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GAUGE-UZAWA METHODS FOR THE NAVIER-STOKES

EQUATIONS WITH NONLINEAR SLIP BOUNDARY

CONDITIONS

HAILONG QIU, LIQUAN MEI, AND ZHANGXIN CHEN

Abstract. In this paper, the Gauge-Uzawa method is applied to solve the Navier-Stokes equations
with nonlinear slip boundary conditions whose variational formulation is a variational inequality
of the second kind with the Navier-Stokes operator. In [1], a multiplier was introduced such
that the variational inequality is equivalent to the variational identity. We give the Gauge-Uzawa
scheme to compute this variational identity and provide a finite element approximation for the
Gauge-Uzawa scheme. The stability of the Gauge-Uzawa scheme is showed. Finally, numerical
experiments are given, which confirm the theoretical analysis and demonstrate the efficiency of
the new method.
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1. Introduction

Numerical simulation for incompressible flow is a fundamental and significan-
t problem in computational mathematics and computational fluid mechanics. It
is well known that a mathematical model for a viscous incompressible fluid with
homogeneous boundary conditions involves the Navier-Stokes equations.

In this paper, we will consider the following Navier-Stokes equations

(1)

{
∂u

∂t
− µ∆u+ (u · ∇)u +∇p = f,

divu = 0.

It is obvious that (1) is a coupled system with a first-order nonlinear evolution
equation and an imposed incompressible constrain so that the numerical simulation
for the Navier-Stokes equations is very difficult. A popular technique to overcome
this difficulty is to relax the solenoidal condition in an appropriate method to
result in a pesudo-compressible system, such as a penalty method or a artificial
compressible method. An operator splitting method is also very useful to overcome
this shortage. The main advantage of the operator splitting method is that it can
decouple the difficulties associated to the nonlinear property with those associated
to the incompressible condition. For more details, see [2].

The Gauge-Uzawa method has been a popular tool for the numerical simula-
tion of incompressible viscous flow. The purpose of this paper is to propose two
new Gauge-Uzawa schemes for incompressible flows with nonlinear slip boundary
conditions. This class of boundary conditions are introduced by Fujita in [3, 4, 5].
The first scheme will be based on a system in convected form [6] while the second
scheme will be based on the stabilized Gauge-Uzawa method [7]. We recall that the
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Gauge-Uzawa method is introduced in [6, 8] to overcome some implementation dif-
ficulties associated with the Gauge method introduced in [9]. It has been shown in
[6, 10, 11, 12] that the Gauge-Uzawa method has many advantages over the original
Gauge method and the pressure-correction method. We will show that a proper
Gauge-Uzawa formulation is well suitable for problems with variable density. More
precisely, our two new schemes will only involve one projection step and will be
proved unconditionally stable.

The paper is organized as follows. In the next two sections, we present the two
Gauge-Uzawa schemes and show that they are unconditionally stable, respectively.
In Section 4, we decrible the finite element approximation of the two Gauge-Uzawa
schemes. In Section 5, we present some numerical results which reveal the con-
vergence rate of our schemes for each of the three unknown functions and some
concluding remarks are given.

2. Navier-Stokes Equations with Nonlinear Slip Boundary Conditions

Consider the Navier-Stokes equations:

(2)

{
∂u

∂t
− µ∆u + (u · ∇)u +∇p = f in QT ,

divu = 0 in QT ,

where QT = Ω × [0, T ] for some T > 0, u(t, x) denotes velocity, p(t, x) denotes
pressure, and f(t, x) denotes the external force. The domain Ω ⊂ R2 is a bounded
domain. Given the initial value u(0, x) = u0(x) in Ω, we consider the following
nonlinear slip boundary conditions:

(3)

{
u = 0, on Γ,
un = 0, −στ (u) ∈ g∂|uτ | on S,

where Γ ∩ S = ∅,Γ ∪ S = ∂Ω with |Γ| 6= 0, |S| 6= 0. The viscous coefficient µ > 0
is a positive constant, g is a scalar function, and un = u · n and uτ = u − unn
are the normal and tangential components of the velocity, where n stands for the
unit vector of the external normal to S. στ (u) = σ − σnn, independent of p, is the
tangential components of the stress vector σ which is defined by σi = σi(u, p) =

(µeij(u) − pδij)nj , where eij(u) =
∂ui

∂xj +
∂uj

∂xi , i, j = 1, 2. The set ∂ψ(a) denotes a
subdifferential of the function ψ at the point a:

∂ψ(a) = {b ∈ R2 : ψ(h)− ψ(a) ≥ b · (h− a) ∀ h ∈ R2}.

