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Abstract. This paper aims at developing a control volume staggered Lagrangian
scheme in r–z coordinate that preserves symmetry property. To achieve this goal, the
support operator method is first utilized to derive the compatible discretization that
satisfies the Geometrical Conservation Law (GCL) and momentum and total energy
conservation property. We further introduce a method of source term treatment to re-
cover the spherical symmetry of the current scheme. It is shown that the developed
scheme has the benefit of maintaining the momentum and total energy conservation.
The equi-angular grid, randomly distorted polar grid, and Cartesian grid are consid-
ered for one-dimensional spherical flow simulations. Also, an extension to the non-
spherical flow is presented. The results confirm the good performance of the devel-
oped scheme.

AMS subject classifications: 65M08, 76M12
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1 Introduction

Lagrangian methods [1–6] and the associated Arbitrary Lagrangian Eulerian (ALE) meth-
ods [7–11] nowadays constitute a standard approach to deal with high-speed compress-
ible multimaterial flow problems. There are two main kinds of Lagrangian methods,
namely the staggered and cell-centered Lagrangian methods. The staggered methods
solve the governing equations in a non-conservative form. Numerous attempts have
been conducted on them to make advances on the real-life applications [12–15]. The cell-
centered methods, on the other hand, have gained much attention in recent years. They
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are solved in a conservative form so that the solutions tend to a weak solution of the
continuous problem.

The importance of symmetry property in Lagrangian methods is well recognized,
especially when the flows are described in cylindrical geometry. For example, in a one-
dimensional spherical flow, loss of symmetry will cause both the grid and variable fields
to depart from a spherical shape as they evolve. Besides, in the case of extensions to non-
symmetric flow problems, uncertainties can arise as to whether a nonsymmetric result
comes from the physical process itself or from numerical error. Currently, cell-centered
methods make better progress in symmetry preserving than staggered methods in that
the conservative properties are preserved simultaneously [16–18]. However, any cell-
centered method has a flaw that severe inaccuracy might occur in strong expansions,
which is a potential obstacle for real-life applications [19].

Realizing the deficiency of cell-centered methods, it is important to promote the re-
search of staggered methods as well. The focus of this work is symmetry preservation
in a pure staggered Lagrangian framework. A simple way to achieve this goal is the
employment of a “Cartesian form” of the momentum equation in cylindrical geome-
try. Methods developed in this way are usually called area-weighted methods [8, 20]
because the integrations involved are performed in an area rather than a true volume.
Area-weighted schemes are widely applied to real problem simulations, especially when
discretization is done in a compatible manner. However, they can suffer from limita-
tions due to their lack of momentum conservation. Another natural way to perform
discretization is through the control-volume method. Caramana and Whalen [21] intro-
duced a control-volume staggered method that preserves spherical symmetry and is not
limited to an equi-angular polar grid. In their method, the gradient operator is modified
in such a way that it fully recovers spherical symmetry and introduces only a very small
change in the simulation results. Nevertheless, they found that this method, similar to
the area-weighted method, does not strictly conserve momentum. In more recent work
by Váchal and Wendroff [22], a so-called staggered GCS scheme was established using
the control-volume method to preserve symmetry and total energy and reduce the GCL
error to the order of the entropy error. Not enough is the investigation of total momen-
tum conservation. Margolin and Shashkov [23] adopted a novel strategy to implement
discretization on a curvilinear grid, and the scheme that they developed is able to pre-
serve symmetry even on a nonuniform polar grid. Dobrev et al. [24] also developed a
scheme on a curvilinear grid. Their method exactly conserves total energy and excels at
preserving symmetry, while also avoiding the generation of spurious symmetry breaking
near the rotation axis even for nonuniform grids.

Based on literature researches, the situation of symmetry preservation is less satis-
factory in the non-curvilinear staggered methods, taking into account the conservative
properties. To remedy the deficiency, the compatible discretization, whose weak con-
sistency has been proved strictly [25], is first utilized in the current study. we use for
reference to the methods [16–18] in which the symmetry and conservative properties are
satisfied simultaneously by invoking a method of source term treatment. Consequently,
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a control volume scheme that satisfies the GCL and momentum and total energy con-
servation is constructed. By taking full advantage of the total momentum conservation
property, the staggered scheme further recovers the spherical symmetry in a concise way.

The remainder of this paper is organized as follows: In Section 2, we discuss total mo-
mentum conservation in cylindrical coordinates and review the basic Lagrangian equa-
tions. In Section 3, we implement a compatible spatial discretization. In Section 4, to
recover the symmetry preservation property, we introduce a modification of the scheme
developed in Section 3. In Section 5, we describe numerical simulations of some spher-
ical flows to test the performance of the modified scheme. In Section 6, we present our
concluding remarks and some perspectives.

2 Lagrangian hydrodynamics in two-dimensional cylindrical
geometry

2.1 The issue of total momentum conservation

We are interested in Lagrangian hydrodynamics in a two-dimensional cylindrical geom-
etry. Before discretizing the governing equations, this subsection first presents an impor-
tant property of total momentum conservation, which has been mentioned in [8] and will
be utilized to develop our new Lagrangian scheme.

