, \nabla_{w} v\right)=\left(f, v_{0}\right), \quad \forall v=\left\{v_{0}, v_{b}\right\} \in V_{h}^{0} \tag{2.4}
\end{equation*}
$$

3. Well posedness

For any $v \in V_{h}$, a semi- H^{1}-like semi-norm is defined as follows:

$$
\begin{equation*}
\|v\|^{2}=\left(\nabla_{w} v, \nabla_{w} v\right) \tag{3.1}
\end{equation*}
$$

We introduce a discrete semi- H^{1} norm as follows:

$$
\begin{equation*}
\|v\|_{1, h}^{2}=\left(\nabla v_{0}, \nabla v_{0}\right) \mathcal{T}_{h}+\left\langle h_{T}^{-1}\left(v_{0}-v_{b}\right), v_{0}-v_{b}\right\rangle_{\partial \mathcal{T}_{h}} . \tag{3.2}
\end{equation*}
$$

For any function $\varphi \in H^{1}(T)$, the trace inequality holds true

$$
\begin{equation*}
\|\varphi\|_{e}^{2} \leq C\left(h_{T}^{-1}\|\varphi\|_{T}^{2}+h_{T}\|\nabla \varphi\|_{T}^{2}\right) \tag{3.3}
\end{equation*}
$$

Next we will show that $\left\|\|\cdot\|\right.$ also defines a norm for V_{h}^{0} by proving the equivalence of $\|\|\cdot\|$ and $\| \cdot \|_{1, h}$ in V_{h}. For $\mathbf{q} \in H(\operatorname{div}, \Omega)$, by [4], we define a BDM interpolation Π_{h} such that $\left.\Pi_{h} \mathbf{q}\right|_{T} \in \operatorname{BDM}_{[k+1]}(T)$ for $T \in \mathcal{T}_{h}$ satisfies

$$
\begin{array}{ll}
\left\langle\left(\mathbf{q}-\Pi_{h} \mathbf{q}\right) \cdot \mathbf{n}, p_{k+1}\right\rangle_{e}=0, & \forall p_{k+1} \in P_{k+1}(e), \quad e \subset \partial T \\
\left(\mathbf{q}-\Pi_{h} \mathbf{q}, \mathbf{p}_{k-1}\right)_{T}=0, & \forall \mathbf{p}_{k-1} \in\left[P_{k-1}(T)\right]^{2} \tag{3.5}
\end{array}
$$

Lemma 3.1 ([4]). Let $\mathbf{q} \in H^{k+2}(\Omega)^{2}$.

$$
\begin{align*}
& \left\|\mathbf{q}-\Pi_{h} \mathbf{q}\right\| \leq C h^{k+2}|\mathbf{q}|_{k+2} \tag{3.6}\\
& \left\|\nabla \cdot\left(\mathbf{q}-\Pi_{h} \mathbf{q}\right)\right\|_{T} \leq C h_{T}^{k+1}|\nabla \cdot \mathbf{q}|_{k+1, T} \tag{3.7}
\end{align*}
$$

Lemma 3.2. There exist two positive constants C_{1} and C_{2} such that

$$
\begin{equation*}
C_{1}\|v\|_{1, h} \leq\|v\| \leq C_{2}\|v\|_{1, h}, \quad \forall v \in V_{h} . \tag{3.8}
\end{equation*}
$$

Proof. We prove the upper bound first. By the definition of weak gradient (2.3), letting $w=\nabla_{w} v$, we have

$$
\begin{aligned}
\|v\|^{2} & =\sum_{T \in \mathcal{T}_{h}}-\left(v_{0}, \nabla \cdot \nabla_{w} v\right)_{T}+\left\langle v_{b}, \nabla_{w} v \cdot \mathbf{n}\right\rangle_{\partial T} \\
& =\sum_{T \in \mathcal{T}_{h}}\left(\nabla v_{0}, \nabla_{w} v\right)_{T}+\left\langle v_{b}-v_{0}, \nabla_{w} v \cdot \mathbf{n}\right\rangle_{\partial T} \\
& \leq \sum_{T \in \mathcal{T}_{h}}\left(\nabla v_{0}, \nabla_{w} v\right)_{T}+\left\|v_{b}-v_{0}\right\|_{\partial T}\left\|\nabla_{w} v\right\|_{\partial T} \\
& \leq \sum_{T \in \mathcal{T}_{h}}\left(\left\|\nabla v_{0}\right\|_{T}+\frac{\left\|v_{b}-v_{0}\right\|_{\partial T}}{C h_{T}^{1 / 2}}\right)\left\|\nabla_{w} v\right\|_{T} \leq C_{2}\|v\|_{1, h}\|v\|,
\end{aligned}
$$

