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Abstract. The immersed boundary method has emerged as an efficient approach for
the simulation of finite-sized solid particles in complex fluid flows. However, one of
the well known shortcomings of the method is the limited support for the simulation
of light particles, i.e. particles with a density lower than that of the surrounding fluid,
both in terms of accuracy and numerical stability.
Although a broad literature exists, with several authors reporting different approaches
for improving the stability of the method, most of these attempts introduce extra com-
plexities and are very costly from a computational point of view.
In this work, we introduce an effective force stabilizing technique, allowing to extend
the stability range of the method by filtering spurious oscillations arising when dealing
with light-particles, pushing down the particle-to-fluid density ratio as low as 0.04.
We thoroughly validate the method comparing with both experimental and numerical
data available in literature.

AMS subject classifications: 65D10, 76M28

Key words: Immersed boundary method, lattice Boltzmann method, light particle, force stabi-
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1 Introduction

The transportation of rigid particles, droplets and bubbles in multiphase and multicom-
ponent fluid flows are ubiquitous to several fields of science and technology [1]. Many
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examples can be cited, for example in connection with environmental research (erosion
of sediments in sea shores and bubble generation in thee ocean), power engineering (to
enhance heat and mass transfer inside of the boiler of power-plants), chemical engineer-
ing (reaction between a gas and a liquid phase relies on the increased surface area of
small bubbles), bio-medical industry (air bubble formation in transported blood samples
through pneumatic tube systems) and many others.

The motion of particulate matter, as well as the numerical techniques required for an
accurate and reliable description of its dynamic, may vary significantly depending on
whether one deals with bubbles, droplets or particles. For example, for heavy particles,
with densities larger than that of the dispersed phase, the dynamics is mostly governed
by the inertia of the particles. On the other hand, when dealing with light particles (e.g.
small bubbles) the governing force comes mostly from the inertia of the fluid inside the
immersed body which gets accelerated along with the particle; this phenomena is com-
monly referred as “added mass effect” (and seldom as “internal mass effect” [2]).

Although a significant effort has been invested through the years on the experimental
side for the study of the motion of bubbles in complex fluid flows [3–5], there is not
as much literature available in terms of numerical works, due to the lack of efficient
techniques for the simulation of light particles in fluid flows.

A standard approach for the simulation of interactions between fluids and particles
is given by the Immersed Boundary Method (IBM), which simulates the boundary of the
particles using a Lagrangian grid. The method, originally introduced by Peskin [6, 7],
and successively refined over the years by a number of researchers [8–11], has proven
successful in the simulation of several types of complex fluid-particle interactions. How-
ever, a well known shortcoming of the method is the restricted support, both in terms of
accuracy and numerical stability, for the simulation of light particles [10].

Although several methods have been reported for extending the stability range of
IBM (e.g. [12–14]), they are often very expensive from a computational point of view, and
for this reason one usually relies on other numerical approaches for the simulation of
light particles, such as for example the interface tracking method [15, 16].

In this work, we present a lightweight solution for filtering-out spurious oscillations
arising in the force term acting on the particle, which occur when simulating light parti-
cles in fluid flows.

We couple the IBM with a Lattice Boltzmann Method (LBM) [17] for the solution of
the governing equations of the fluid, and perform numerical simulations for heavy and
light particles, comparing and validating against both numerical and experimental data.

Our results show that we are able to solve particle to fluid density ratios as low as
0.04, improving of about one order of magnitude over a standard IBM implementation.

This article is organized as follows: in Section 2 we introduce the numerical meth-
ods used in the simulation of the fluid dynamics and of the fluid-particle interactions,
respectively the LBM and the IBM. Besides, we also provide a description of the short-
coming of the IBM in the simulation of light particles, as well as a stabilization technique
for smoothing out oscillations from the particle force and torque. In Section 3 we report
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numerical results from two different test-beds, evaluating accuracy and stability of the
method. Finally, in Section 4 we summarize our findings, together with an outlook on
possible future developments.

2 Methodology

2.1 Lattice Boltzmann Method

In this section, we give a short introduction to the Lattice Boltzmann Method (LBM),
which we employ for solving the governing equations of the fluid.

The LBM (see e.g [17,18] for a detailed introduction) simulates the evolution of macro-
scopic quantities (such as density and velocity) through a mesoscopic approach based on
the synthetic dynamics of a set of discrete velocity distribution functions fi(x,t), to which
we will refer to as lattice populations.

