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Existence and Uniqueness of Solutions for the
Initial Value Problem of Fractional qk-Difference
Equations for Impulsive with Varying Orders∗
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Abstract The paper studies the existence and uniqueness for impulsive frac-
tional qk-difference equations of initial value problems involving Riemann-
Liouville fractional qk-integral and qk-derivative by defining a new q-shifting
operator. In this paper, we obtain existence and uniqueness results for impul-
sive fractional qk-difference equations of initial value problems by using the
Schaefer’s fixed point theorem and Banach contraction mapping principle. In
addition, the main result is illustrated with the aid of several examples.
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1. Introduction

Fractional calculus is a relatively new research field, and it can describe certain
phenomena as well, which has attracted increasing attention in recent years. The
quantum calculus is known as the calculus without limits. It substitutes the classical
derivative by a difference operator, which allows one to deal with sets of nondif-
ferentiable functions. Quantum difference operators appear in several branches of
mathematics, i.e., basic hype-geometric functions, combinatorics, the theory of rel-
ativity. For the fundamental concepts of quantum calculus, we refer to the reader
to the work by Kac and Cheung [5, 8].

In the recent years, the topic of q-calculus has attracted the attention of several
researchers, and a variety of new results can be found in the papers [3, 4, 7, 9, 10,
12–14, 22] and the references therein. In real life, there are many processes and
phenomena that are characterized by rapid changes in their state. We usually keep
things instantaneous mutations occurred in the process of its development called
impulsive phenomena. The phenomenon has been widely appearing in all fields
of production and technology research. The most prominent feature of impulsive
differential equations is taking the influence of the condition of sudden and abrupt
phenomenon into full consideration. It has been extensively used in population
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ecological dynamics systems, infectious disease dynamics as well as descriptions of
phenomenon like disease, harvesting and so on.

Impulsive differential equations, in other words, differential equations involving
impulsive factors, appear as a natural description of observed evolution phenomenon
of several real world problems. For some monographs on impulsive differential
equations, we refer to [6, 20,21].

In [16], the notions of qk-integral of a function f : Jk := [tk, tk+1] → R have
been introduced, and their basic properties were proved and applied, Tariboon et
al., investigated the first and second-order initial value problems of impulsive qk-
difference equation respectively, as shown below

D2
qk
x(t) = f(t, x(t)), t ∈ J, t 6= tk,

∆x(tk) = Ik(x(tk)), k = 1, 2, · · ·m,
Dqkx(t+k )−Dqk−1

x(tk) = I∗k(x(tk)), k = 1, 2, · · ·m,
x(0) = α, Dq0x(0) = β,

Dqkx(t) = f(t, x(t)), t ∈ J, t 6= tk,

∆x(tk) = Ik(x(tk)), k = 1, 2, · · ·m,
x(0) = x0,

where x0 ∈ R, α, β ∈ R, 0 = t0 < t1 < t2 < · · · < tk < · · · < tm < tm+1 = T, f :
J × R → R is a continuous function, Ik ∈ C(R,R),∆x(tk) = x(t+k ) − x(tk), k =
1, 2, · · ·m and 0 < qk < 1 for k = 0, 1, 2, · · ·m. In addition, qk-calculus analogues of
some classical integral inequalities, such as Hölder, Hermite-Hadamard, Trapezoid,
Ostrowski, Cauchy-Bunyakovsky-Schwarz, Grüss and Grüss-Cebysev, were proved
in [17].

In 2015, Agarwal et al., [2] investigated the existence of positive solutions for
nonlinear impulsive qk-difference equations via a monotone iterative method

Dqku(t) = f(t, u(t)), 0 < qk < 1, t ∈ J
′
,

∆u(tk) = Ik(u(tk)), k = 1, 2, · · ·m,
u(0) = λu(η) + d, η ∈ Jr, r ∈ Z,

(1.1)

where f ∈ C(J × R,R+), Ik ∈ C(R,R+), J = [0, T ], T > 0, 0 = t0 < t1 < t2 <
· · · < tk < · · · < tm < tm+1 = T, J ′ = J \ {t1, t2, · · · tm}, Jr = (tr, T ), 0 ≤ λ <
1, 0 ≤ r ≤ m and ∆u(tk) = u(t+k )− u(t−k ), u(t+k ) and u(t−k ) denote the right and
left limits of u(t) at t = tk(k = 1, 2, · · ·m) respectively.