where we applied the trace inequality (3.3) and the inverse inequality.
To prove the lower bound, we need to choose an appropriate \mathbf{q} in the definition of weak gradient (2.3) so that the above inequality can be reversed. Let $\mathbf{q} \in \operatorname{BDM}_{[k+1]}(T)$ be defined, similar to the BDM interpolation Π_{h} in (3.4)-(3.5), by

$$
\begin{array}{ll}
\left(\mathbf{q}-\nabla v_{0}, \mathbf{p}_{k-1}\right)_{T}=0, & \forall \mathbf{p}_{k-1} \in P_{k-1}(T)^{2}, \\
\left\langle\mathbf{q} \cdot \mathbf{n}-h_{T}^{-1}\left(v_{0}-v_{b}\right), p_{k+1}\right\rangle_{e}=0, & \forall p_{k+1} \in P_{k+1}(e), \tag{3.10}
\end{array} \quad e \subset \partial T . ~ \$
$$

By (3.4)-(3.5), (3.9)-(3.10) define a unique q. Further, by finite dimensional norm equivalence and scaling argument,

$$
\begin{equation*}
\|\mathbf{q}\| \leq C\|v\|_{1, h} . \tag{3.11}
\end{equation*}
$$

Using this \mathbf{q} in (2.3), we have

$$
\begin{aligned}
\|v\|_{1, h}^{2} & =\left(\nabla v_{0}, \nabla v_{0}\right)_{\mathcal{T}_{h}}+\left\langle h_{T}^{-1}\left(v_{0}-v_{b}\right), v_{0}-v_{b}\right\rangle_{\partial \mathcal{T}_{h}} \\
& =\left(\nabla v_{0}, \mathbf{q}\right)_{\mathcal{T}_{h}}+\left\langle v_{0}-v_{b}, \mathbf{q} \cdot \mathbf{n}\right\rangle_{\partial \mathcal{T}_{h}} \\
& =\left(\nabla_{w} v, \mathbf{q}\right)_{\mathcal{T}_{h}} \leq\|v\|\| \| \mathbf{q}\left\|\leq C_{1}^{-1}\right\| v\| \| v \|_{1, h} .
\end{aligned}
$$

The lemma is proved.
Lemma 3.3. The weak Galerkin finite element scheme (2.4) has a unique solution.
Proof. Let $u_{h}^{(1)}$ and $u_{h}^{(2)}$ be the two solutions of (2.4), then $\varepsilon_{h}=u_{h}^{(1)}-u_{h}^{(2)} \in V_{h}^{0}$ would satisfy the following equation:

$$
\left(\nabla_{w} \varepsilon_{h}, \nabla_{w} v\right)=0, \quad \forall v \in V_{h}^{0} .
$$

Then by letting $v=\varepsilon_{h}$ in the above equation, we arrive at

$$
\left\|\varepsilon_{h}\right\|^{2}=\left(\nabla_{w} \varepsilon_{h}, \nabla_{w} \varepsilon_{h}\right)=0
$$

It follows from (3.8) that $\left\|\varepsilon_{h}\right\|_{1, h}=0$. Since $\|\cdot\|_{1, h}$ is a norm in V_{h}^{0}, one has $\varepsilon_{h}=0$. This completes the proof of the lemma.

4. Error estimates in energy norm

We start this section with a useful lemma. First let Q_{0} and Q_{b} be the two elementwise defined L^{2} projections onto $P_{k}(T)$ and $P_{k+1}(e)$ on each $T \in \mathcal{T}_{h}$ respectively. Define $Q_{h} u=\left\{Q_{0} u, Q_{b} u\right\} \in V_{h}$. Let \mathbb{Q}_{h} be the elementwise defined L^{2} projection onto $\operatorname{BDM}_{[k+1]}(T)$ on each $T \in \mathcal{T}_{h}$.
Lemma 4.1. Let $\phi \in H^{1}(\Omega)$, then on any $T \in \mathcal{T}_{h}$,

$$
\begin{equation*}
\nabla_{w}\left(Q_{h} \phi\right)=\mathbb{Q}_{h} \nabla \phi . \tag{4.1}
\end{equation*}
$$