Introduce

V = {u ∈ H1(Ω)2, u|Γ = 0, u · n|S = 0}, V0 = H1
0 (Ω)

2,

Vσ = {u ∈ V, divu = 0}, M = L2
0(Ω) = {q ∈ L2(Ω), (1, q)L2(Ω) = 0}.

Let || · ||k be the norm in the Hilbert space Hk(Ω)2, and (·, ·) and || · || be the
inner product and the norm in L2(Ω)2, respectively. Then we can equip the inner
product and the norm in V by (∇·,∇·) and || · ||V = ||∇ · ||, respectively, because
||∇· || is equivalent to || · ||1. Let X be a Banach space. Denote by X

′ the dual space
of X and < ·, · > be the dual pairing in X× X

′. Also we will use δ as a difference
of two functions, for example, for any sequence function zn+1,

δzn+1 = zn+1 − zn, δδzn+1 = δ(δzn+1) = zn+1 − 2zn + zn−1, · · · .
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Introduce the following bilinear forms and trilinear form:




a(u, v) = µ(∇u,∇v) ∀ u, v ∈ V,
d(v, p) = (p,divv) ∀ v ∈ V, p ∈M,
b(u, v, w) =

∫
Ω(u · ∇)v · wdx ∀ u, v, w ∈ V.

Moreover, if divu = 0, then trilinear form b(·, ·, ·) satisfies

b(u, v, w) = ((u · ∇)v, w) + 1
2 ((divu)v, w)

= 1
2 ((u · ∇)v, w) − 1

2 ((u · ∇)w, v) ∀ u, v, w ∈ V.

Thus we have

b(u, v, w) = −b(u,w, v) ∀ u, v, w ∈ V.

The weak formulation associated with the problem (1) and (2) is the following
variational inequality problem of the second kind with the Navier-Stokes operator:

(4)





Find (u, p) ∈ V ×M such that

< u
′

, v − u > +a(u, v − u) + b(u, u, v − u) + j(vτ )− j(uτ )
−d(v − u, p) ≥ (f, v − u) ∀ v ∈ V,

d(u, q) = 0 ∀ q ∈M.

Using a regularized method in [13, 14], we can show the following theorem about
the existence and uniqueness of a solution to (4):

Theorem 2.1. Given u0 ∈ Vσ, f ∈ L2(0, T,H) and g ∈ L2(0, T, L∞(S)), there

exists a unique solution u ∈  L∞(0, T,H) ∩  L2(0, T, V ) with u
′

∈  L2(0, T, V
′

) and
p ∈  L2(0, T,M) of the variational inequality (4). Moreover, the following energy
inequality holds:

sup
0≤t≤T

‖ u(t) ‖2 +µ

∫ T

0

‖ u(ξ) ‖2V dξ ≤
4

µ

∫ T

0

(‖ f(ξ) ‖2
V

′ + ‖ g(ξ) ‖2S)dξ+2 ‖ u0 ‖2 .

Theorem 2.2. For almost everywhere t ∈ (0, T ], that u ∈ L∞(0, T,H)∩L2(0, T, V )

with u
′

∈ L2(0, T, V
′

) and p ∈ L2(0, T,M) is the solution of the variational inequal-
ity (4) if and only if there exists a λ(t) ∈ Λ such that

(5)





< u
′

, v > +a(u, v) + b(u, u, v)− d(v, p) +
∫
S
λgvτds = (f, v) ∀v ∈ V,

d(u, q) = 0 ∀q ∈M,
λuτ =| uτ | a.e. on S.

3. Gauge-Uzawa Method

In this section, we will state the Gauge-Uzawa method to solve the variational
problem (5).