An r–z coordinate system is established to describe an entity of revolution in the three-
dimensional domain. As can be seen in Fig. 1, the angle between the r and x axes is θ.
Thus, the unit coordinate vectors in the cylindrical system are

er =(cosθ,sinθ,0), ez =(0,0,1), eθ =(−sinθ,cosθ,0). (2.1)

Let U(r,z,θ,t) denote the velocity vector in an axisymmetric problem. The θ component
of velocity is zero, and the other components do not depend on θ, so that

U(r,z,θ,t)=u(r,z,t)er(θ)+v(r,z,t)ez, (2.2)

where u and v are the velocity components along the r and z axes. The total momentum
at time t is defined as follows:

M(t)=
∫

V(t)
ρU dV, (2.3)

where ρ is the density and does not depend on θ. Substitution of Eq. (2.2) into Eq. (2.3)
gives

M(t)=
∫

A(t)
u(r,z,t)ρ(r,z,t)rdrdz

∫ 2π

0
er(θ)dθ

+2πez

∫
A(t)

v(r,z,t)ρ(r,z,t)rdrdz, (2.4)
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Figure 1: Cylindrical coordinates in three-dimensional domain.

which can be further simplified since
∫ 2π

0 er(θ)dθ=0:

M(t)=2πez

∫
A(t)

v(r,z,t)ρ(r,z,t)rdrdz. (2.5)

It can be deduced from Eq. (2.5) that total momentum conservation (dM(t)/dt=0) does
not depend on the r component of the velocity, and only involves the z component. This
property will be used in the discretization procedure to develop a symmetry-preserving
scheme.

2.2 Basic equations

The basic equations of staggered Lagrangian hydrodynamics comprise the Lagrangian
representation of a moving fluid element, the momentum equation, and the equation for
evolution of the specific internal energy. These can be written as follows:

ρ
d
dt

(
1
ρ

)
−∇·U =0, (2.6a)

ρ
dU
dt

+∇P=0, (2.6b)

ρ
dε

dt
+P∇·U =0, (2.6c)
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where ρ is the density, U is the velocity, P is the pressure, and ε is the specific internal
energy. The operator ∇·U determines the volume evolution of an arbitrary fluid element,
and it can be implemented in two different ways. First, by application of Gauss’s theorem
and specification of a set of velocities the discrete form of ∇·U can be obtained. Second,
given the point coordinates that constitute the fluid element, the volume V can be com-
puted, and differentiation of V with respect to time also provides the discrete form of
∇·U. It is known that this second method is linked to the trajectory equation,

dX
dt

=U(X(t),t), X(0)=X0. (2.7)

Any Lagrangian scheme that utilizes these two methods of discretization in an equivalent
manner is said to satisfy the GCL.

Finally, the equation of state of an ideal gas is adopted to close the basic equations:

P=(γ−1)ρε. (2.8)

2.3 Derivation of momentum equation

The integral form of the momentum equation over the volume V is derived in [4], and
would be introduced here briefly.

In a cylindrical coordinate system, the divergence operator has the form

∇·U =
∂u
∂z

+
1
r

∂(rv)
∂r

=
∂u
∂z

+
∂v
∂r

+
v
r

, (2.9)

if U is constant, then the following relation is satisfied:

∇·U =
1
r

U ·er. (2.10)

After integrating the momentum equation Eq. (2.6b) over the volume V, it has,

d
dt

∫
V

ρU dV+
∫

V
∇PdV=0. (2.11)

Utilizing Eq. (2.10) and the relation ∇·(PU)=U ·∇P+P∇·U, it gives∫
V
∇PdV=

∫
L

PNrdL−er

∫
A

PdA, (2.12)

Substitution of Eq. (2.12) into Eq. (2.11) gives

d
dt

∫
V

ρU dV+
∫

L
PNrdL−er

∫
A

PdA=0, (2.13)

where L is the boundary of the Lagrangian volume on the r–z plane, and A is the area of
the closed region surrounded by L.
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3 Spatial discretization

This section considers the spatial discretization of a staggered Lagrangian scheme. The
discretization is implemented together with the support operator method [1] in a com-
patible manner so that the total energy is conserved.

3.1 Notation

Fig. 2 shows the geometric objects in staggered Lagrangian hydrodynamics, namely, the
cell object Ωc and the point object Ωp. Basically, Ωp is constructed by connecting the
centroid of cells around point p and the midpoints of the edges associated with it in
sequence. The discrete geometric element Ωp is called the dual grid in the following for
simplicity. A Lagrangian object, the subcell mass mcp, is introduced such that

mc = ∑
p∈P(c)

mcp, mp = ∑
c∈C(p)

mcp, (3.1)

where mcp is invariant with respect to time t, mp is the mass of Ωp, and mc is the mass of
Ωc. P(c) is the set of points around cell c, and C(p) is the set of cells around point p.

𝑐 

𝑝 

𝑝2 

𝑝1 
𝑝+ 

𝑝− 

Figure 2: Geometric objects in staggered Lagrangian hydrodynamics.

3.2 Discrete support operators

After integration of Eq. (2.6a) over an arbitrary cell Ωc and application of the finite vol-
ume method, its discrete form is obtained as follows:

dVc

dt
= ∑

F (c)
rpp′ Lpp′ Npp′ ·Upp′ , (3.2)

where F (c) is the set of faces (edges) of the cell, and the subscript pp′ denotes the two
endpoints of a generic face of cell c. Lpp′ and Npp′ are the length and unit outward vector
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Figure 3: Triangular decomposition of the subcell Ωp
c .

of the face. rpp′ is the weighted value of the r coordinate rp and rp′ , and Upp′ is the
weighted value of point velocity Up and Up′ . Furthermore, if the midpoints of the edges
adjacent to point p in cell c are p+ and p−, then the half-face discretization of the volume
equation can be written as

dVc

dt
− ∑

p∈P(c)

(
rc

pLc
pUc

p ·Nc
p+rc

pLc
pUc

p ·Nc
p

)
=0, (3.3)

where subscripts p and p are associated with the half-edges pp+ and pp−, respectively.
Similar to rpp′ and Upp′ , rc

p,rc
p,Uc

p and Uc
p are weighted values. Lc

p and Lc
p are half-edge

lengths, and Nc
p and Nc

p are unit outward vectors of the half-edges.
The volume of cell Ωc can be computed by performing the triangular decomposition.