Proof. Using (2.3) and integration by parts, we have that for any $\mathbf{q} \in \operatorname{BDM}_{[k+1]}(T)$, as $\nabla \cdot \mathbf{q} \in P_{k}(T)$ and $\mathbf{q} \cdot \mathbf{n} \in P_{k+1}(e)$,

$$
\begin{aligned}
\left(\nabla_{w} Q_{h} \phi, \mathbf{q}\right)_{T} & =-\left(Q_{0} \phi, \nabla \cdot \mathbf{q}\right)_{T}+\left\langle Q_{b} \phi, \mathbf{q} \cdot \mathbf{n}\right\rangle_{\partial T} \\
& =-(\phi, \nabla \cdot \mathbf{q})_{T}+\langle\phi, \mathbf{q} \cdot \mathbf{n}\rangle_{\partial T} \\
& =(\nabla \phi, \mathbf{q})_{T}=\left(\mathbb{Q}_{h} \nabla \phi, \mathbf{q}\right)_{T},
\end{aligned}
$$

which implies the Eq. (4.1).
Next we derive an equation for the error $e_{h}=Q_{h} u-u_{h}$.
Lemma 4.2. For any $v \in V_{h}^{0}$, the following error equation holds true:

$$
\begin{equation*}
\left(\nabla_{w} e_{h}, \nabla_{w} v\right)=\ell(u, v), \tag{4.2}
\end{equation*}
$$

where

$$
\ell(u, v)=\left\langle\left(\nabla u-\mathbb{Q}_{h} \nabla u\right) \cdot \mathbf{n}, v_{0}-v_{b}\right\rangle_{\partial \tau_{h}} .
$$

Proof. For $v=\left\{v_{0}, v_{b}\right\} \in V_{h}^{0}$, testing (1.1) by v_{0} and using the fact that

$$
\left\langle\nabla u \cdot \mathbf{n}, v_{b}\right\rangle_{\partial \tau_{h}}=0,
$$

we have

$$
\begin{equation*}
\left(\nabla u, \nabla v_{0}\right)_{\mathcal{T}_{h}}-\left\langle\nabla u \cdot \mathbf{n}, v_{0}-v_{b}\right\rangle_{\partial \mathcal{T}_{h}}=\left(f, v_{0}\right) . \tag{4.3}
\end{equation*}
$$

It follows from integration by parts, (2.3) and (4.1) that

$$
\begin{align*}
\left(\nabla u, \nabla v_{0}\right)_{\mathcal{T}_{h}} & =\left(\mathbb{Q}_{h} \nabla u, \nabla v_{0}\right)_{\mathcal{T}_{h}} \\
& =-\left(v_{0}, \nabla \cdot\left(\mathbb{Q}_{h} \nabla u\right)\right)_{\mathcal{T}_{h}}+\left\langle v_{0}, \mathbb{Q}_{h} \nabla u \cdot \mathbf{n}\right\rangle_{\partial \mathcal{T}_{h}} \\
& =\left(\mathbb{Q}_{h} \nabla u, \nabla_{w} v\right)_{\mathcal{T}_{h}}+\left\langle v_{0}-v_{b}, \mathbb{Q}_{h} \nabla u \cdot \mathbf{n}\right\rangle_{\partial \mathcal{T}_{h}} \\
& =\left(\nabla_{w} Q_{h} u, \nabla_{w} v\right)+\left\langle v_{0}-v_{b}, \mathbb{Q}_{h} \nabla u \cdot \mathbf{n}\right\rangle_{\partial \mathcal{T}_{h}} . \tag{4.4}
\end{align*}
$$

Combining (4.3) and (4.4) yields

$$
\begin{equation*}
\left(\nabla_{w} Q_{h} u, \nabla_{w} v\right)=\left(f, v_{0}\right)+\ell(u, v) . \tag{4.5}
\end{equation*}
$$

The error equation follows from subtracting (2.4) from (4.5),

$$
\left(\nabla_{w} e_{h}, \nabla_{w} v\right)=\ell(u, v), \quad \forall v \in V_{h}^{0} .
$$

This completes the proof of the lemma.
Next we will bound $\ell(u, v)$.
Lemma 4.3. For any $w \in H^{k+3}(\Omega)$ and $v=\left\{v_{0}, v_{b}\right\} \in V_{h}^{0}$, we have

$$
\begin{equation*}
|\ell(w, v)| \leq C h^{k+2}|w|_{k+3}\|v\| \| . \tag{4.6}
\end{equation*}
$$