3.1. A first-order version. The first-order semi-discrete Gauge-Uzawa method
based on the conserved system (5) reads as follows:

Algorithm 3.1. Set u0 = u0 ∈ Vσ, s0 = 0, and λ0 ∈ Λ is given; repeat for
1 ≤ n ≤ N ≤ T/τ − 1.

Step I: Find ûn+1 as the solution of

(6) <
ûn+1 − un

τ
, v > +a(ûn+1, v) + b(un, ûn+1, v)− µ(sn,∇ · v)

+
∫
S
λngn+1vτds = (fn+1, v) ∀v ∈ V.
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Step II: Find φn+1 as the solution of

(7) < ∇φn+1,∇ψ >=< divûn+1, ψ > ∀ψ ∈ H1(Ω).

Step III: Update un+1 and sn+1 as the solution of

(8)

{
un+1 = ûn+1 +∇φn+1,
sn+1 = sn −∇ · ûn+1.

Step IV: Update λn+1 as the solution of

(9)

{
λn+1 = pΛ(λ

n + ρgn+1un+1
τ ), ρ > 0,

pΛ(µ) = sup(−1, inf(1, µ)) ∀µ ∈ L2(S).

Remark 3.1. In practice, we derive immediately from (7) and (8) that

(10) < un+1,∇q >= 0 ∀q ∈ H1(Ω),

which implies that in the space continuous case, we have

(11) ∇ · un+1 = 0.

However, in the space discrete case, only a discrete version of (10) will be satisfied
so the discrete velocity field will generally not be divergence free.

Remark 3.2. Note that the pressure does not appear in the above algorithm. How-
ever, a proper approximation of the pressure can be constructed [6, 11]. In addition,
the pressure pn+1 ∈ P can be computed via

(12) pn+1 = µsn+1 − τ−1φn+1.

Theorem 3.1. The Gauge-Uzawa Algorithm 3.1 is unconditionally stable in the
sense that, for all τ > 0 and 0 ≤ N ≤ T/τ − 1, the following a priori bound holds:
(13)

‖ûn+1‖20 +
N∑

n=1
(‖ûn+1 − un‖20 + ‖∇φn‖20) + µτ‖sN+1‖20 +

µ
2 τ

N∑
n=1

‖∇ûn+1‖20

≤ ‖û0‖20 + Cµτ
N∑

n=1
‖fn+1‖2−1 + Cµτ

N∑
n=1

‖gn+1‖2
L∞(S).

Proof: We take v = 2τûn+1 in (6), and get

(14)
‖ûn+1‖20 + ‖ûn+1 − un‖20 − ‖û‖20 + 2τµ‖∇ûn‖20 + 2µτ‖sN+1‖20

+2µτ < ∇sn, ûn+1 > −2µτ
∫
S
λngnûn+1

τ ds = 2µτ < fn+1, ûn+1 > .

The next task is to derive a suitable relation between ‖un‖20 and ‖ûn‖20 so that we
can sum over n the relation (14). To this end, we derive from (7) and (10) that

(15)

‖un‖20 =< un, un >
=< ûn +∇φn, un >
=< ûn, un >
=< ûn, ûn +∇φn >
= ‖ûn‖20+ < un −∇φn,∇φn >
= ‖ûn‖20 − ‖∇φn‖20.

We now sum up (14) and (15) to get

(16) ‖ûn+1‖20−‖ûn‖20+ ‖ûn+1 − un‖20 −‖∇φn‖20 +2µτ‖∇ûn+1‖n0 = A1 +A2+A3

with

(17)





A1 = 2µτ < sn,∇ · ûn+1 >,
A2 = −2µτ

∫
S
λngnûn+1

τ ds,
A3 = 2µτ < fn+1, ûn+1 > .
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We derive from the well-known inequality

(18) ‖∇ · v‖0 ≤ ‖∇v‖0 ∀v ∈ H1
0 (Ω),

and (8) that

(19)

A1 = −2µτ < sn, sn+1 − sn >
= −µτ(‖sn+1‖20 − ‖sn+1 − sn‖20 − ‖sn‖20)
= −µτ(‖sn+1‖20 − ‖sn‖20) + µτ‖∇ · ûn+1‖20
≤ −µτ(‖sn+1‖20 − ‖sn‖20) + µτ‖∇ûn+1‖20.