In [18], the new concepts of fractional quantum calculus were defined by in-
troducing a new q-shifting operator. After giving the basic properties of the new
q-shifting operator, the q-derivative and the q-integral were defined. New defini-
tions of the Riemann-Liouville fractional q-integral and q-difference of an interval
[a, b] were given, and their properties were discussed. As applications, the authors
obtained the existence and uniqueness results of initial value problems for impul-
sive fractional qk-difference equations of the orders 0 < α < 1 and 1 < α < 2
respectively, as shown below,

tkD
α
qk
x(t) = f(t, x(t)), t ∈ J, t 6= tk,

∼
∆ x(tk) = ϕk(x(tk)), k = 1, 2, · · ·m,
x(0) = 0,

tkD
α
qk
x(t) = f(t, x(t)), t ∈ J, t 6= tk,
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∼
∆ x(tk) = ϕk(x(tk)), k = 1, 2, · · ·m,

∆∗x(tk) = ϕ∗kx(tk), k = 1, 2, · · ·m,
x(0) = 0, 0D

α−1
q0 x(0) = β,

where
∼
∆ x(tk) = tkI

1−α
qk

x(t+k ) − tk−1
I1−α
qk−1

x(tk) and ∆∗x(tk) = tkI
2−α
qk

x(t+k ) −
tk−1

I2−α
qk−1

x(tk), k = 1, 2, · · ·m.
Inspired by the above papers, in this paper, we study the following initial value

problem of the impulsive fractional qk-difference equation

tkD
αk
qk
x(t) = f (t, x(t)) , t ∈ Jk = [0, T ] \ {t1, t2, · · · tk},

4 ∼x (tk) = ϕk (x(tk)) , k = 1, 2, · · ·m,
4∗x(tk) = ϕ∗k (x(tk)) , k = 1, 2, · · ·m,
4∗∗x(tk) = ϕ∗∗k (x(tk)) , k = 1, 2, · · ·m,
x(0) = 0, 0D

α0−1
q0 x(0) = β, 0D

α0−2
q0 x(0) = γ,

(1.2)

where β ∈ R, 0 = t0 < t1 < t2 < · · · tm < tm+1 = T, f : J ×R→ R is a continuous
function, ϕk, ϕ

∗
k, ϕ

∗∗
k ∈ C(R,R) and x(t) are continuous everywhere except for

some tk at which x(t+k ) and x(t−k ) exist and x(t−k ) = x(tk) for k = 1, 2, · · ·m, 0 <
qk < 1 for k = 0, 1, 2, · · ·m, and tkD

αk
qk

denotes the Riemann-Liouville qk-fractional
derivative of the order αk, Jk = (tk, tk+1], especially J0 = [0, t1]. Moreover,

∆
∼
x (tk) = tkD

αk−1
qk

(
x(t+k )

)
− tk−1

Dαk−1−1
qk−1

(x(tk)) ,

∆∗x(tk) = tkD
αk−2
qk

(
x(t+k )

)
− tk−1

Dαk−1−2
qk−1

(x(tk)) ,

∆∗∗x(tk) = tkI
3−αk
qk

(
x(t+k )

)
− tk−1

I3−αk−1
qk−1

(x(tk)) .

(1.3)

The main innovation points of this paper are as follows:
1. Compared with [18], our paper has been improved for the order of the equa-

tion.
2. The order of the equation studied in most papers is fixed, while the order of

the equation we study varies with k, a change in k causes a change in order, which
adds to the difficulty of the paper.

This paper is organized as follows. In Section 2, we present some preliminaries.
Section 3 contains the main results, which are established by means of Schaefer’s
fixed point theorem and Banach contraction mapping principle, while several ex-
amples are illustrated the main results in Section 4.

2. Preliminaries

To get the main results, we present some knowledge of fractional qk-calculus. The
presentation here can be found in [18].

For any positive integer k, the qk-shifting operator

aφqk(m) = qkm+ (1− qk)a

satisfies the relation

aφ
k
qk

(m) = aφ
k−1
qk

(aφqk(m)),a φ
0
qk

= m.
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We define the power of qk-shifting operator as

a(n−m)(0)
qk

= 1, a(n−m)(k)
qk

=

k−1∏
i=0

(n−a φqk)i(m)), k ∈ N ∪ {∞}.

If γ ∈ R, then

a(n−m)γqk = nγ
∞∏
i=0

1− a
n
φiqk(m/n)

1− a
n
φi+γqk (m/n)

, n 6= 0.