At each grid node x, the lattice populations are defined along the discrete components
of the stencil {ci}, i=1,··· ,q. It is customary to distinguish between different LBMs using
the DdQq nomenclature, in which d refers to the number of spatial dimensions and q to
the number of discrete components. In this work we adopt the D3Q19 model (see [19] for
the implications of the choice of the lattice structure), to implement the single-relaxation
time lattice-BGK [20]:

fi(x+ci∆t,t+∆t)= fi(x,t)−∆t
τ

(
fi(x,t)− f eq

i (x,t)
)
+Fi(x,t). (2.1)

In the above, ∆t is the time step, τ the relaxation time, Fi a discrete force density term,
and f eq

i (x,t) is the discrete equilibrium distribution, for which we use a second order
Hermite-expansion of the Maxwell-Boltzmann distribution:

f eq
i (ρ,u)=wiρ

(
1+

u·ci

c2
s
+
(u·ci)

2−(cs|u|)2

2c4
s

)
,

with wi a lattice-dependent set of weighting factors, cs = 1/
√

3 the sound speed in the
lattice, and ρ and u respectively the density and the velocity field.

For the implementation of the forcing term Fi, we adopt Guo’s model [21]:

Fi(x,t)=
(

1− 1
2τ

)
wi

[
ci−u(x,t)

c2
s

+
ci ·u(x,t)

c4
s

ci

]
·F(x,t), (2.2)

where F(x,t) represents the force vector acting on the system.
The macroscopic observable ρ and u, can be calculated from the moments of the ve-

locity distribution functions:

ρ=
q

∑
i=1

fi, ρu=
q

∑
i=1

fici+
∆t
2

F(x,t), (2.3)
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with a correction in the first order moment due to Guo’s model.
Following an asymptotic analysis, such as the Chapman-Enskog expansion, it can be

shown that Eq. (2.1) provides a second order approximation of the Navier-Stokes equa-
tions, with the following expression putting in relationship the relaxation time parameter
τ with the kinematic viscosity ν of the fluid:

ν=

(
τ− 1

2

)
c2

s . (2.4)

We conclude this section by sketching the LBM algorithm, which, provided a suit-
able initialization of the particle distribution functions, consists at each iteration of the
following steps:

1. Perform the streaming step:

f ∗i (x,t)= fi(x−ci∆t,t). (2.5)

2. Coupling with the Immersed Boundary Method in order to i) apply boundary con-
ditions, and ii) calculate F(x,t)

3. Calculate the discrete force term via Eq. (2.2).

4. Compute the macroscopic fields using Eq. (2.3)

5. Apply the collisional operator

fi(x,t+∆t)= f ∗i (x,t)−∆t
τ

(
f ∗i (x,t)− f eq

i (x,t)
)
+Fi(x,t). (2.6)

2.2 Immersed boundary method

In this section we introduce the immersed boundary method (IBM) used to simulate the
fluid particle interaction as well as complex moving boundaries. We follow the imple-
mentation of Uhlmann [10] which is based on a distribution of Lagrangian markers to
denote the immersed boundary as shown in the Fig. 1. The fluid dynamics evolves on
Eulerian nodes (i.e. a Cartesian grid) and the no-slip boundary condition are imposed at
the boundaries represented by the Lagrangian markers. Starting from Eq. (2.5), the den-
sity and the (un-forced) velocity unoF is obtained from Eq. (2.3). The non-forced velocity
unoF is then interpolated from the Eulerian nodes to the Lagrangian markers using the
following equation:

unoF
b (xb)= ∑

x∈gh

u(x)D(x−xb)(∆h)3, (2.7)

where summation runs over all the grid points of the Cartesian grid (gh) used for solving
the fluid equation, xb represents the position of the Lagrangian markers, ∆h represents
the lattice size, u(x) is the fluid velocity on the Eulerian nodes and unoF

b is the interpolated
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Figure 1: Schematic representation of a particle in the immersed boundary method. The straight horizon-
tal/vertical lines represent the Cartesian grid and the intersections of the lines (black squares and triangles)
represent the Eulerian (fluid) nodes where the time evolution of the fluid field is calculated. The black squares
denote the fluid nodes which are outside the immersed boundary and the black triangles represent the fluid nodes
which are inside the immersed boundary. A set of Lagrangian markers (black circles) are used to represent the
particle boundary (red line). The effect of the interaction between the particle and the fluid is reconstructed at
the fluid nodes via interpolation.

velocity on the immersed boundary. Moreover, D(x−xb) is the delta function used in the
interpolation, defined as follows:

D(x−xb)=
1

(∆h)3 dh

(
x−xb

∆h

)
dh

(
y−yb

∆h

)
dh

(
z−zb

∆h

)
, (2.8)

with dh(r) given by:

dh(r)=

{
1−|r|, |r|⩽1,
0, |r|>1.