Proof. Using the Cauchy-Schwarz inequality, the trace inequality (3.3), and (3.8), we have

$$
\begin{aligned}
|\ell(w, v)| & =\left|\sum_{T \in \mathcal{T}_{h}}\left\langle\left(\nabla w-\mathbb{Q}_{h} \nabla w\right) \cdot \mathbf{n}, v_{0}-v_{b}\right\rangle_{\partial T}\right| \\
& \leq \sum_{T \in \mathcal{T}_{h}}\left\|\nabla w-\mathbb{Q}_{h} \nabla w\right\|_{\partial T}\left\|v_{0}-v_{b}\right\|_{\partial T} \\
& \leq\left(\sum_{T \in \mathcal{T}_{h}} h_{T}\left\|\left(\nabla w-\mathbb{Q}_{h} \nabla w\right)\right\|_{\partial T}^{2}\right)^{\frac{1}{2}}\left(\sum_{T \in \mathcal{T}_{h}} h_{T}^{-1}\left\|v_{0}-v_{b}\right\|_{\partial T}^{2}\right)^{\frac{1}{2}} \\
& \leq C h^{k+2}|w|_{k+3}\|v\| \| .
\end{aligned}
$$

We have proved the lemma.
Theorem 4.1. Let $u_{h} \in V_{h}$ be the SFWG finite element solution of (2.4). Assume the exact solution $u \in H^{k+3}(\Omega)$. Then, there exists a constant C such that

$$
\begin{equation*}
\left\|Q_{h} u-u_{h}\right\| \leq C h^{k+2}|u|_{k+3} . \tag{4.7}
\end{equation*}
$$

Proof. By letting $v=e_{h}$ in (4.2), we have

$$
\begin{equation*}
\left\|e_{h}\right\|^{2}=\left(\nabla_{w} e_{h}, \nabla_{w} e_{h}\right)=\left|\ell\left(u, e_{h}\right)\right| . \tag{4.8}
\end{equation*}
$$

It follows from (4.6) that

$$
\left\|e_{h}\right\|^{2} \leq C h^{k+2}|u|_{k+3}\left\|e_{h}\right\|,
$$

which implies (4.7).

5. Error estimates in L^{2} norm

The duality argument is used to obtain L^{2} error estimate. Recall $e_{h}=\left\{e_{0}, e_{b}\right\}=$ $Q_{h} u-u_{h}$. The corresponding dual problem seeks $\Phi \in H_{0}^{1}(\Omega)$ satisfying

$$
\begin{equation*}
-\Delta \Phi=e_{0} \quad \text { in } \Omega . \tag{5.1}
\end{equation*}
$$

Assume that the following H^{2}-regularity holds:

$$
\begin{equation*}
\|\Phi\|_{2} \leq C\left\|e_{0}\right\| . \tag{5.2}
\end{equation*}
$$

Theorem 5.1. Let $u_{h} \in V_{h}$ be the SFWG finite element solution of (2.4). Assume that the exact solution $u \in H^{k+3}(\Omega)$ and (5.2) holds true. Then, there exists a constant C such that

$$
\begin{equation*}
\left\|Q_{0} u-u_{0}\right\| \leq C h^{k+3}|u|_{k+3} \tag{5.3}
\end{equation*}
$$

Proof. Testing (5.1) by e_{0}, we obtain

$$
\begin{align*}
\left\|e_{0}\right\|^{2} & =-\left(\nabla \cdot(\nabla \Phi), e_{0}\right) \\
& =\left(\nabla \Phi, \nabla e_{0}\right)_{\mathcal{T}_{h}}-\left\langle\nabla \Phi \cdot \mathbf{n}, e_{0}-e_{b}\right\rangle_{\partial \mathcal{T}_{h}} \tag{5.4}
\end{align*}
$$

where we have used the fact $\left\langle\nabla \Phi \cdot \mathbf{n}, e_{b}\right\rangle_{\partial \mathcal{T}_{h}}=0$. Setting $u=\Phi$ and $v=e_{h}$ in (4.4) yields

$$
\begin{equation*}
\left(\nabla \Phi, \nabla e_{0}\right)_{\mathcal{T}_{h}}=\left(\nabla_{w} Q_{h} \Phi, \nabla_{w} e_{h}\right)+\left\langle\mathbb{Q}_{h} \nabla \Phi \cdot \mathbf{n}, e_{0}-e_{b}\right\rangle_{\partial \mathcal{T}_{h}} \tag{5.5}
\end{equation*}
$$

Substituting (5.5) into (5.4) and using (4.2) give

$$
\begin{align*}
\left\|e_{0}\right\|^{2} & =\left(\nabla_{w} e_{h}, \nabla_{w} Q_{h} \Phi\right)+\left\langle\left(\mathbb{Q}_{h} \nabla \Phi-\nabla \Phi\right) \cdot \mathbf{n}, e_{0}-e_{b}\right\rangle_{\partial \mathcal{T}_{h}} \\
& =\left(\nabla_{w} e_{h}, \nabla_{w} Q_{h} \Phi\right)-\ell\left(\Phi, e_{h}\right)=\ell\left(u, Q_{h} \Phi\right)-\ell\left(\Phi, e_{h}\right) \tag{5.6}
\end{align*}
$$