Lemma 2.1 ( [18]). For any γ, n,m ∈ R with n 6= a and k ∈ N
⋃
{∞}, we have

(i) (n−m)
(k)
a = (n− a)k(m−an−a ; q)k;

(ii) (n−m)
(γ)
a = (n− a)γ

∏∞
i=0

1−m−an−a q
i

1−m−an−a q
γ+i

= (n− a)γ
(m−an−a ;q)∞

(m−an−a q
γ ;q

)∞;

(iii) (n−a φkq (n))
(γ)
a = (n− a)γ (qk;q)∞

(qγ+k;q)∞
.

Definition 2.1. [18] Assume that f : Jk → R is a continuous function, and let
t ∈ Jk. Then, the expression

Dqkf(t) =
f(t)− f(qkt+ (1− qk)tk)

(1− qk)(t− tk)
, t 6= tk,

Dqkf(tk) = lim
t→tk

Dqkf(t)
(2.1)

is called the qk-derivative of a function f at t.

We say that f is qk-differentiable on Jk, provided Dqkf(t) exists for all t ∈ Jk.
Note that if tk = 0 and qk = q in (2.1), then Dqkf = Dqf , where Dq is the
q-derivative of the function f(t).

The qk-integral of a function f defined on the interval [a, b] is given by

(aIqkf)(t) =

∫ t

a

f(s)adqks = (1− qk)(t− a)

∞∑
i=0

qikf(aφqik(t)), t ∈ [a, b],

and (aI
k
qk
f)(t) = aI

k−1
qk

(aIqkf)(t), (aI
0
qk
f)(t) = f(t), k ∈ N.

The fundamental theorem of qk calculus applies to these operators aDqk and

aIqk
(aDqkaIqkf)(t) = f(t),

and if f is continuous at t = a, then

(aDqkaIqkf)(t) = f(t)− f(a).

The formula for qk-integration by parts on an interval [a, b] is∫ b

a

f(s)aDqkg(s)adqks = (fg)(t)|ba −
∫ b

a

g(aφqk(s))aDqkf(s)aDqkf(s)adqks.

Definition 2.2. [18] Let v ≥ 0 and f be a function defined on [a, b]. The fractional
qk-integral of Riemann-Liouville type is given by

(aI
0
qk
f)(t) = f(t),

(aI
v
qk
f)(t) =

1

Γqk(v)

∫ t

a
a(t− aφqk(s))qk

(v−1)f(s)adqks, v > 0, t ∈ [a, b].
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Definition 2.3. [18] The fractional qk-derivatives of Riemann-Liouville type of
the order v ≥ 0 on interval [a, b] is defined by

(aD
0
qk
f)(t) = f(t),

(aD
v
qk
f)(t) = (aD

l
qka

I l−vqk
f)(t), v > 0,

(2.2)

where l is the smallest integer greater than or equal to v.

Definition 2.4 ( [18]). Assume that f : Jk → R is a continuous function. Then,
the qk-integral is defined by∫ t

tk

f(s)dqks = (1− qk)(t− tk)

∞∑
n=0

qnk f(qnk t+ (1− qnk )tk), t ∈ Jk.

Moreover, if a ∈ (tk, t), then the definition qk-integral is defined by∫ t

a

f(s)dqks =

∫ t

tk

f(s)dqks−
∫ a

tk

f(s)dqks

= (1− qk)(t− tk)

∞∑
n=0

qnk f(qnk t+ (1− qnk )tk)

− (1− qk)(a− tk)

∞∑
n=0

qnk f(qnka+ (1− qnk )tk).

Theorem 2.1 ( [18]). Assume that f, g : Jk → R is qk-differentiable on Jk. Then,
(1) the sum f + g : Jk → R is qk-differentiable on Jk with

Dqk(f(t) + g(t)) = Dqkf(t) +Dqkg(t).

(2) for any constant α, αf : Jk → R is qk-differentiable on Jk with

Dqk(αf)(t) = αDqkf(t).

(3) the product fg : Jk → R is qk-differentiable on Jk with

Dqk(fg)(t) = f(t)Dqkg(t) + g(qk + (1− qk)tk)Dqkf(t)

= g(t)Dqkf(t) + f(qk + (1− qk)tk)Dqkg(t).

(4) if g(t)g(qkt+ (1− qk)tk) 6= 0, then f
g is qk-differentiable on Jk with

Dqk

(
f

g

)
(t) =

g(t)Dqkf(t)− f(t)Dqkg(t)

g(t)g(qkt+ (1− qk)tk)
.

Lemma 2.2 ( [18]). Let α, β ∈ R+ and f be a continuous function on [a, b], a ≥
0, and the Riemann-Liouville fractional qk-integral has the following semi-group
property

aI
β
qka

Iαqkf(t) = aI
α
qka

Iβqkf(t) = aI
α+β
qk

f(t).