(2.9)

In the above, r represents the distance between the Eulerian node and the Lagrangian
marker. Following Uhlmann [10], the force density Fb is calculated at the Lagrangian
markers as:

Fb =ρ
ud

b−unoF
b

∆t
, (2.10)

where unoF
b is the interpolated velocity and ud

b the desired target velocity. The force den-
sity is then spread to the nearby Eulerian nodes based on the relation:

F(x,t)=∑
b

FbD(x−xb)∆Sb, (2.11)

with ∆Sb the surface area of the immersed boundary.
Finally, the result of Eq. (2.11) is used by LBM to advance the time stepping of Eq. (2.1).
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2.3 Particle dynamics

The particle dynamics is described by Newton’s laws of motion, which we solve using
the well know Leapfrog algorithm [22]. In particular, we need to determine at each time
step the position, orientation, as well as the translational and angular velocities of the
particle.

The translational force balance acting on the particle is given by

Mp
dup

dt
=M f

dup

dt
−∑

b
Fb∆Vp+(Mp−M f )g, (2.12)

with Mp the mass of the particle, M f the mass of the fluid enclosed within the particle
volume (M f = ρ f Vp), up the particle velocity and g the acceleration due to gravity. The
three terms on the right hand side of Eq. (2.12) represent, respectively, the added mass
force, the hydrodynamic force and the gravity (and buoyancy) force acting on the particle.

Likewise, the torque balance acting on the particle can be expressed as:

Ip
dωp

dt
= I f

dωp

dt
−∑

b
(xb−xc)×Fb∆Vp, (2.13)

with Ip the moment of inertia of the particle, I f the moment of inertia of the fluid enclosed
within the particle volume, xc the center of the particle and ωp the angular velocity of the
particle.

The target velocity on the boundary Lagrangian markers (ud) can be calculated by
combining the translational and angular velocities:

ud
b(xb)=up+ωp×(xb−xc), (2.14)

where xc represents the center of the particle.
Finally, in order to determine the angular orientation of the particle, we employed the

quaternions technique [22] (see Appendix A for more details).

2.4 Problem statement

In this section, we provide an overview of the issues arising when simulating light parti-
cles in fluid flows with the IBM implementation introduced by Uhlmann [10].

Hereafter, we use the term “light particles” to refer to particles with a particle to fluid
density ratio less than unity (ρp/ρ f <1); conversely, we use “heavy particles” to reference
to the case ρp/ρ f >1.

When considering light particles, the governing force comes from the inertia of the
fluid enclosed within the immersed boundary of the particle, which gets itself accelerated
with the particle. This phenomenon is known in the literature as the “added mass force”.
Numerical simulations under these settings yields strong oscillations in both velocities
and force (and torque) [12, 13], which ultimately lead to numerical instabilities and/or
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poor agreement with experimental results. Formally, the translational motion of a particle
is represented by the equation:

mp
dup

dt
=

d
dt

∫
Vp

ρ f udV−ρ f

∫
Vp

fdV+Vp(ρp−ρ f )g. (2.15)

In the above, the first term on the right hand side represents the added mass term. The in-
tegration of such term needs to be performed over all fluid nodes enclosed within the im-
mersed boundary, which in turn requires carefully chosen interpolation techniques [12]
in order to reach good accuracy. Therefore, it is customary to replace its calculation with
the so called rigid-body approximation [2]:

d
dt

∫
Vp

ρ f udV≈ρ f Vp
dup

dt
, (2.16)

where the “added mass term” can be represented using the acceleration of the particle.
However, even though the rigid-body approximation is more efficient from a computa-
tional point of view, it induces instabilities especially in the case of light particles [12]. On
the other hand, explicitly performing the integration leads to stable and accurate simula-
tions [12–14].