Using the Cauchy-Schwarz inequality, we find

(20)
A2 ≤ 2µτ‖gn‖L∞(S)‖û

n+1‖
≤ Cµτ‖gn+1‖2

L∞(S) +
µ
4 τ‖∇ · ûn+1‖20,

(21) A3 ≤ Cµτ‖fn+1‖2−1 +
µ

4
τ‖∇ · ûn+1‖20.

Inserting the above two results into (16) leads to

(22)
‖ûn+1‖20 −‖ûn‖20 + µτ(‖sn+1‖20 − ‖sn‖20)‖û

n+1 − un‖20 − ‖∇φn‖20
+µ

2 τ‖∇û
n+1‖n0 ≤ Cµτ‖fn+1‖2−1 + Cµτ‖gn+1‖2L∞(S).

Summing the above over n from 1 to N yields (13).

�

3.2. A second-order version. Algorithm 3.1 is only first-order accurate. How-
ever, a second-order version with essentially the same computational procedures
can be constructed as follows. For simplicity, we denote, for any function a, its
second-order extrapolation by an+1 = 2an − an−1.

Algorithm 3.2. (The stabilized Gauge-Uzawa Method) Set u0 = u0 ∈ Vσ, s0 = 0,
and λ0 ∈ Λ is given; compute u1, φ1, s1, p1 with Algorithm 3.1 and set φ1 = − 2τ

3 p
1:

repeat for 2 ≤ n ≤ N ≤ T/τ − 1.
Step I: Find ûn+1 as the solution of

(23) <
3ûn+1 − 4un + un−1

2τ
, v > +a(ûn+1, v) + b(an+1, ûn+1, v)− (pn,∇ · v)

+
∫
S
λngn+1vτds = (fn+1, v) ∀v ∈ V.

Step II: Find φn+1 as the solution of

(24) < ∇φn+1,∇ψ >=< ∇φn,∇ψ > + < divûn+1, ψ > ∀ψ ∈ H1(Ω).

Step III: Update un+1 and sn+1 as the solution of

(25)





un+1 = ûn+1 +∇(φn+1 − φn),
sn+1 = sn −∇ · ûn+1,

pn+1 = µsn+1 − 3φn+1

2τ .

Step IV: Update λn+1 as the solution of

(26)

{
λn+1 = pΛ(λ

n + ρgn+1un+1
τ ), ρ > 0,

pΛ(µ) = sup(−1, inf(1, µ)) ∀µ ∈ L2(S).

To see that the above scheme is indeed (formally) second-order accurate, we
drop the nonlinear terms (note that it is obvious that the approximation for the
nonlinear terms is second-order); after eliminating ûn+1, we find

< 3ûn+1−4un+un−1

2τ , v > +a(ûn+1, v)− (pn+1,∇ · v) +
∫
S
λngn+1vτds = (fn+1, v)

∀v ∈ V.



GAUGE-UZAWA METHODS FOR NAVIER-STOKES EQUATIONS. 51

Hence the scheme is formally second-order accurate.
We remark that Algorithm 3.2 consists with (5), like the classical Gauge-Uzawa

Method. In order to derive the rotational form of the pressure correction projection
method which is studied in [15], we denote

ξn+1 := −
3(φn+1 − φn)

2τ

and we subtract the three consecutive equations of (25) to get

pn+1 = pn + ξn+1 − µ∇ · ûn+1.

Then we arrive at the rotational form of the pressure correction projection method
in [15].

Algorithm 3.3. (The rotational form of the pressure correction projection method)
Set u0 = u0 ∈ Vσ, s0 = 0, and λ0 ∈ Λ is given; compute u1, φ1, s1, p1 with Algorithm
3.1 and set φ1 = − 2τ

3 p
1: repeat for 2 ≤ n ≤ N ≤ T/τ − 1.