Lemma 2.3 ( [18]). Let f be a qk-integrable function on [a, b]. Then, the following
equality holds

aD
α
qka

Iαqkf(t) = f(t), α > 0, t ∈ [a, b].
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Lemma 2.4 ( [18]). Let α > 0 and p be a positive integer. Then, for t ∈ [a, b], the
following equality holds

aI
α
qka

Dp
qk
f(t) = aD

p
qka

Iαqk −
p−1∑
k=0

(t− a)α−p+k

Γqk(α+ k − p+ 1)
aD

k
qk
f(a). (2.3)

From [18], we have the following formulas

aD
α
qk

(t− a)β =
Γqk(β + 1)

Γqk(β − α+ 1)
(t− a)β−α, (2.4)

aI
α
qk

(t− a)β =
Γqk(β + 1)

Γqk(β + α+ 1)
(t− a)β+α. (2.5)

Lemma 2.5 ( [1]). Let α > 0. If u ∈ C(0, 1)
⋂
L(0, 1) and Dα

q u ∈ C(0, 1)
⋂
L(0, 1),

then there exists ci ∈ R, i = 1, 2, · · · , n, satisfying

Iαq D
α
q u(t) = u(t) + c1t

α−1 + c2t
α−2 + · · ·+ cnt

α−n. (2.6)

Theorem 2.2 ( [19]). Let X be a Banach space and W ⊂ PC(J,X). If the follow-
ing conditions are satisfied,

(i) W is uniformly bounded subset of PC(J,X);
(ii) W is equicontinuous in (tk, tk+1), k = 0, 1, 2, · · ·m, where t0 = 0, tm+1 = T ;
(iii) W (t) = {u(t)|u ∈ W, t ∈ J {t1, t2, · · · tm}},W (t+k ) = {u(t+k )|u ∈ W} and

W (t−k ) = {u(t−k )|u ∈W} is a relatively compact subsets of X.
Then, W is a relatively compact subset of PC(J,X).

Theorem 2.3 ( [15]). (Schaefer’s fixed point theorem) Let A be a continuous and
compact mapping of a Banach space X into itself, such that the set E = {x ∈ X :
x = λAx, for some 0 ≤ λ ≤ 1} is bounded. Then, A has a fixed point.

Theorem 2.4 ( [11]). (q-Gronwall Inequality) Suppose u(t) is a non-negative, lo-

cally q-integrable on [0, b], and satisfies u(t) ≤ a(t) + g(t)
∫ t

0
(t − qs)α−1

q u(s)dqs,
where a > 0, a(t) is non-negative and the local time measure q-integrable on [0, b],
the function g(t) is non-negative, non-decreasing function on [0, b], and satisfies
g(t) ≤M,M > 0. Then, we have

u(t) ≤ a(t) +

∫ t

0

∞∑
n=1

(g(t)Γq(α))n

Γq(nα)
(t− qs)α−1a(s)dqs.

Lemma 2.6. Let f ∈ C(J,R). Then, the unique solution of

tkD
αk
qk
x(t) = f(t, x(t)), t ∈ Jk = [0, T ] \ {t1, t2, · · · tk},

∆
∼
x (tk) = ϕk (x(tk)) , k = 1, 2, · · ·m,

∆∗x(tk) = ϕ∗k (x(tk)) , k = 1, 2, · · ·m,
∆∗∗x(tk) = ϕ∗∗k (x(tk)) , k = 1, 2, · · ·m,
x(0) = 0, 0D

α0−1
q0 x(0) = β, 0D

α0−2
q0 x(0) = γ

(2.7)
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is given by

x(t) =



γ
Γq0 (α0−1)

tα0−2 + β
Γq0 (α0)

tα0−1 + 0I
α0
q0 f(t, x(t)), t ∈ [0, t1],

(t−tk)αk−1

Γqk (αk)

[
β +

[ ∑
0<tk<t

ϕk (x(tk)) + tk−1Iqk−1f (tk, x(tk))

−tkIqkf (tk, x(tk))]] + (t−tk)αk−2

Γqk (αk−1)

[
γ + βtk−1 +

∑
0<tk<t

[ϕ∗k (x(tk))

−tk−1I
2
qk−1

f (tk, x(tk))− tkI
2
qkf (tk, x(tk))

]]
−

∑
0<tk<t

(tk − tk−1)tk−1

Iqk−1f (tk, x(tk)) +
∑

0<tk<t

∑
0<tj<tk

[
tj−1Iqj−1f (tj , x(tj))

]
+

∑
0<tk<t

ϕj (x(tj)) + (t−tk)αk−3

Γqk (αk−2)