In the following, we provide an example of simulation of a light particle with ρp/ρ f =
0.7, and the following parameters, expressed in Lattice Units (LU): we consider a domain
surrounded by walls, with no slip boundary conditions, represented on a grid of size
32×32×64, simulating a particle of radius of Rp = 8 LU. The Reynolds number of the
particle, which is defined as Rep=2Rpu0/ν, is set to 0.01, with u0 being the Stokes velocity
of the particle, defined as

u0=
2gR2

p

9ν

(
ρp

ρ f
−1

)
. (2.17)

The gravity force acting on the system is g = 1.757×10−6 LU, and the relaxation time,
controlling the viscosity of the fluid, set to τ=0.65. This sets the viscosity of the fluid to
ν=0.05 LU as for Eq. (2.4).

We employ the rigid-body approximation (Eq. (2.16)). In Fig. 2 we highlight the spu-
rious oscillations arising after approximately 400 time steps in the vertical component of
both velocity and force.

In the next section, we describe a simple technique for damping the observed oscilla-
tion.

2.5 Force stabilization

In this section, we introduce a simple approach for the simulation of light particles, which
allows damping the oscillations described in the previous section, without the need of re-
sorting to the rigid body approximation, which would require the computationally costly
evaluation of the integral in Eq. (2.15).
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Figure 2: Instability in (a) the vertical force component, and in (b) the vertical velocity component of a particle

with density lighter than the surrounding fluid (
ρp
ρ f

= 0.7) using the standard IBM implementation (blue line).

The particle Reynolds number is set to Rep = 0.01. The stable result represented by the red line is obtained
applying a moving average to the force calculation (IBM+MA).

We start from Eq. (2.12) and Eq. (2.13), giving respectively the total force and torque
acting on the particle. These quantities are calculated at each time step and used to define
the particle dynamics by solving Newton’s equations of motion (see Section 2.3).

At a generic time step n, the total force acting on the particle is given by

F∗
p =M f

dun
p

dt
−∑

b
Fn

b ∆Vp+(Mp−M f )g. (2.18)

Instead of using F∗
p from the current time step, we make use of the information from the

previous W time steps in order to filter out spurious oscillations. In a general form, we
solve Newton’s equation of motion, using the force term defined as

Fn
p =Φ(N,n,F∗

p,Fn−1
p ,Fn−2

p ,··· ,Fn−W
p ), (2.19)

where Φ represents a model function that is used to smooth the data from the W+1 data
points and N represents the order of the model function.

In what follows, we consider two possible implementations of Φ:

1. The new value of the forcing term is calculated as the moving average of the previ-
ous W time steps:

Fn
p =

F∗
p+Fn−1

p +Fn−2
p +···+Fn−W

p

W+1
. (2.20)

2. The new value of the forcing term is calculated applying a order N polynomial
regression on the previous:

Fn
p =

N

∑
i=0

aini, (2.21)

where ai are the regression parameters.
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In what follows, we will label IBM+MA the method making use of the moving average in
the calculation of the forcing term. We will also refer to IBM+LF and IMB+QF to indicate
the method employing respectively a linear fit or a quadratic fit in the calculation of the
forcing term. Several other kernels can be considered for smoothing the forcing term,
such as splines, Savitzky-Golay, and many more (see e.g. Ref. [23]), however our aim
here is that even very simple methods are sufficient to significantly improve the stability
of IBM.

In Fig. 2 we provide an example (see Section 2.4 for the definition of the setup), show-
ing how employing IBM+MA (red lines), with W = 4, it is possible to stabilize the time
dynamic of the system with respect to a basic IBM implementation (blue lines).

3 Results and discussion

In this section, we evaluate the force stabilization method proposed in the previous sec-
tion, by performing simulations in the context of sedimentation/rising of particles subject
to gravity in an enclosed domain.

We compare the results obtained with experimental and numerical results available
in the literature, for both heavy and light particles. In order to compare with previous
studies in what follows we will focus on spherical particles; however, we shall remark
that the methodology here presented is general and valid in principle for particles of any
shape.

3.1 Test problem A

We start by considering the sedimentation of a heavy particle under gravity in an en-
closed domain, working in a parameter range for which the standard IBM implementa-
tion provides accurate results.