Step I: Set a = 2un − un−1 and find ûn+1 as the solution of (23).
Step II: Find ξn+1 as the solution of

(27) < ∇ξn+1,∇ψ >=<
3

2τ
divûn+1, ψ > ∀ψ ∈ H1(Ω).

Step III: Update un+1 and pn+1 as the solution of

(28)

{
un+1 = ûn+1 −∇ξn+1,
pn+1 = pn + ξn+1 − µ∇ · ûn+1.

Step IV: Update λn+1 as the solution of

(29)

{
λn+1 = pΛ(λ

n + ρgn+1un+1
τ ) ρ > 0,

pΛ(µ) = sup(−1, inf(1, µ)) ∀µ ∈ L2(S).

Remark 3.3. Algorithms 3.2 and 3.3 are basically equivalent at the semi-discrete
level. The only difference is the representation of pressure between (25) and (28).
The pressure pn+1 in (25) is designed by addition of two functions of φ and s. Both
of them can be expressed by ∇· û, so we can replace pn in momentum equation (23)
to the terms of ∇ · û.

We will prove that the following stability of Algorithms 3.2. Because Algorithms
3.2 and 3.3 are equivalent, we conclude that Algorithm 3.3 is also unconditionally
stable.

Lemma 3.1. For any sequence {z}Nn=0, we have:

(30)
2 < 3zn+1 − 4zn + zn+1, zn+1 >= ‖zn+1‖20 + ‖2zn+1 − zn‖20

+‖δδzn+1‖20 − ‖zn‖20 − ‖2zn+1 − zn‖20,

(31) 2 < zn+1 − zn, zn+1 >= ‖zn+1‖20 + ‖2zn+1 − zn‖20 − ‖zn‖20,

(32) 2 < zn+1 − zn, zn >= ‖zn+1‖20 − ‖2zn+1 − zn‖20 − ‖zn‖20.
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Theorem 3.2. The Gauge-Uzawa Algorithm 3.2 is unconditionally stable in the
sense that, for all τ > 0 and 0 ≤ N ≤ T/τ − 1, the following a priori bound holds:

(33)

‖ûn+1‖20 + ‖uN+1‖20 + ‖2uN+1 − uN‖20 + 3‖∇φN+1‖20

+2τµ‖sN+1‖20 +
N∑

n=1
(‖δδuN+1‖20 + 3‖∇δφn+1‖20 + τµ‖∇ûn+1‖20)

≤ ‖2u1 − u0‖20 + ‖u0‖20 + 3‖∇φ1‖20 + 2τµ‖s1‖20‖û
0‖20

+Cµτ
N∑

n=1
‖fn+1‖2−1 + Cµτ

N∑
n=1

‖gn+1‖2L∞(S).

Proof: We first rewrite the momentum equation (23) by using (24) and (25) as
follows:

(34)
<

3ûn+1 − 4un + un−1

2τ
, v > +a(ûn+1, v) + b(an+1, ûn+1, v)

−(
3φn+1

2τ
− µqn,∇ · v) +

∫
S
λngn+1vτds = (fn+1, v) ∀v ∈ V.

We now take v = 4τûn+1 ∈ H1
0 (Ω) and use (30) to get

(35)

‖un+1‖20 + ‖2un+1 − un‖20 + ‖δδun+1‖20 − ‖un‖20

−‖2un − un−1‖20 + 4τµ‖∇ûn+1‖20 =
4∑

i=1

Ai,

where
A1 = 6 < ∇φn+1, ûn+1 >, A2 = 4τ < fn+1, ûn+1 >,
A3 = 4τµ < sn,∇ · ûn+1 >, A4 = 4τ

∫
S
λngn+1ûn+1

τ ds.

We note here that the convection term is vanished. In conjunction with ûn+1 =
un+1 −∇δφn+1 and (31) yields

A1 = −6 < ∇φn+1,∇δφn+1 >= −3(‖∇φn+1‖20 − ‖∇φn‖20 + ‖∇δφn+1‖20).

Clearly, we have

A2 ≤ C
τ

µ
‖fn+1‖2−1 +

τµ

2
‖∇ûn+1‖20.