An example is given in Fig. 3 to show how the decomposition is implemented in a subcell.
By using Pappus’s rule [26], the volume per radian of the cell is computed as

Vc =
1
2 ∑

p∈P ′(c)

1
3
[(

rO+rp+rp+
)(

Xp×Xp+
)

+
(
rO+rp+rp−

)(
Xp×Xp−

)]
·eZ, (3.4)

where P ′(c) is the set of cell points and edge midpoints around a point, and eZ=eX×eY.
The time derivative of this equation is

dVc

dt
=

1
2 ∑

p∈P ′(c)

(
2rp+rp+

3
Lc

pNc
p+

2rp+rp−

3
Lc

pNc
p

)
·Up. (3.5)
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By requiring the equivalence of Eqs. (3.3) and (3.5), the GCL is satisfied:

rc
pUc

p =
1
2

(
2rp+rp+

3
Up+

rp+2rp+

3
Up+

)
, (3.6a)

rc
pUc

p =
1
2

(
2rp+rp−

3
Up+

rp+2rp−

3
Up−

)
. (3.6b)

As shown in Fig. 3, if the velocity along the half-edges pp+ and pp− is assumed to be a
constant equal to Up, then

rc
p =

1
2
(
rp+rp+

)
, rc

p =
1
2
(
rp+rp−

)
,

Nc
p =Npp+ , Nc

p =Npp− ,

Lc
p =Lpp+ , Lc

p =Lpp− .

(3.7)

The discrete form of the divergence operator that satisfies the GCL is thus represented as

(∇·U)p→c =
1
Vc

dVc

dt
=

1
Vc

∑
p∈P(c)

(
rc

pLc
pNc

p+rc
pLc

pNc
p

)
·Up, (3.8)

where the subscript p→ c indicates that the operator acts from points to cells. Similarly,
the divergence operator acting from cells to points is defined as

(∇·U)c→p =
1

Vp

dVp

dt
=

1
Vp

∑
c∈C(p)

(
rp

c Lp
c N p

c +rp
c Lp

c N p
c
)
·Uc, (3.9)

where C(p) is the set of cell centers around point p. The velocity along the half-edges cp+

and cp− is assumed to be a constant equal to Uc, and the following notation is adopted:

rp
c =

1
2
(
rc+rp+

)
, rp

c =
1
2
(
rc+rp−

)
,

N p
c =Ncp+ , N p

c =Ncp− ,

Lp
c =Lcp+ , Lp

c =Lcp− .

(3.10)

We will now show how the basic equations are discretized in a compatible way based on
the divergence operators. Basically, the discretization described below is an extension of
work [27] from the Cartesian coordinate to cylindrical coordinate.

3.3 Compatible discretization

Integration of the momentum equation (2.13) over the dual grids gives

mp
dUp

dt
+
∫

Lp

PNrdL−er

∫
Ap

PdA=0. (3.11)
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Under the assumption that two pressures Πp
c and Πp

c are associated with the half-edges
cp+ and cp−, the discrete gradient operator (∇P)c→p is defined in a manner that is con-
sistent with the definition of the divergence operator (∇·U)c→p:

(∇P)c→p =
1

Vp
∑

c∈C(p)

(
rp

c Lp
c Πp

c N p
c +rp

c Lp
c Πp

c N p
c −Pc Ap

c er
)

, (3.12)

where Pc is the pressure of cell Ωc, and Ap
c is the area of subcell Ωp

c . To simplify the nota-
tion in this definition, the flux and source terms are denoted by Fcp and Scp, respectively:

Fcp = rp
c Lp

c Πp
c N p

c +rp
c Lp

c Πp
c N p

c , Scp =Pc Ap
c er. (3.13)

Using this notation, the semidiscrete momentum equation is written as

mp
dUp

dt
+ ∑

c∈C(p)

(
Fcp−Scp

)
=0. (3.14)

The total energy is defined as the sum of the total kinetic energy and total internal energy:
E =K+E . Total energy conservation without consideration of boundary conditions is
then described as follows:

dE
dt

=
dK
dt

+
dE
dt

=
1
2 ∑

p
mp

d(Up ·Up)

dt
+∑

c
mc

dεc

dt
=0. (3.15)

Use of the semidiscrete momentum equation yields

∑
c

mc
dεc

dt
−∑

p
∑

c∈C(p)

(
Fcp−Scp

)
·Up =0, (3.16)

and interchanging the order of the double summation yields

∑
c

mc
dεc

dt
− ∑

p∈P(c)

(
Fcp−Scp

)
·Up

=0. (3.17)

Thus, a sufficient condition for conservation of total energy is that this equation holds in
an arbitrary cell, i.e.,

mc
dεc

dt
− ∑

p∈P(c)

(
Fcp−Scp

)
·Up =0. (3.18)