[
γtk−1 + βt2k−1 +

∑
0<tk<t

∑
0<tj<tk

(tk − tk−1)[
tj−1I

2
qj−1

f (tj , x(tj))− tj I
2
qjf (tj , x(tj)) + γ + βtk−1 + ϕ∗k−1(x(tk−1))

]
+

∑
0<tk<t

ϕ∗k (x(tk)) +
∑

0<tk<t

∑
0<tj<tk

[
tj−1I

3
qj−1

f (tj , x(tj))

−tjI3
qjf (tj , x(tj))

]
+

∑
0<tk<t

∑
0<tj<tk

(tk − tk−1)2
[
β + ϕk−1(x(tk−1))

+tj−1Iqj−1f (tj , x(tj))− tjIqjf (tj , x(tj))
]]

+ tkI
αk
qk f (t, x(t)) ,

t ∈ (tk, tk+1].

(2.8)

Proof. For t ∈ [0, t1], taking the Riemann-Liouville fractional q0-integral of the
order α0 for the first equation of (2.7) and using (2.6), we can get

x(t) = C10t
α0−1 + C20t

α0−2 + C30t
α0−3 + 0I

α0
q0 f(t, x(t)). (2.9)

According to the initial conditions, x(0) = 0, we know C30 = 0.
Taking the Riemann-Liouville fractional q0-derivative of the order α0 − 2 for

(2.5) on J0, we have

0D
α0−2
q0 x(t) = C20Γq0(α0 − 1) + tC10Γq0(α0) + 0I

2
q0f(t, x(t)).

For 0D
α0−2
q0 x(0) = γ, then C20 = γ

Γq0 (α0−1) .

Therefore,

x(t) =
γ

Γq0(α0 − 1)
tα0−2 + C10t

α0−1 + 0I
α0
q0 f(t, x(t)). (2.10)

Taking the Riemann-Liouville fractional q0-derivative of the order α0 − 1 for
(2.10), according to (2.2) and (2.5), then we have

0D
α−1
q0 x(t) = Γq0C10 + 0Iq0f(t, x(t)). (2.11)

The third initial condition of (2.7) with (2.11) yields C10 = β
Γq0 (α0) . Therefore,

(2.9) can be written as

x(t) =
γ

Γq0(α0 − 1)
tα0−2 +

β

Γq0(α0)
tα0−1 + 0I

α0
q0 f(t, x(t)). (2.12)
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Applying the Riemann-Liouville fractional q0-derivative of the orders α0 − 1, α0 −
2, 3− α0, for (2.12) at t = t1, we have

0D
α0−1
q0 x(t1) = β + 0I

1
q0f (t1, x(t1)) ,

0D
α0−2
q0 x(t1) = γ + βt1 + 0I

2
q0f (t1, x(t1)) ,

0I
3−α0
q0 x(t1) = γt1 +

β

Γq0(3)
t21 + 0I

3
q0f (t1, x(t1)) .

For t ∈ J1 = (t1, t2], from (2.6), we obtain

x(t) = C11(t− t1)α1−1 + C21(t− t1)α1−2 + C31(t− t1)α1−3 + t1I
α1
q1 f(t, x(t)).

(2.13)
Applying the Riemann-Liouville fractional q1-derivative of the orders α1 − 1, α1 −
2, 3− α1, for (2.13), we have

t1D
α1−1
q1 x(t) = C11Γq1(α1) + t1I

1
q1f(t, x(t)),

t1D
α1−2
q1 x(t) = C11Γq1(α1)(t− t1) + C21Γq1(α1 − 1) + t1I

2
q1f(t, x(t)),

t1I
3−α1
q1 x(t) = C11

Γq1(α1)

Γq1(3)
(t− t1)2 + C21Γq1(α1 − 1)(t− t1)

+ C31Γq1(α1 − 2) + t1I
3
q1f(t, x(t)).

According to (1.3), we obtain

Γq1(α1)C11 + t1I
1
q1f(t1, x(t1))− β − 0I

1
q0f(t1, x(t1)) = ϕ1(x(t1)).

That is,

C11 =
ϕ1(x(t1)) + 0I

1
q0f(t1, x(t1)) + β − t1I

1
q1f(t1, x(t1))

Γq1(α1)
,

C21Γq1(α1 − 1) + t1I
2
q1f(t1, x(t1))− βt1 − γ − 0I

2
q0f(t1, x(t1)) = ϕ∗1(x(t1)).