In the view of (25) and (18), we have ‖δqn+1‖20 = ‖∇ · ûn+1‖20 ≤ ‖∇ûn+1‖20. Hence

A3 = −4µτ < sn, δqn+1 >
= −2µτ(‖sn+1‖20 − ‖sn‖20 − ‖δqn+1‖20)
≤ −2µτ(‖sn+1‖20 − ‖sn‖20 + 2µτ‖∇ûn+1‖20,

A4 ≤ 2µτ‖gn‖L∞(S)‖û
n+1‖

≤ Cµτ‖gn+1‖2
L∞(S) +

µ
2 τ‖∇ · ûn+1‖20.

Inserting A1-A4 back into (35) and summing over n from 1 to N lead to (33) by
using ‖ûn+1‖20 = ‖un+1‖20 + ‖∇δφn+1‖20.

The proof of Theorem 3.2 is complete. �

4. Finite Element Approximation

We now describe, as an example of space discretizations, a finite element method
for Algorithm 3.1. Let Th be a family of regular triangular partitions of Ω into
triangles of diameter not greater than 0 < h < 1 [13]. Let Vh ⊂ V and Mh ⊂ V be
conforming finite element subspaces, which satisfy the discrete inf-sup condition,
i.e., there exists a positive constant β > 0, independent of h, such that

β‖ph‖ ≤ sup
vh∈Vh

d(vh, ph)

‖vh‖V
.
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Denote Vσh the discretized solenoidal subspace of Vh. According to the definition
of b(·, ·, ·), we have

b(uh, vh, vh) ≡ 0 ∀uh, vh ∈ Vh.

Denote Λh = {wh : |wh(xS)| ≤ 1 ∀xS ∈ NS}, where NS is the set of all nodes on S.
For every λh ∈ Λh and vh ∈ Vh, we have

c(λh, gvh) ≤ C‖g‖L∞(S)‖vh‖V .

For initial value u0 ∈ V σ, the discretized initial value u0h ∈ V σh is defined as
follows:

a(u0h, vh) = a(u0, vh) ∀vh ∈ Vσh.

The finite element approximation of Algorithm 3.1 in (6)-(9) is:

Algorithm 4.1. Set u0h = u0h ∈ Vσh, s0h = 0, and λ0h ∈ Λh is given; repeat for
1 ≤ n ≤ N ≤ T/τ − 1.

Step I: Find ûn+1
h as the solution of

(36) <
ûn+1
h − unh

τ
, vh > +a(ûn+1

h , vh) + b(unh, û
n+1
h , vh)− µ(snh,∇ · vh)

+
∫
S
λnhg

n+1vhτds = (fn+1, vh)∀vh ∈ Vh.

Step II: Find φn+1
h as the solution of

(37) < ∇φn+1
h ,∇ψh >=< divûn+1

h , ψh > ∀ψh ∈ H1
h(Ω).

Step III: Update un+1
h and sn+1

h as the solution of

(38)

{
un+1
h = ûn+1

h +∇φn+1
h ,

sn+1
h = snh −∇ · ûn+1

h .

Step IV: Update λn+1
h as the solution of

(39)

{
λn+1
h = pΛh

(λnh + ρgn+1un+1
hτ ), ρ > 0,

pΛ(µ) = sup(−1, inf(1, µ)) ∀µ ∈ L2(S).

Algorithm 4.2. (The stabilized Gauge-Uzawa Method) Set u0h = u0h ∈ Vσ, s0h = 0,
and λ0 ∈ Λ is given; compute u1h, φ

1
h, s

1
h, p

1
h with Algorithm 3.1 and set φ1 = − 2τ

3 p
1
h:

repeat for 2 ≤ n ≤ N ≤ T/τ − 1.
Step I: Find ûn+1 as the solution of

(40) <
3ûn+1

h − 4unh + un−1
h

2τ
, v > +a(ûn+1

h , v) + b(an+1
h , ûn+1

h , v)− (pnh,∇ · v)

+
∫
S
λngn+1

h vτds = (fn+1
h , v) ∀v ∈ Vh.