By using an entropy conservation approximation, Eq. (3.18) can be written as

mc
dεc

dt
−Pc ∑

p∈P(c)

(
Gc−Ap

c er
)
·Up =0, (3.19)
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where the geometric vector Gc=rp
c Lp

c N p
c +rp

c Lp
c N p

c . From Eq. (2.12), it can be seen that for
constant pressure, the following relation holds:∫

L
NrdL=Aer. (3.20)

Substituting Eq. (3.20) into Eq. (3.19) yields

mc
dεc

dt
+Pc ∑

p∈P(c)
Gp ·Up =0, (3.21)

where the geometric vector Gp=rc
pLc

pNc
p+rc

pLc
pNc

p, and Gc+Gp=Ap
c er. Together, Eqs. (3.8)

and (3.21) yield

mc
dεc

dt
+PcVc(∇·U)p→c =0. (3.22)

It is known that (∇·U)p→c can be deduced from the GCL condition, which implies that
the volume associated with the internal energy is equivalent to that associated with the
point coordinates. Therefore, the compatible discretization satisfies the GCL.

Finally, the semidiscrete finite volume scheme with the primary variables (Up,εc,Xp)
is obtained as follows:

mp
dUp

dt
+ ∑

c∈C(p)

(
Fcp−Scp

)
=0,

mc
dεc

dt
− ∑

p∈P(c)

(
Fcp−Scp

)
·Up =0,

dX
dt

=U(X(t),t), X(0)=X0.

(3.23)

Note that the cell density is updated by dividing the cell mass by the volume computed
from the trajectory equation.

3.4 Shock capturing

A cell-centered Riemann solver [27] is applied to deal with shock capturing mechanisms.
The pressures in Eq. (3.12) are obtained using the following half-Riemann problems:

Pc−Πp
c =Zp

c ∆Ucp ·N p
c ,

Pc−Πp
c =Zp

c ∆Ucp ·N p
c ,

(3.24)

where ∆Ucp =Uc−Up is the difference between the cell-center and point velocities. Zp
c

and Zp
c are the swept mass fluxes, defined as

Zp
c =Zp

c =ρc(ac+Γc|∆Ucp ·Ncp|), (3.25)
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where Ncp is a unit vector perpendicular to the line cp, ac is the speed of sound, and Γc is
a material-dependent coefficient given by

Γc =


γ+1

2
if (∇·U)cp <0,

0 if (∇·U)cp ≥0,
(3.26)

where (∇·U)cp is defined as

(∇·U)cp =− 1
Vcp

(
Lp

c N p
c +Lp

c N p
c
)
·∆Ucp. (3.27)

Substitution of Eq. (3.24) into Eq. (3.13) yields

Fcp =
(
rp

c Lp
c N p

c +rp
c Lp

c N p
c
)

Pc−Mcp∆Ucp, (3.28)

where Mcp is a 2×2 positive-definite matrix,

Mcp =Zp
c rp

c Lp
c N p

c ⊗N p
c +Zp

c rp
c Lp

c N p
c ⊗N p

c . (3.29)

Summation of the momentum equation over the dual grids leads to

d
dt

(
∑

p
mpUp

)
=−∑

p
∑

c∈C(p)

(
Fcp−Scp

)
, (3.30)

the source term Scp has only a radial component, and it does not influence total momen-
tum conservation. Therefore, the above equation is simplified as

d
dt

(
∑

p
mpUp

)
=−∑

p
∑

c∈C(p)
Fcp, (3.31)

interchanging the order of the double summation yields

d
dt

(
∑

p
mpUp

)
=−∑

c
∑

p∈P(c)
Fcp. (3.32)

A sufficient condition to satisfy the total momentum conservation is

∑
p∈P(c)

Fcp =0. (3.33)

Together, Eqs. (3.28) and (3.33) provide a method to compute the cell center velocity Uc
iteratively:

Uc =M−1
c ∑

p∈P(c)
McpUp, (3.34)

where Mc=∑p∈P(c) Mcp. Since Mc is a positive-definite matrix, it is always invertible. The
presence of the swept mass fluxes in Mcp makes Eq. (3.34) a nonlinear system. In practice,
only a few iterations are needed to reach convergence. Once Uc has been computed,
Eqs. (3.23) are updated explicitly and in sequence to advance the current time step.
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3.5 Entropy inequality

Use of the Gibbs relation for the cell Ωc gives

mcTc
dSc

dt
=mc

[
dεc

dt
+Pc

d
dt

(
1
ρc

)]
. (3.35)

Substitution of Eqs. (3.8) and (3.18) into Eq. (3.35) gives

mcTc
dSc

dt
= ∑

p∈P(c)

(
Fcp−Scp+PcGp

)
·Up. (3.36)

This equation still holds in another frame with constant velocity Uc:

mcTc
dSc

dt
= ∑

p∈P(c)

(
Fcp−Scp+PcGp

)
·
(
Up−Uc

)
. (3.37)

Together, Eqs. (3.20), (3.28), and (3.37) give

mcTc
dSc

dt
= ∑

p∈P(c)

[
PcGp−Mcp∆Ucp−Pc

(
Gc+Gp

)
+PcGc

]
·
(
Up−Uc

)
= ∑

p∈P(c)
Mcp(Up−Uc)

2. (3.38)

Since Mcp is a positive-definite matrix, the entropy inequality is always satisfied.