Using the triangle inequality, we obtain

$$
\begin{align*}
\left|\ell\left(u, Q_{h} \Phi\right)\right| & =\left|\sum_{T \in \mathcal{T}_{h}}\left\langle\left(\nabla u-\mathbb{Q}_{h} \nabla u\right) \cdot \mathbf{n}, Q_{0} \Phi-Q_{b} \Phi\right\rangle_{\partial T}\right| \\
& \leq \sum_{T \in \mathcal{T}_{h}}\left\|\nabla u-\mathbb{Q}_{h} \nabla u\right\|_{\partial T}\left\|Q_{0} \Phi-Q_{b} \Phi\right\|_{\partial T} \\
& \leq\left(\sum_{T \in \mathcal{T}_{h}} h_{T}\left\|\nabla u-\mathbb{Q}_{h} \nabla u\right\|_{\partial T}^{2}\right)^{\frac{1}{2}}\left(\sum_{T \in \mathcal{T}_{h}} h_{T}^{-1}\left\|Q_{0} \Phi-\Phi\right\|_{\partial T}^{2}\right)^{\frac{1}{2}} \tag{5.7}
\end{align*}
$$

From the trace inequality (3.3) we have

$$
\begin{aligned}
& \left(\sum_{T \in \mathcal{T}_{h}} h_{T}^{-1}\left\|Q_{0} \Phi-\Phi\right\|_{\partial T}^{2}\right)^{\frac{1}{2}} \leq C h^{-1}\left\|Q_{0} \Phi-\Phi\right\| \leq C h\|\Phi\|_{2} \\
& \left(\sum_{T \in \mathcal{T}_{h}} h_{T}\left\|\nabla u-\mathbb{Q}_{h} \nabla u\right\|_{\partial T}^{2}\right)^{\frac{1}{2}} \leq C\left\|\nabla u-\mathbb{Q}_{h} \nabla u\right\| \leq C h^{k+2}|u|_{k+3}
\end{aligned}
$$

Combining the above two estimates with (5.7) gives

$$
\begin{equation*}
\left|\ell\left(u, Q_{h} \Phi\right)\right| \leq C h^{k+3}|u|_{k+3}\|\Phi\|_{2} \tag{5.8}
\end{equation*}
$$

It follows from (4.6) and (4.7),

$$
\begin{equation*}
\left|\ell\left(\Phi, e_{h}\right)\right| \leq C h\|\Phi\|_{2}\left\|e_{h}\right\| \leq C h^{k+3}|u|_{k+3}\|\Phi\|_{2} . \tag{5.9}
\end{equation*}
$$

Substituting (5.8) and (5.9) into (5.6) yields

$$
\left\|e_{0}\right\|^{2} \leq C h^{k+3}|u|_{k+3}\|\Phi\|_{2}
$$

Using the estimate above and the regularity assumption (5.2), we obtain the error estimate (5.3) of order two superconvergence.

6. A locally lifted P_{k+2} solution

In last section, we proved that the P_{k} weak Galerkin solution is two-order superconvergent, i.e., it converges at order $k+3$ in L^{2} norm. We define a local post-process, which lifts the P_{k} solution to an optimal-order P_{k+2} solution.

On each element T, we compute a solution $\hat{u}_{h} \in \Pi_{T \in \mathcal{T}_{h}} P_{k+2}(T)$ by

$$
\begin{array}{ll}
\left(\nabla \hat{u}_{h}-\nabla_{w} u_{h}, \nabla v\right)_{T}=0, & \forall v \in P_{k+2}(T) \backslash P_{0}(T), \\
\left(\hat{u}_{h}-u_{0}, v\right)_{T}=0, & \forall v \in P_{0}(T) \tag{6.2}
\end{array}
$$

We show next the uniqueness of the above square linear system of equations (6.1)(6.2). When $u_{h}=0$, (6.1) implies $\left\|\nabla \hat{u}_{h}\right\|^{2}=0$ and \hat{u}_{h} is a constant on each T. By (6.2), the constant is zero. As the linear system is square and finite dimensional, the uniqueness implies the existence of solution.