That is,

C21 =
ϕ∗1(x(t1)) + 0I

2
q0f(t1, x(t1)) + γ + βt1 − t1I

2
q1f(t1, x(t1))

Γq1(α1 − 1)
,

C31Γq1(α1 − 2) + t1I
3
q1f(t1, x(t1))− β

Γq0(3)
t21 − γt1 − 0I

3
q0f(t1, x(t1)) = ϕ∗∗1 (x(t1)).

That is,

C31 =
ϕ∗∗1 (x(t1)) + 0I

3
q0f(t1, x(t1)) + β

Γq0 (3) t
2
1 + γt1 − t1I

3
q1f(t1, x(t1))

Γq1(α1 − 2)
.
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We can get the solution of expression at (t1, t2],

x(t) =
ϕ1(x(t1)) + 0Iq0f(t1, x(t1)) + β − t1Iq1f(t1, x(t1))

Γq1(α1)
(t− t1)α1−1

+
ϕ∗1(x(t1)) + 0I

2
q0f(t1, x(t1)) + γ + βt1 − t1I

2
q1f(t1, x(t1))

Γq1(α1 − 1)
(t− t1)α1−2

+
ϕ∗∗1 (x(t1)) + 0I

3
q0f(t1, x(t1)) + β

Γq0 (3) t
2
1 + γt1 − t1I

3
q1f(t1, x(t1))

Γq1(α1 − 2)
(t− t1)α1−3

+t1I
α1
q1 f(t, x(t)).

Repeating the above process, for t ∈ Jk, we obtain

x(t) =



γ
Γq0 (α0−1)

tα0−2 + β
Γq0 (α0)

tα0−1 + 0I
α0
q0 f(t, x(t)), t ∈ [0, t1],

(t−tk)αk−1

Γqk (αk)

[
β +

[ ∑
0<tk<t

ϕk (x(tk)) + tk−1Iqk−1f (tk, x(tk))

−tkIqkf (tk, x(tk))]] + (t−tk)αk−2

Γqk (αk−1)

[
γ + βtk−1 +

∑
0<tk<t

[ϕ∗k (x(tk))

−tk−1I
2
qk−1

f (tk, x(tk))− tkI
2
qkf (tk, x(tk))

]]
−

∑
0<tk<t

(tk − tk−1)tk−1

Iqk−1f (tk, x(tk)) +
∑

0<tk<t

∑
0<tj<tk

[
tj−1Iqj−1f (tj , x(tj))

]
+

∑
0<tk<t

ϕj (x(tj)) + (t−tk)αk−3

Γqk (αk−2)

[
γtk−1 + βt2k−1 +

∑
0<tk<t

∑
0<tj<tk

(tk − tk−1)[
tj−1I

2
qj−1

f (tj , x(tj))− tj I
2
qjf (tj , x(tj)) + γ + βtk−1 + ϕ∗k−1(x(tk−1))

]
+

∑
0<tk<t

ϕ∗k (x(tk)) +
∑

0<tk<t

∑
0<tj<tk

[
tj−1I

3
qj−1

f (tj , x(tj))

−tjI3
qjf (tj , x(tj))

]
+

∑
0<tk<t

∑
0<tj<tk

(tk − tk−1)2
[
β + ϕk−1(x(tk−1))

+tj−1Iqj−1f (tj , x(tj))− tjIqjf (tj , x(tj))
]]

+ tkI
αk
qk f (t, x(t)) ,

t ∈ (tk, tk+1],

(2.14)

where
∑
0<0

(·) = 0, which we complete the proof.

3. Main results

In this section, we will prove the existence and uniqueness of solutions for the
following initial value problem for impulsive fractional qk-difference equation of
order 2 < αk ≤ 3, and we use the Banach contraction mapping principle to
accomplish the result. In order to achieve the goal, we are supposed to intro-
duce the space: for γ ∈ R+, Cγ,k(Jk,R) = {x : Jk → R : (t − tk)γx(t) ∈
C(Jk,R)} with the norm ‖x‖Cγ,k = sup

t∈Jk
|(t − tk)γx(t)| and PCγ = {x : J → R:

for each t ∈ Jk and (t − tk)γx(t) ∈ C(Jk,R), k = 0, 1, 2 · · ·m} with the norm:
‖x‖PCγ = max

0≤k≤m
{sup
t∈Jk
|(t − tk)γx(t)|} and x(t+k ), x(t−k ) exist, and x(t−k ) = x(tk),

where k = 0, 1, 2 · · ·m. Obviously, PCγ is a Banach space.
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For the sake of convenience, we set the following constants