We use the same setup used in experiments by TenCate et al. [24]. The test case in-
volves an enclosed domain of size 10 cm×10 cm×16 cm filled with a liquid of density
ρ f = 962 kg/m3 and dynamic viscosity µ f = 0.113 Pa· s. A solid particle of diameter
Dp =1.5 cm and density ρp =1120 kg/m3 is released from a position such that the lower
surface of the particle is 12 cm from the bottom of the vessel under gravity (g=9.8 m/s2).
These quantities are defined in numerical units on a grid of size 200×200×320, with the
particle defined by 3156 Lagrangian markers. The relaxation time is set to τ=0.6 and the
gravity in LU is g=−5.346×10−4. For the current setup, no-slip boundary conditions are
applied to both top/bottom and side walls.

In Fig. 3 we show the profiles for the vertical components of velocity and position
(normalised with particle diameter Dp) of the particle as a function of time. Our numeri-
cal results compare well with both the experimental data of TenCate et al. [24], as well as
with the numerical results of Suzuki et al. [2].

The force stabilization is applied using data from W = 5 time steps, for both
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Figure 3: Time evolution of (a) the vertical velocity and (b) the vertical position of a heavy (ρp/ρf =1.1642)
particle (normalized over its diameter Dp), undergoing sedimentation under gravity. The plots show a comparison
of the IBM (blue line) with the experimental results of TenCate et al. [24], as well as with the numerical results
of Suzuki et al. [2]. The red curves show the results obtained applying a moving average in the calculation of
the force (IBM+MA), the green curves employ a linear fit (IBM+QF), whereas in dark red we show the results
obtained with a quadratic fit (IBM+QF). In all these cases we use the same window length to perform the
smoothed calculation of the force (W=5 LU).

IBM+MA/LF/QF. We observe that the moving average and a linear fit produce results
slightly different from those of the basic IBM implementation, though still in good agree-
ment with experimental data. The quadratic fit instead perfectly matches the results of
the basic IBM implementation.

The value of W should be carefully chosen: if taken to be too large in comparison to
the transients of the physical problem, then the low-order methods will not be able to
capture the correct dynamics. Moreover, a too large value for W would also lead to large
numerical dissipation for the kinetic energy, which can significantly impact the particle
dynamics leading to a non-physical time evolution of the system. In Fig. 4 we show the
results for vz, obtained using W=9, zooming in a time window of 0.05 s.

The results using IBM+MA slightly deviate from the correct dynamics. IBM+LF, on
the other hand, qualitatively follows the basic IBM implementation but introduces oscil-
lations. The oscillations are removed when adopting IMB+QF.

3.2 Test problem B

We now consider a second test case, to highlight the benefits of our force stabiliza-
tion method. We replicate the same setup previously used by several authors (see
e.g. [25–27]), in which a spherical particle of diameter Dp is released from the center
of a vertical channel of width L. Under gravity the particle either falls or rises, reaching
a terminal velocity. The particle Reynolds number chosen for the problem is such that
the solution falls within the Stokes flow regime. However, since the walls are placed
at a finite distance from the particle, the final velocity of the particle will be less than
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Figure 4: Vertical velocity (vz) of a sedimenting spherical particle over time. The particle chosen here is heavy
with a particle to fluid density ratio of (ρp/ρf=1.1642) A window length of W=9, which corresponds to 0.0015
sec in physical units, has been used for all the smoothing techniques shown in the plot. The data used for
comparison has been obtained from Suzuki et al. [2].

the Stokes velocity. It was shown experimentally by Miyamura [25], that it is possible
to define a relation between the final velocity of the particle, normalized with the un-
bounded Stokes velocity (up/u0), and the ratio between the particle diameter and the
channel width (Dp/L). Similar studies were performed by Gupta et al. [27] and Aidun et
al. [26] numerically.

We consider both light and heavy particles, simulated on a domain consisting of L×
L×4L nodes, with L=32 (coarse) and L=64 (fine). We work in the Stokes regime (Rep≪1)
with Reynolds number varied within the range [0.0006,0.02222] for heavy particles, and
[0.00012,0.00444], for light particles. A set of particle sizes were simulated for different
Dp/L values ranging from 0.1875 (Dp=6 for coarse and Dp=12 for fine) to 0.625 (Dp=20
for coarse and Dp=40 for fine). A zero-velocity inlet is placed at the top boundary, while
a convective outlet is used at the bottom boundary, with no-slip boundary conditions at
the side walls. In Fig. 5 we show the result for obtained employing the IBM with the
moving average technique (IBM+MA), for both a heavy (ρp/ρ f =2.0) and a light particle
(ρp/ρ f =0.8). The results show good agreement with [25] and [27].