Theorem 6.1. Let $u \in H_{0}^{1}(\Omega) \cap H^{k+3}(\Omega)$ be the exact solution of (1.1)-(1.2). Let $u_{h} \in V_{h}$ in (6.1)-(6.2) be the weak Galerkin finite element solution of (2.4). Let $\hat{u}_{h} \in$ $\Pi_{T \in \mathcal{T}_{h}} P_{k+2}(T)$ be locally lifted solution of (6.1)-(6.2). Then there exists a constant C such that

$$
\begin{equation*}
\left\|u-\hat{u}_{h}\right\|_{0} \leq C h^{k+3}|u|_{k+3} . \tag{6.3}
\end{equation*}
$$

Proof. In the proof, we use Π_{k} to denote the elementwise L^{2} orthogonal projection onto either $\Pi_{T \in \mathcal{T}_{h}} P_{k}(T)$ or $\Pi_{T \in \mathcal{T}_{h}}\left[P_{k}(T)\right]^{2}$. Eq. (6.2) means that

$$
\Pi_{0} \hat{u}_{h}=\Pi_{0} u_{h},
$$

where Π_{0} is again the L^{2} orthogonal projection onto $P_{0}(T)$, on T. We consider the error in two parts

$$
\left\|u-\hat{u}_{h}\right\|_{0} \leq\left\|\Pi_{0}\left(u-\hat{u}_{h}\right)\right\|_{0}+\left\|\left(I-\Pi_{0}\right)\left(u-\hat{u}_{h}\right)\right\|_{0} .
$$

For the P_{0} part of error, by (5.3) we have

$$
\left\|\Pi_{0}\left(u-\hat{u}_{h}\right)\right\|_{0}=\left\|\Pi_{0}\left(\Pi_{k} u-u_{h}\right)\right\|_{0} \leq C\left\|\Pi_{k} u-u_{h}\right\|_{0} \leq C h^{k+3}|u|_{k+3} .
$$

For the P_{0}-orthogonal error, we separate it further into two

$$
\begin{aligned}
\left\|\left(I-\Pi_{0}\right)\left(u-\hat{u}_{h}\right)\right\|_{0} & \leq C h\left\|\nabla\left(u-\hat{u}_{h}\right)\right\|_{0} \\
& \leq C h\left\|\nabla\left(u-\Pi_{k+2} u\right)\right\|_{0}+C h\left\|\nabla\left(\Pi_{k+2} u-\hat{u}_{h}\right)\right\|_{0} \\
& \leq C h^{k+3}|u|_{k+3}+C h\left\|\nabla\left(\Pi_{k+2} u-\hat{u}_{h}\right)\right\|_{0}
\end{aligned}
$$

By (4.1), i.e., $\Pi_{k+1} \nabla u=\nabla_{w} Q_{h} u$, (6.1), i.e., $\nabla \hat{u}_{h}=\nabla_{w} u_{h}$, and (4.7), letting

$$
\mathbf{q}=\nabla\left(\Pi_{k+2} u-\hat{u}_{h}\right)
$$

we get

$$
\left\|\nabla\left(\Pi_{k+2} u-\hat{u}_{h}\right)\right\|_{0}^{2}=\left(\nabla\left(\Pi_{k+2} u-u\right), \mathbf{q}\right)+\left(\nabla u-\Pi_{k+1} \nabla u, \mathbf{q}\right)+\left(\nabla_{w} Q_{h} u-\nabla_{w} u_{h}, \mathbf{q}\right)
$$

$$
\begin{aligned}
& \leq\left(\left\|\nabla\left(\Pi_{k+2} u-u\right)\right\|_{0}+\left\|\nabla u-\Pi_{k+1} \nabla u\right\|_{0}+\left\|Q_{h} u-u_{h}\right\|\right)\|\mathbf{q}\|_{0} \\
& \leq C h^{k+2}|u|_{k+3}\left\|\nabla\left(\Pi_{k+2} u-\hat{u}_{h}\right)\right\|_{0} .
\end{aligned}
$$

Combining above three inequalities yields (6.3).

7. Numerical experiments

Consider problem (1.1) with $\Omega=(0,1)^{2}$. The source term f and the boundary value g are chosen so that the exact solution is

$$
\begin{equation*}
u(x, y)=\sin \pi x \sin \pi y \tag{7.1}
\end{equation*}
$$

Function f and g in (1.1)-(1.2) cannot be valid to all functions for nonlinear PDEs. The conditions for valid f and g are discussed in $[3,19,20]$.

We use the uniform square meshes shown as in Fig. 1. The results of P_{1}, P_{2}, P_{3} and P_{4} WG methods are listed in Table 1. Two orders of superconvergence are obtained for new element, in both L^{2} and H^{1}-like norms.

As we have order two superconvergence, we lift each P_{k} weak Galerkin finite element solution u_{h} to a P_{k+2} solution \hat{u}_{h} elementwise. From Table 2, the lifted P_{k+2} solution converges at order $k+3$ in L^{2} norm, two orders above that of the original P_{k} solution (which is from solving a linear system of equations.)