4 Recovering spherical symmetry of the scheme

The control-volume scheme in Eq. (3.23) has many good properties, such as the GCL,
entropy inequality, and momentum and total energy conservation. However, it has the
limitation that it does not preserve symmetry for spherical flows. In this section, utilizing
the total momentum conservation property in Eq. (2.5), we recover the spherical symme-
try property of this scheme by a proper treatment of the source term. The treatment is
conducted simultaneously in the momentum and internal energy equations so that the
total energy is conserved.

As can be seen in Fig. 4, an equi-angular polar grid is generated on the cylindrical
coordinate system. The radial and angular divisions are K and L. Point and cell-center
indices are represented by integers (i, j) and half-integers (i− 1

2 , j− 1
2 ). Connecting an

arbitrary point (i, j) to the origin, the angle between the connected line and the z axis is
φ. The dual grid Ωp consists of four cell centers labeled 1, 2, 3, and 4, and four edge
midpoints labeled a, b, c, and d. The grid points in the neighborhood of p are p1, p2, p3,
and p4. A perpendicular line is drawn from edge midpoints b and d to the radial edge
pp1, and the intersection is f . Another perpendicular line is drawn from cell centers 1 and
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Figure 4: Equi-angular polar grid for the treatment of the source term.

2 to the radial edge pp1, and the intersection is e. In the subcells Ωp
1 and Ωp

2 , the symbols
in Eq. (3.12) are used to denote geometric and physical variables, and the superscripts are
omitted for simplicity. In the triangles 1ae, 2ae, dp f , and bp f , the lengths of the edges 1e,
2e, d f , and b f are denoted by L′

1
, L′

2, L′′
1

, and L′′
2 , respectively. The unit outward normals

are denoted by N ′
1
, N ′

2, N ′′
1

, and N ′′
2 , respectively. A local coordinate system (ξ,θ) is

constructed around p, with the ξ and θ axes respectively parallel and perpendicular to
the edge pp1. The distances from points e, p, and f to the origin are denoted by de, dp, and
d f , respectively. For a given polygon, its area is denoted by A with subscripts consisting
of its grid points.

We will now describe how the source term is treated to recover spherical symmetry,
taking as an example the subcell Ωp

1 .

4.1 Treatment of source term

According to Eq. (2.5), modification of radial component of the momentum does not af-
fect total momentum conservation. This property provides an alternative way to con-
struct symmetry preserving Lagrangian schemes, namely, a treatment of the source term
along the radial direction. Utilizing this idea, some cell-centered Lagrangian schemes [16–
18] using quadrilateral mesh have been developed.

In the current staggered Lagrangian scheme, the dual grid is octagonal to make the
geometric feature more complicated. A treatment of source term is thus developed adap-
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tively. To be specific, the source term Scp in Eq. (3.23) for the subcell Ωp
1 is written as

S1p =P1A1apder. (4.1)

Eq. (4.1) is then replaced by the following expression in the numerical scheme to recover
spherical symmetry:

S∗
1p =

{(
Π1A1e f d−Π1Aae1

)
er if −→ap ·−→ae <0,(

Π1A1e f d+Π1Aae1
)

er if −→ap ·−→ae ≥0.
(4.2)

It should be emphasized that this operation can be easily extended to other subcells of
the dual grid, but the details are omitted here to save space.

With the modified source term, the scheme (3.23) is rewritten as

mp
dUp

dt
+ ∑

c∈C(p)

(
Fcp−S∗

cp

)
=0,

mc
dεc

dt
− ∑

p∈P(c)

(
Fcp−S∗

cp

)
·Up =0,

dX
dt

=U(X(t),t), X(0)=X0.

(4.3)

Compared with the scheme (3.23), the modified scheme (4.3) still ensures conservation of
momentum and total energy, but it also recovers spherical symmetry. However, it can be
shown that the GCL no longer holds (see the full derivation of Eq. (3.22)), and nor does
the entropy inequality condition (3.38).

4.2 Proof of symmetry preservation

The proof of spherical symmetry is presented on an equi-angular initial grid. It needs to
consider variables including the cell-center velocity, point velocity, internal energy, and
density. For an equi-angular grid, the values of these variables are required to be constant
along the angular direction, and the vectors are required to lie along the radial direction
with time marching. Following our earlier work [28], the classical predictor–corrector
time discretization method is adopted to advance time.

Theorem 4.1. The scheme (4.3) can retain the one-dimensional spherical symmetry property
when computed on an equi-angular initial grid. That is, if the solution has spherical symmetry at
the initial time, then the symmetry will still hold with time marching.

Proof. Without loss of generality, it is only necessary to prove that when the cell-centered
Riemann solver, momentum, internal energy, and trajectory equations are known to pre-
serve spherical symmetry at the nth step, they can retain spherical symmetry at the
(n+ 1

2 )th step. For convenience of notation, variables without the superscript (n+ 1
2 ) are

at the nth step.
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Figure 5: Quadrangle on the equi-angular grid and notation for one-dimensional spherical flow.