We have also included results using a higher grid resolution of size L×L×4L, with
L= 64, to highlight the fact that the discrepancies observed for low values of the Dp/L
parameter are due to the particle not being resolved with enough accuracy.

We conclude our analysis by evaluating the numerical stability and accuracy when
varying the particle-to-fluid density ratio (ρp/ρ f ). We consider two examples, fixing the
ratio of the particle diameter to channel width (Dp/L) respectively to 0.25 and 0.5. The
particle diameter is set to Dp = 16 LU that gives us two domains 32×32×256 and 64×
64×256 for each Dp/L. To describe the boundary of the particle 984 Lagrangian markers
were used. The particle Reynolds number (Rep) is set to 0.001.

In Fig. 6 we show that while the basic IB method is stable up to density ratio of 0.4,
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velocities (up) normalised with the Stokes settling velocity (u0) for a range of particle-to-fluid density ratios
(ρp/ρ f ). Two sets of particle diameter to the channel width ratios (Dp/L) has been shown here. A window
length of W = 5 has been used for all the smoothing techniques used here. The reference data is taken from
Miyamura et al. [25].

by employing the moving average in the calculation of the forcing term (IBM+MA) it is
possible to obtain stable numerical results for densities ratios as low as 0.04.

Moreover, the accuracy of the solution is independent of both the density ratio and
the chosen force stabilizing method, and well compares with the reference data from
Miyamura et al. [25].
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4 Conclusion

In this work we have implemented a simple, effective and computationally efficient tech-
nique for the simulation of light particles in complex fluid flows. Our method allows
simulations with a particle to fluid density ratio as low as 0.04, which significantly im-
proves over Uhlmann’s [10] IBM implementation. It is important to note that as we have
observed the instability is also dependent on the Reynolds number of the system and can
show higher level of stability at very low Rep (Stokes regime). This will be an object of
further analysis in the future.

We avoid the explicit calculation of the rigid body approximation by calculating the
total force acting on the particle using information from data from previous iterations.
This allows reducing, or even completely removing, the oscillations observed in the ba-
sic IBM implementation. Moreover, the approach is computationally efficient since the
overheads introduced by the smoothing of the forcing term are negligible: to give an
example, the execution time of the IBM combined with a moving average of the forcing
term with W = 4 is increased of just about ≈ 2% in comparison to the basic IBM imple-
mentation.

We have validated our implementation using two test cases considering both heavy
and light particles. Our results are in good agreement with both experimental and nu-
merical data from previous studies.

In an extended version of the present work, we will further investigate the role of
the time window size, used to apply the force stabilization method, in order to define
an optimal value for this parameter from the target physical parameters of the problem.
Moreover, we will provide a quantitative performance comparison with numerical meth-
ods employing the rigid body approximation.
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Appendices

A Calculation of the angular rotation of the particle

In this appendix section, we introduce the procedure adopted for updating the orienta-
tion of the particle over time. The method relies on quaternions and it is general and
applicable to particles of any shape.
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Figure 7: Euler angles θ,ϕ,ψ. The x=< x,y,z> axis, shown by the black lines and ellipse denotes the inertial
frame of reference which is attached to the Cartesian grid (Eulerian nodes). The x′=<x′,y′,z′> axis refers to
the body frame of reference attached to the particle and it is shown by the red lines and ellipse.

We start by defining the inertial frame x=< x,y,z> of the Eulerian fluid nodes, and
the body frame of reference, which we label as x′=< x′,y′,z′>, which is attached to the
center of mass of the particle.

The moment of inertia for the particle is known in the body frame of reference; in
what follows we will denote it as I′xx, I′yy, I′zz.

In order to transform physical quantities from the inertial frame to the body frame we
introduce the quaternion variables:

q0=cos
(

θ

2

)
cos

(
ϕ+ψ

2

)
,

q1=sin
(

θ

2

)
cos

(
ϕ−ψ

2

)
,

q2=sin
(

θ

2

)
sin

(
ϕ−ψ

2

)
,

q3=cos
(

θ

2

)
sin

(
ϕ+ψ

2

)
,

(A.1)

where θ,ϕ,ψ are the Euler angles.
The transformation matrix is defined as:

A=

q2
0+q2

1−q2
2−q2

3 2(q0q1+q2q3) 2(q1q3−q0q2)
2(q1q2−q0q3) q2

0−q2
1+q2

2−q2
3 2(q2q3+q0q1)