Step II: Find φn+1
h as the solution of

(41) < ∇φn+1
h ,∇ψ >=< ∇φnh ,∇ψ > + < divûn+1

h , ψ > ∀ψ ∈ H1
h(Ω).

Step III: Update un+1
h and sn+1

h as the solution of

(42)





un+1
h = ûn+1

h +∇(φn+1
h − φnh),

sn+1
h = snh −∇ · ûn+1

h ,

pn+1
h = µsn+1

h −
3φn+1

h

2τ .

Step IV: Update λn+1
h as the solution of

(43)

{
λn+1
h = pΛ(λ

n
h + ρgn+1

h un+1
τh ), ρ > 0,

pΛ(µ) = sup(−1, inf(1, µ)) ∀µ ∈ L2(S).
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5. Numerical Results

In this section, we present some computational experiments using the Gauge-
Uzawa methods.

Assume that the domain is the standard square domain ([1, 13]) i.e., Ω = [0, 1]×
[0, 1]. The exact solutions u and p are

u(x, y) = (u1(t, x, y), u2(t, x, y)), p(x, y) = t(2x− 1)(2y − 1),
u1(x, y) = −tx2y(x− 1)(3y − 2), u2(x, y) = txy2(y − 1)(3x− 2),

and f is defined.
It is easy to verify that the exact solution u satisfies u = 0 on Γ, u · −→n = u1 = 0,

u2 6= 0 on S1 and u1 6= 0, u · −→n = u2 = 0 on S2. Moreover, the tangential vectors τ
on S1 and S2 are (0, 1) and (−1, 0), so

{
στ = 4µty2(y − 1) on S1,
στ = 4µtx2(x− 1) on S2.

On the other hand, from the nonlinear boundary conditions (2), we have

|στ | ≤ g, στuτ + g|uτ | = 0,

on S = S1 ∪ S2. Then the function g can be chosen such that g = −στ ≥ 0 on S2.
Let µ = 0.1. The external force f can be determined by the first equation of

(2). Since the finite element space (Vh,Mh) must satisfy the discretized inf-sup
condition, we use the Taylor-Hood element (P2 − P1 element). Take the initial
value u0 = 0, λ0 = 1, the space step h = τ , and the parameter ̺ = 0.5µ.

Table 1. The error and the rates of convergence for Algorithm 4.1

h
||u − uh||L2

||u||L2

Order
||u− uh||H1

||u||H1

Order
||p− ph||L2

||p||L2

Order

1/8 0.00290906 / 0.0256771 / 0.033258 /
1/16 0.00150963 0.9464 0.0138472 0.8909 0.0174686 0.9290
1/32 0.000768923 0.9733 0.00678532 0.9487 0.00869924 1.0058
1/64 0.000389941 0.9796 0.00346521 0.9695 0.00437643 0.9911

Table 2. The error and the rates of convergence for Algorithm 4.2

h
||u− uh||L2

||u||L2

Order
||u− uh||H1

||u||H1

Order
||p− ph||L2

||p||L2

Order

1/8 0.000370236 / 0.00240039 / 0.00487653 /
1/16 9.42152e-5 1.9744 0.000674267 1.8320 0.001346908 1.8562
1/32 2.46783e-5 1.9327 0.000170945 1.9800 0.0003477467 1.9535
1/64 6.35522e-6 1.9573 4.25791e-5 2.0049 8.75396e-5 1.9900

Next, we give the results of Algorithm 4.1 in Table 1 and the result of Algorithm
4.2 in Table 2 if the Gauge-Uzawa method is used, such as the usual Galerkin finite
element method with (P2 −P1 element). The L2 and H1 error of the velocity field
and the pressure isovalue are displayed. Figure 1 shows the velocity field and the
pressure isovalue at T = 1 as the space step h = 1/32, the time step 0.01 and the
parameter ̺ = 0.5µ.

In summary, the Gauge-Uzawa method is very valid for the Navier-Stokes equa-
tion with nonlinear slip boundary and the numerical results are consistent with the
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(a)

(b)

Figure 1. The velocity field and the pressure isovalue.

theoretical analysis.
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