ψ1 =

∼
T
∼
Γ

{
(M + 2M∗)m+ Ltm +

m∑
j=1

(tj − tj−1)3

Γqj−1
(4)

L+

m∑
j=1

(tj − tj−1)2M(m− 1)

+

m∑
j=1

(tj − tj−1)3L+

m∑
j=1

L(tj − tj−1)(1− tj−1)−
m∑
j=1

(tj − tj−1)2

1 + qj−1
L

+

m∑
j=1

(j − 1)M +

m∑
j=1

(tj − tj−1)3

1 + qj−1
L+

m∑
j=1

(tj − tj−1)(j − 1)M∗ + L

}
,

(3.1)

ψ2 =

∼
T
∼
Γ

{
(Ω2 + 2Ω3)m+ β(t2m−1 + 1− tm) + γ(1 + tm−1) + Ω1tm

−
m∑
j=1

(tj − tj−1)2

1 + qj−1
Ω1 +

m∑
j=1

(tj − tj−1)(1− tj−1)Ω1 +

m∑
j=1

(tj − tj−1)3

1 + qj−1
Ω1

+

m∑
j=1

(tj − tj−1) [γ + βtj−1 + (j − 1)Ω3] +

m∑
j=1

(j − 1)Ω2 +

m∑
j=1

(tj − tj−1)3

Γqj−1
(4)

Ω1

+

m∑
j=1

(tj − tj−1)2 [β + Ω2(j − 1) + (tj − tj−1)Ω1] + Ω1

}
,

(3.2)

where
∼
T= max{T γ+αk−3, T γ+αk−2, T γ+αk−1},

∼
Γ= min{Γqk(αk − 2), Γqk(αk − 1),

Γqk(αk), k = 0, 1, 2, · · ·m}, and γ + αk > 3.

Theorem 3.1. Assume that the following assumptions hold.
(H1) f : J × R→ R is a continuous function, and satisfies

|f(t, x)− f(t, y)| ≤ L|x− y|, L > 0,∀t ∈ J, x, y ∈ R.

(H2) ϕk : R→ R, k = 1, 2, · · ·m, are continuous functions, and satisfy

|ϕk(x)− ϕk(y)| ≤M |x− y|,M > 0,∀x, y ∈ R.

(H3) ϕ∗k : R→ R, k = 1, 2, · · ·m, are continuous functions, and satisfy

|ϕ∗k(x)− ϕ∗k(y)| ≤M∗|x− y|, M∗ > 0,∀x, y ∈ R.

(H4) ϕ∗∗k : R→ R, k = 1, 2, · · ·m, are continuous functions, and satisfy

|ϕ∗∗k (x)− ϕ∗∗k (y)| ≤M∗∗|x− y|, M∗∗ > 0,∀x, y ∈ R.

If
ψ1 ≤ δ < 1,

where ψ1 is defined by (3.1), then the initial value problem (2.7) has a unique
solution on J .

In addition, we define a ballBR = {x ∈ PCr(J,R) : ||x||PCr ≤ R} withR ≥ ψ2

1−ε .
Setting

sup
t∈J
|f(t, 0)| = Ω1, max{ϕk(0) : k = 1, 2, · · ·m} = Ω2,

max{ϕ∗k(0) : k = 1, 2, · · ·m} = Ω3, max{ϕ∗∗k (0) : k = 1, 2, · · ·m} = Ω4,
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we will prove that ABR ⊂ BR, where BR = {x ∈ PCr(J,R) : ||x||PCr ≤ R}, and a
constant R satisfies

R ≥ ψ2

1− ε
,

where ψ2 is defined by (3.2) and δ < ε < 1.
Let x ∈ BR. For each t ∈ Jk, k = 0, 1, 2, · · ·m, we have

|(Ax)(t)|

=
(t− tk)αk−1

Γqk (αk)

|β|+
 ∑

0<tk<t

ϕk(x(tk)) + tk−1Iqk−1f(tk, x(tk))

−tkIqkf(tk, x(tk))]] +
(t− tk)αk−2

Γqk (αk − 1)
[|γ|+ |β|tk−1 +

∑
0<tk<t

[ϕ∗k(x(tk))

−tk−1I
2
qk−1

f(tk, x(tk))− tkI
2
qkf(tk, x(tk)

]
+

∑
0<tk<t

(tk − tk−1)tk−1

Iqk−1f(tk, x(tk)) +
∑

0<tk<t

∑
0<tj<tk

[
tj−1Iqj−1f(tj , x(tj))

]
+

∑
0<tk<t

ϕj(x(tj))

+
(t− tk)αk−3

Γqk (αk − 2)