Here, we first show that the solution of the cell-centered Riemann solver (3.34) pre-
serves spherical symmetry in the case of a one-dimensional flow computed on an equi-
angular polar grid. As shown in Fig. 5, we consider a quadrangular cell Ωc consisting of
four points pi, i=1,··· ,4, whose velocities are Upi . The midpoints of the four edges of the
cell are denoted by qi. For the edge cqi, the edge length and radius in Eq. (3.12) are simply
denoted by Li and ri, respectively, and the unit vectors Ni are as defined in Fig. 5. A local
orthonormal basis (er,eθ) is constructed at the cell center c, where er is perpendicular to
the edge p3 p4. The velocities Upi can now be represented as

Up1 =Up1

(
sin∆θ
−cos∆θ

)
, Up2 =Up1

(
sin∆θ
cos∆θ

)
,

Up3 =Up3

(
sin∆θ
cos∆θ

)
, Up4 =Up3

(
sin∆θ
−cos∆θ

)
,

(4.4)

and the unit vectors Ni as

N1=

(
0
−1

)
, N2=

(
−cosα
−sinα

)
,

N3=

(
0
1

)
, N4=

(
cosα
−sinα

)
.

(4.5)

In spherical flow, it can be deduced from Eqs. (3.25)-(3.27) that the subcells Ωp1
c and Ωp2

c
share the same swept mass flux Z1 and that Ωp3

c and Ωp4
c share the same swept mass flux

Z3. The matrix Mc in Eq. (3.34) is now evaluated. After some elementary calculations, it
is found that

Mc,rr =L2(Z1+Z3)(r2+r4)cos2 α,
Mc,rθ =Mc,θr =L2(Z1+Z3)(r2−r4)sinαcosα,

Mc,θθ =2(Z1r1L1+Z3r3L3)+L2(Z1+Z3)(r2+r4)sin2 α.

(4.6)
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The components of the right-hand side of Eq. (3.34) are

RHr =L2
(
Z1Up1+Z3Up3

)
(r2+r4)cosαsin(∆θ+α),

RHθ =L2
(
Z1Up1+Z3Up3

)
(r2−r4)sinαsin(∆θ+α).

(4.7)

The cell-center velocity is evaluated as

Uc,r =
Z1Up1+Z3Up3

Z1+Z3

sin(∆θ+α)

cosα
, Uc,θ =0. (4.8)

It can be seen that the cell-center velocity is radial and its value is constant along the angular
direction, and thus the cell-center Riemann solver preserves the spherical symmetry on an equi-
angular grid.

Next, we need to prove that the evolved point velocity, internal energy, and density
preserve spherical symmetry. It is known that for a dual grid (excluding that located on
the z axis), the value of the mass has the following form:

mp = rpBi,j, (4.9)

where the coefficient Bi,j is identical along the angular direction when j∈ [2,L]. As can be
seen from in Fig. 4, the momentum equation can be written as

mpUn+ 1
2

p =mpUp−
1
2

∆t
4

∑
c=1

(
Fcp−S∗

cp

)
. (4.10)

We now try to write out the variables appearing on the right-hand side of Eq. (4.10). The
edge pressures related to Fcp are written as

Π1=Π2=P1−Z1(U1−Up)·N1=P1+Z1

(
U1cosα+Up sin(∆θ+α)

)
,

Π1=Π2=P1−Z1(U1−Up)·N1=P1+Z1Up cos∆θ,
(4.11)

where, in a local basis, U1 =(U1,0), Up =(Up sin∆θ,−Up cos∆θ), N1 =(−cosα,sinα), and
N1=(0,−1). It is obvious that Π1 and Π1 are identical, with the same radial point index i.
According to Eq. (3.20), the sum of the source terms in subcells Ωp

1 and Ωp
2 can be written

as

S∗
1p+S∗

2p

=−
(
r1L1N1+r′1L′

1N ′
1+r′′1 L′′

1 N ′′
1 +r′2L′

2N ′
2+r′′2 L′′

2 N ′′
2 +r2L2N2

)
Π1

+
(
−r1L1N1−r2L2N2+r′1L′

1N ′
1+r′2L′

2N ′
2
)

Π1. (4.12)

Let Ha =F1p+F2p−S∗
1p−S∗

2p. Then, some elementary calculations give

Ha =2reL′
1N ′

1(Π1−Π1)−2r f L′′
1 N ′′

1 Π1. (4.13)
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Decomposition of the vector Ha in the local coordinate system (ξ,θ) in Fig. 4 gives

Hξ
a =2reL′

1(Π1−Π1)+2r f L′′
1 Π1, Hθ

a =0, (4.14)

it is obvious that Ha/mp is along the ξ direction, and its absolute value is∣∣∣∣∣Hξ
a

mp

∣∣∣∣∣= 1
Bi,j

∣∣∣∣2L′
1(Π1−Π1)

re

rp
+2L′′

1 Π1
r f

rp

∣∣∣∣. (4.15)

We can deduce that in an equi-angular polar grid, this absolute value is constant along the
angular direction. A similar conclusion can be drawn for the vector Hb=F3p+F4p−S∗

3p−
S∗

4p. Therefore, the evolution of the point velocity in Eq. (4.10) preserves spherical symmetry on
an equi-angular grid.

Specifically, for a point p located on the z axis, the boundary condition is that the
velocity component along the r direction must be zero. As shown in Fig. 4, when the
ξ axis of the local coordinate system is parallel to the z axis, point p is located on the z
axis. The mirror images of the subcells Ωp

2 and Ωp
3 with respect to the z axis need to be

generated to satisfy the boundary condition. Let us just consider the forces acting from
the subcell Ωp

2 and its mirror image Ωp
1 . The fully discretized momentum equation can

be written as

Un+ 1
2

p =Up−
1
2

∆t
2

∑
c=1

(
Fcp−S∗

cp

)
/mp

=Up−
∆t

2Bi,j

[
2L′

1(Π1−Π1)
re

rp
+2L′′

1 Π1
r f

rp

]
=Up−

∆t
2Bi,j

[
2L′

1(Π1−Π1)
de sinφ

dp sinφ
+2L′′

1 Π1
d f sinφ

dp sinφ

]
. (4.16)

It is obvious that for points located on the z axis, sinφ=0. We deal with this singularity
by removing sinφ from the numerator and denominator simultaneously. In this way, the
spherical symmetry of Eq. (4.10) is recovered on the z axis. Note that this operation can
also be implemented in cases with nonspherical flow.