Table 1: The error and the convergence rate for problem (7.1).

Grid	$\left\\|Q_{h} u-u_{h}\right\\|$	Rate	$\left\\|\left\\|Q_{h} u-u_{h}\right\\|\right\\|$	Rate
The P_{1} weak Galerkin element				
6	$0.770 \mathrm{E}-06$	4.00	$0.170 \mathrm{E}-03$	3.00
7	$0.482 \mathrm{E}-07$	4.00	$0.213 \mathrm{E}-04$	3.00
8	$0.301 \mathrm{E}-08$	4.00	$0.266 \mathrm{E}-05$	3.00
The P_{2} weak Galerkin element				
5	$0.600 \mathrm{E}-06$	4.99	$0.112 \mathrm{E}-03$	3.99
6	$0.188 \mathrm{E}-07$	5.00	$0.703 \mathrm{E}-05$	4.00
7	$0.586 \mathrm{E}-09$	5.00	$0.440 \mathrm{E}-06$	4.00
The P_{3} weak Galerkin element				
4	$0.170 \mathrm{E}-05$	5.98	$0.221 \mathrm{E}-03$	4.98
5	$0.267 \mathrm{E}-07$	5.99	$0.693 \mathrm{E}-05$	5.00
6	$0.419 \mathrm{E}-09$	5.99	$0.217 \mathrm{E}-06$	5.00
The P_{4} weak Galerkin element				
3	$0.160 \mathrm{E}-04$	6.93	$0.138 \mathrm{E}-02$	5.94
4	$0.127 \mathrm{E}-06$	6.98	$0.218 \mathrm{E}-04$	5.99
5	$0.995 \mathrm{E}-09$	6.99	$0.341 \mathrm{E}-06$	6.00

Table 2: The errors of P_{k} WG solution u_{h} and lifted P_{k+2} solution \hat{u}_{h}, and the convergence rate for problem (7.1).

Grid	$\left\\|u-u_{h}\right\\|$	Rate	$\left\\|u-\hat{u}_{h}\right\\|$	Rate
	P_{1} WG solution		Lifted P_{3} solution	
6	0.175E-02	2.00	$0.102 \mathrm{E}-05$	4.00
7	0.438E-03	2.00	0.636E-07	4.00
8	0.109E-03	2.00	0.397E-08	4.00
	P_{2} WG solution		Lifted P_{4} solution	
5	$0.271 \mathrm{E}-03$	3.00	$0.674 \mathrm{E}-06$	4.99
6	0.339E-04	3.00	0.211E-07	5.00
7	0.424E-05	3.00	0.659E-09	5.00
	P_{3} WG solution		Lifted P_{5} solution	
4	$0.237 \mathrm{E}-03$	3.98	0.176E-05	5.98
5	0.149E-04	4.00	0.275E-07	6.00
6	0.930E-06	4.00	0.432E-09	5.99
	P_{4} WG solution		Lifted P_{6} solution	
3	0.700E-03	4.95	$0.161 \mathrm{E}-04$	6.93
4	0.221E-04	4.99	0.128E-06	6.98
5	$0.691 \mathrm{E}-06$	5.00	0.100E-08	6.99

Figure 1: The first three levels of square grids used in the computation.

Acknowledgments

Xiu Ye was supported in part by National Science Foundation Grant DMS-1620016.