2(q1q3+q0q2) 2(q2q3−q0q1) q2
0−q2

1−q2
2+q2

3

. (A.2)
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It is possible to calculate the angular momentum in the inertial frame using Eq. (2.13), to
then transform it from the inertial frame to body frame of reference via

(I′ω′)=A(Iω), (A.3)

thus allowing the calculation of the angular velocity in body frame of reference (ω′).
Finally, one can calculate the rate of change of orientation of the particle in body frame

of reference using the angular velocity (ω′) by introducing a quantity that represents the
rate of change of quaternions q̇:

q̇=


q̇0
q̇1
q̇2
q̇3

=
1
2


q0 −q1 −q2 −q3
q1 q0 −q3 q2
q2 q3 q0 −q1
q3 −q2 q1 q0




0
ω′

x
ω′

y
ω′

z

. (A.4)

Using the above equation it is possible to update the values of the quaternions
(q0,q1,q2,q3), which can be then used to update the orientation of the particle in the next
time step.

Note that at each time step it is also necessary to normalize the quaternions in order
to ensure that q2

0+q2
1+q2

2+q2
3=1.

B Lagrangian markers distribution on particle

In this Appendix section we briefly summarize the algorithm adopted for uniformly dis-
tributing the Lagrangian markers on the surface of a particle, allowing the description of
the particle in the IBM.

Following Ref. [28] we perform the following steps:

1. Orient the spheroid so that the major axis aligns with the vertical axis.

2. Choose the Lagrangian grid spacing (∆s) to be between 0.7 to 0.9 times the Eulerian
grid spacing (∆h).

3. Divide the spheroid into a number of strips along the major axis with a width equal
to the ∆s. Each strip should be circular in cross-section.

4. Along each strip distribute the Lagrangian markers with a spacing equal to ∆s.

The number of Lagrangian markers along each strip will depend on the circumfer-
ential length of the strip. This will ensure that the strips nears the poles will have less
number of Lagrangian markers than the strips near the equator and maintain uniformity.

The Lagrangian grid spacing (∆s) is chosen to be some degree less than the Eulerian
node spacing (∆h). This is done so as to prevent leakage of fluid through the particle
surface and hence satisfy no-penetration boundary condition.
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Figure 8: Lagrangian marker distribution on a spherical particle. 3156 Lagrangian markers is used to generate
the spherical particle of diameter 30 LU. The Lagrangian spacing is 0.9 times of the Eulerian node spacing
(∆s≈0.9∆h).

Also, decreasing the Lagrangian grid spacing too much will increase the number of
Lagrangian markers and hence increase computational cost. Ideally the Lagrangian grid
spacing (∆s) should be around 0.7 to 0.9 times the Eulerian grid spacing (∆h).

Fig. 8 illustrates an example of a spherical IB particle with 3156 Lagrangian markers
distributed on the surface which is used in test problem A in Section 3.1. The spherical
particle is of diameter 30 LU with ∆s≈0.9∆h

C List of parameters and values for the test cases

In this appendix section we summarize all the relevant physical parameters needed for
reproducing the numerical results presented in Section 3. In Table 1 we provide the pa-

Table 1: List of physical parameters used in Test problem A (Section 3.1).

Physical Units Lattice Units
Lx×Ly×Lz 10×10×16 [cm] 200×200×320
Dp 1.5 [cm] 15
xp(t=0) (5,5,12.75) [cm] (100.5,100.5,255.5)
ρ f 962 [kg m−3] 1
ρp 1120 [kg m−3] 1.1642
µ f 0.113 [Pa s]
ν f 1.1746×10−4 [kg m−2] 0.0776
τ 0.7328
g 9.8 [m s−2] 5.346×10−4
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Table 2: List of physical parameters used in Test problem B (Section 3.2).

Heavy particle Light particle
Coarse grid Fine grid Coarse grid Fine grid

Lx×Ly×Lz 32×32×128 64×64×256 32×32×128 64×64×256
xp(t=0) 16,16,64 32,32,128 16,16,64 32,32,128
ρ f 1.0 1.0 1.0 1.0
ρp 2.0 2.0 0.8 0.8
ν f 0.1 0.1 0.1 0.1
τ 0.8 0.8 0.8 0.8
g 5×10−7 5×10−8 5×10−7 5×10−8

rameters used for test problem A (Section 3.1), while in Table 2 we provide the parameters
for reproducing test problem B (Section 3.2).
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