The internal energy equation at the (n+ 1
2 )th step is

ε
n+ 1

2
c = εc+

1
2

∆t ∑
p∈P(c)

(
Fcp−S∗

cp

)
·Up/mc. (4.17)

Here, the cell mass has the form
mc = rcB′

i+ 1
2 ,j+ 1

2
, (4.18)

where coefficients B′
i+ 1

2 ,j+ 1
2

with the same i+ 1
2 index are identical. Let Hc =

(
F1p−S∗

1p
)
·

Up+
(

F1p3−S∗
1p3

)
·Up3 . Similar to Eq. (4.15), the value of Hc/mc can be proved to be con-

stant along the angular direction. The proof is omitted here to avoid complex notation.
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Therefore, the evolution of the internal energy in Eq. (4.17) preserves spherical symmetry on an
equi-angular grid.

The coordinate and velocity of the (i, j)th point at the (n+ 1
2 )th step can be represented

as

Un+ 1
2

i,j =

(
Un+ 1

2
i cosφ

Un+ 1
2

i sinφ

)
, Xn+ 1

2
i,j =

(
Xn+ 1

2
i cosφ

Xn+ 1
2

i sinφ

)
, (4.19)

and thus the volume of the (i− 1
2 , j− 1

2 )th cell is

Vn+ 1
2

i− 1
2 ,j− 1

2
=dn+ 1

2
c sin(φ−∆φ)

[(
Xn+ 1

2
i

)2

−
(

Xn+ 1
2

i−1

)2
]

sin
(

1
2

∆φ

)
cos
(

1
2

∆φ

)
, (4.20)

where dc is the distance from the cell center c to the origin. According to this equation,
the density can be computed as

ρ
n+ 1

2
i− 1

2 ,j− 1
2
=ρi− 1

2 ,j− 1
2

dn
c

dn+ 1
2

c

(
Xn

i
)2−

(
Xn

i−1

)2(
Xn+ 1

2
i

)2

−
(

Xn+ 1
2

i−1

)2 . (4.21)

It can be deduced from Eq. (4.21) that the evolved density preserves spherical symmetry on an
equi-angular grid. The proof of the symmetry preservation property of the scheme (4.3) is
thus completed.

5 Numerical results in cylindrical coordinates

In this section, some numerical experiments are firstly conducted for the scheme (4.3)
in a cylindrical coordinate system to verify its symmetry preservation property. The
equi-angular polar grid, randomly distorted polar grid, and Cartesian grid are consid-
ered. Secondly, an extension of the developed scheme to non-spherical flow is presented.
Comparisons are made between the schemes (3.23) and (4.3) to test their capabilities. For
convenience, the two schemes are called the original and modified schemes. The ideal
gas with γ=5/3 is considered for the following tests.

The spherical Sedov problem [29] consists of a flow field in which a blast wave evolves
from a point explosion. In a quarter-circle region, the initial condition of this problem is
set as (ρ,U,P) = (1,0,10−6), except that the cells connected to the origin share a total
internal energy of 0.2468. At final time t= 1, the exact solution is a shock at unit radius
with a peak density of 4. A reflective boundary condition is applied on the axes, with a
free boundary condition being applied on the other boundaries.

The spherical Noh problem [30] is a well-known test for Lagrangian simulations with
strong shock waves. In a quarter-circle region, a fluid of unit density is given an inward
velocity of magnitude 1. The initial fluid pressure is set to be 10−6. At t=0, a shock wave
is reflected from the origin with a speed of 1

3 . The analytical post shock density is 64.
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A reflective boundary condition is applied on the axes, with a free boundary condition
being applied on the other boundaries.

The spherical Sod problem is a shock tube of unit radius. At t = 0, the interface
is located at r = 0.5. The states of the left and right sides are (ρL,PL,UL) = (1,1,0) and
(ρR,PR,UR)=(0.125,0.1,0), respectively. A wall boundary condition is applied.

The Coggeshall expansion problem considers the adiabatic compression of the ideal
gas. In a quarter-circle region, the initial condition of this problem is as follows,

ρ=1, (uz,ur)=(−z/4,−r), e=(3zc/8)2,

where zc is the z coordinate of the cell center. A reflective boundary condition is applied
on the axes, with a free boundary condition being applied on the other boundaries.

5.1 One dimensional spherical flows

5.1.1 Equi-angular polar grid

For the Sedov problem, the results of the original and modified schemes for a 20×20
grid are presented in Fig. 6. It is obvious that with the original scheme, grid points near
the origin do not preserve spherical symmetry. However, with the modified scheme, the
simulated grid preserves good symmetry. For a fine 200×40 grid, the symmetry error of
the pressure is computed as

δ=

[
max

i∈[1,K+1]

(
max

j∈[1,L+1]

Pi− 1
2 ,j− 1

2
L

∑L+1
j=1 Pi− 1

2 ,j− 1
2

)
−1

]
. (5.1)
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Figure 6: Simulated grids for the Sedov problem at t=1 for an initial 20×20 polar grid: (a) original scheme;
(b) modified scheme.
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Figure 7: Results of Sedov problem at t=1 for an initial 200×40 polar grid: (a) final grid; (b) density–radius
profile; (c) pressure error.
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Figure 8: Simulated grids for the Noh problem at t=0.6 for an initial 20×10 polar grid: (a) original scheme;
(b) modified scheme.