References

[1] A. Al-Taweel, S. Hussain, X. Wang, and B. Jones, A $P_{0}-P_{0}$ weak Galerkin finite element method for solving singularly perturbed reaction-diffusion problems, Numer. Methods Partial Differ. Eq. 36 (2017), 213-227.
[2] A. Al-TaWEel, X. Wang, A note on the optimal degree of the weak gradient of the stabilizerfree weak Galerkin finite element method, Appl. Numer. Math. 150 (2020), 444-451.
[3] C. Alves, G. Ercole, M. Daniel, H. Bolanos, Ground state solutions for a semilinear elliptic problem with critical-subcritical growth, Adv. Nonlinear Anal. 9 (2020), 108-123.
[4] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Elements, Springer-Verlag, 1991.
[5] G. Chen, M. Feng, and X. Xie, A robust WG finite element method for convection-dif-fusion-reaction equations, J. Comput. Appl. Math. 315 (2017), 107-125.
[6] M. Cui and S. Zhang, On the uniform convergence of the weak Galerkin finite element method for a singularly-perturbed biharmonic equation, J. Sci. Comput. 82 (2020), 5-15.
[7] B. DEKA AND P. Roy, Weak Galerkin finite element methods for parabolic interface problems with nonhomogeneous jump conditions, Numer. Funct. Anal. Optim. 40 (2019), 259-279.
[8] F. GAO, J. CuI, AND G. ZHAO, Weak Galerkin finite element methods for Sobolev equation, J. Comput. Appl. Math. 317 (2017), 188-202.
[9] X. Hu, L. Mu, and X. Ye, A weak Galerkin finite element method for the Navier-Stokes equations on polytopal meshes, J. Comput. Appl. Math. 362 (2019), 614-625.
[10] W. Huang and Y. Wang, Discrete maximum principle for the weak Galerkin method for anisotropic diffusion problems, Commun. Comput. Phys. 18 (2015), 65-90.
[11] H. Li, L. Mu, and X. Ye, Interior energy estimates for the weak Galerkin finite element method, Numerische Mathematik 139 (2018), 447-478.
[12] R. Lin, X. Ye, S. Zhang, and P. Zhu, A weak Galerkin finite element method for singularly perturbed convection-diffusion-reaction problems, SIAM J. Numer. Anal. 56 (2018), 14821497.
[13] J. Liu, S. Tavener, and Z. Wang, Lowest-order weak Galerkin finite element method for Darcy flow on convex polygonal meshes, SIAM J. Sci. Comput. 40 (2018), 1229-1252.
[14] J. Liu, S. TAVENER, AND Z. Wang, The lowest-order weak Galerkin finite element method for the Darcy equation on quadrilateral and hybrid meshes, J. Comput. Phys. 359 (2018), 317330.
[15] X. Liu, J. Li, And Z. Chen, A weak Galerkin finite element method for the Oseen equations, Adv. Comput. Math. 42 (2016), 1473-1490.
[16] L. Mu, Pressure robust weak Galerkin finite element methods for Stokes problems, SIAM J. Numer. Anal. 42 (2020), B608-B629.
[17] L. Mu, J. Wang, and X. Ye, A least-squares based weak Galerkin finite element method for second order elliptic equations, SIAM J. Sci. Comput. 39 (2017), A1531-A1557.
[18] L. Mu, X. Ye, AND S. Zhang, A stabilizer free, pressure robust and superconvergence weak Galerkin finite element method for the Stokes equations on polytopal mesh, SIAM J. Sci. Comput. 43 (2021), A2614-A2637.
[19] N. Papageorgiou, V. RĂDUlescu, and D. Repovš, Nonlinear Analysis - Theory and Methods, Springer Cham, 2019.
[20] H. Quoirin and K. Umezu, An elliptic equation with an indefinite sublinear boundary condition, Adv. Nonlinear Anal. 8 (2019), 175-192.
[21] S. Shields, J. Li, and E. A. Machorro, Weak Galerkin methods for time-dependent Maxwell's equations, Comput. Math. Appl. 74 (2017), 2106-2124.
[22] L. Song, S. Zhao, And K. Liu, A relaxed weak Galerkin method for elliptic interface problems with low regularity, Appl. Numer. Math. 128 (2018), 65-80.
[23] C. Wang and J. Wang, Discretization of div-curl systems by weak Galerkin finite element methods on polyhedral partitions, J. Sci. Comput. 68 (2016), 1144-1171.
[24] J. Wang and X. Ye, A weak Galerkin finite element method for second-order elliptic problems, J. Comput. Appl. Math. 241 (2013), 103-115.
[25] J. Wang and X. Ye, A weak Galerkin mixed finite element method for second-order elliptic problems, Math. Comp. 83 (2014), 2101-2126.
[26] J. Wang, X. Ye, and S. Zhang, Numerical investigation on weak Galerkin finite elements, Int. J. Numer. Anal. Mod. 17 (2020), 517-531.
[27] J. Wang, Q. Zhai, R. Zhang, and S. Zhang, A weak Galerkin finite element scheme for the Cahn-Hilliard equation, Math. Comp. 88 (2019), 211-235.
[28] X. Ye and S. Zhang, A stabilizer-free weak Galerkin finite element method on polytopal meshes, J. Comput. Appl. Math. 372 (2020), 112699.
[29] X. Ye and S. Zhang, A stabilizer free weak Galerkin method for the biharmonic equation on polytopal meshes, SIAM J. Numer. Anal. 58 (2020), 2572-2588.
[30] T. Zhang and T. Lin, A posteriori error estimate for a modified weak Galerkin method solving elliptic problems, Numer. Methods Partial Differ. Eq. 33 (2017), 381-398.

[^0]: *Corresponding author. Email addresses: xxye@ualr.edu (X. Ye), szhang@udel.edu (S. Zhang)