Fig. 7 presents the results for the fine grid. At t = 1, the simulated grid still preserves
good symmetry, and the numerical results is convergent to the analytical solution. In ad-
dition, the symmetry error on the pressure is less than 10−10, which shows the symmetry
preservation property of the modified scheme.

For the Noh problem, the results of the original and modified schemes for a 20×10
grid are presented in Fig. 8. With the original scheme, points run inward faster, espe-
cially near the z axis, while with the modified scheme, points run inward uniformly along
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Figure 9: Results for Noh problem at t=0.6 for initial 200×20 and 200×40 polar grids. (a) 200×20 density
field; (b) 200×40 density field; (c) density–radius profile.
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Figure 10: Results for Sod problem at t=0.2 for an initial 200×30 polar grid: (a) final grid; (b) final density
field; (c) density–radius profile.

the angular direction. The spherical symmetry is further examined for the 200×20 and
200×40 grids, and the results are presented in Fig. 9. It is observed that symmetry is per-
fectly preserved. As the angular division increases, better convergence of the numerical
solutions toward the analytical solution is achieved.

The Sod problem is simulated on a 200×30 polar grid, and the results of the modified
scheme are presented in Fig. 10. From the configurations of the final grid and density
field, it can be seen that there is good agreement with the spherical shape. By using
a one-dimensional spherical second-order Eulerian code with 10000 grid points as the
reference solution, we found the simulated density–radius profile agrees well with the
reference.
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Figure 11: Results for the Sedov problem at t=1 for an initial 40×10 random polar grid: (a) initial grid; (b)
final grid for original scheme; (b) final grid for modified scheme.

5.1.2 Random distorted polar grid

We perform a simulation for the Sedov problem on a randomly distorted 40×10 polar
grid. Fig. 11(a) shows the initial distorted grid, and Fig. 11(b) and 11(c) show the final
grids for the original and modified schemes, respectively. It can be seen that better spher-
ical preservation of the grid is achieved by the modified scheme, especially around the z
axis.

It is found that the Noh problem is very sensitive to grid perturbation. In this case, a
small perturbation is implemented to generate the initial grid for the Noh problem, which
is shown in Fig. 12(a). The final grids of the original and modified schemes at t=0.6 are
shown in Fig. 12(b) and 12(c). It can be seen that better agreement with the spherical
shape is displayed by the grid of the modified scheme. In addition, Fig. 12(d) shows that
the convergence of the density–radius profile is better with the modified scheme.

5.1.3 Cartesian grid

The Noh problem is a difficult test for a Cartesian grid, since grid distortions might occur
because the flow is not aligned with the grid. In our case, it is run on a 40×40 Cartesian
grid. Fig. 13 presents the density fields of the original and modified schemes at t= 0.6.
As can be seen, severe grid distortions are observed around the z axis, indicating a poor
performance of the original scheme. On the other hand, the modified scheme maintains
good mesh quality, and the shock position is observed to agree well with the analytical
solution.

5.2 Non-spherical flow

In non-spherical flows, the treatment of source term is also implemented using Eq. (4.2),
where Π1 and Π1 are pressures of radial and tangential edges. Practically, either edge of
1d and 1a has a smaller angle with the point velocity Up is considered as the radial edge.
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Figure 12: Results for the Noh problem at t=0.6 for an initial 50×10 random polar grid: (a) initial grid; (b)
final grid of original scheme; (c) final grid of modified scheme; (d) density plots of the two schemes.

The other edge is considered as the tangential edge. Note that the range of included
angle is [0,π/2]. The results of the original and modified schemes for a 100×10 grid are
presented in Fig. 14. At t=0.8, the analytical density is 37.4. Small difference of the final
grid is observed between the original and modified scheme. However, the numerical
results of the modified scheme agree a little bit better with the analytical solution, which
confirm the capacity of the new scheme in non-spherical flows.
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Figure 13: Results for the Noh problem at t=0.6 for an initial 40×40 Cartesian grid: (a) density map of original
scheme; (b) zoom of (a); (c) density map of modified scheme; (d) zoom of (c).

6 Conclusions

We first constructed a control-volume scheme satisfying the GCL, entropy inequality,
and momentum and total energy conservation. The spherical symmetry property of this
scheme was recovered by a proper treatment of the source term, while still ensuring
momentum and total energy conservation. The modified scheme was shown to preserve
one-dimensional spherical symmetry on an equi-angular polar grid. Numerical results
of the modified scheme in cylindrical coordinates showed that it has good performance
in symmetry preservation, as well as good potential application in non-spherical flows.
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Figure 14: Results for the Coggeshall problem at t=0.8. Left: final grid. Blue for the original scheme, and red
for the modified scheme; Right: density plots of the two schemes.

In the future, we will test the capabilities of the current scheme by extending it to more
non-spherical flows. In addition, the artificial viscosity used in the current scheme is not
limited to a Godunov-type artificial viscosity, and, for other viscosities, once the source
term has been modified to exclude any angular influence on updating the momentum
equation, similar effects of symmetry preservation should be achievable.
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