[
|γtk−1|+ |βt2k−1|+

∑
0<tk<t

∑
0<tj<tk

(tk − tk−1)

·
[
tj−1I

2
qj−1

f(tj , x(tj))− tj I
2
qjf(tj , x(tj)) + |γ|+ |βtk−1|+ ϕ∗k−1(x(tk−1))

]
+

∑
0<tk<t

ϕ∗k(x(tk)) +
∑

0<tk<t

∑
0<tj<tk

[
tj−1I

3
qj−1

f(tj , x(tj))− tjI
3
qjf(tj , x(tj))

]
+

∑
0<tk<t

∑
0<tj<tk

(tk − tk−1)2[|β|+ ϕk−1(x(tk−1)) + tj−1Iqj−1f(tj , x(tj))

− tjIqjf(tj , x(tj))
]]

+ tkI
αk
qk f(t, x(t)).

Let {xn} be a sequence in x ∈ BR converging to a point x ∈ BR. Then, by
Lebesgue’s dominated convergence theorem, we have

|(Axn)(t)|

=
(t− tk)αk−1

Γqk (αk)

|β|+
 ∑

0<tk<t

ϕk(xn(tk)) + tk−1Iqk−1f(tk, xn(tk))

−tkIqkf(tk, xn(tk))]] +
(t− tk)αk−2

Γqk (αk − 1)
[|γ|+ |β|tk−1 +

∑
0<tk<t

[ϕ∗k(xn(tk))

− tk−1I
2
qk−1

f(tk, xn(tk))− tkI
2
qkf (tk, xn(tk)] +

∑
0<tk<t

(tk − tk−1)tk−1

Iqk−1f(tk, xn(tk)) +
∑

0<tk<t

∑
0<tj<tk

[
tj−1Iqj−1f(tj , xn(tj))

]
+

∑
0<tk<t

ϕj(xn(tj)) +
(t− tk)αk−3

Γqk (αk − 2)

[
|γtk−1|+ |βt2k−1|

+
∑

0<tk<t

∑
0<tj<tk

(tk − tk−1) ·
[
tj−1I

2
qj−1

f(tj , xn(tj))− tj I
2
qjf(tj , xn(tj))

+ |γ|+ |βtk−1|+ ϕ∗k−1(xn(tk−1))

]
+

∑
0<tk<t

ϕ∗k(xn(tk))
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+
∑

0<tk<t

∑
0<tj<tk

[
tj−1I

3
qj−1

f(tj , xn(tj))− tjI
3
qjf(tj , xn(tj))

]
+

∑
0<tk<t

∑
0<tj<tk

(tk − tk−1)2[|β|+ ϕk−1(xn(tk−1)) + tj−1Iqj−1f(tj , xn(tj))

− tjIqjf(tj , xn(tj))
]]

+ tkI
αk
qk f(t, xn(t))

=
(t− tk)αk−1

Γqk (αk)

|β|+
 ∑

0<tk<t

ϕk(x(tk)) + tk−1Iqk−1f(tk, x(tk))

−tkIqkf(tk, x(tk))]] +
(t− tk)αk−2

Γqk (αk − 1)
[|γ|+ |β|tk−1 +

∑
0<tk<t

[ϕ∗k(x(tk))

− tk−1I
2
qk−1

f(tk, x(tk))− tkI
2
qkf (tk, x(tk)] +

∑
0<tk<t

(tk − tk−1)tk−1

Iqk−1f(tk, x(tk)) +
∑

0<tk<t

∑
0<tj<tk

[
tj−1Iqj−1f(tj , x(tj))

]
+

∑
0<tk<t

ϕj(x(tj))

+
(t− tk)αk−3

Γqk (αk − 2)

[
|γtk−1|+ |βt2k−1|+

∑
0<tk<t

∑
0<tj<tk

(tk − tk−1)

·
[
tj−1I

2
qj−1

f(tj , x(tj))− tj I
2
qjf(tj , x(tj)) + |γ|+ |βtk−1|+ ϕ∗k−1(x(tk−1))

]
+

∑
0<tk<t

ϕ∗k(x(tk)) +
∑

0<tk<t

∑
0<tj<tk

[
tj−1I

3
qj−1

f(tj , x(tj))− tjI
3
qjf(tj , x(tj))

]
+

∑
0<tk<t

∑
0<tj<tk

(tk − tk−1)2[|β|+ ϕk−1(x(tk−1)) + tj−1Iqj−1f(tj , x(tj))

− tjIqjf(tj , x(tj))
]]

+ tkI
αk
qk f(t, x(t)).

This shows that A is convergence in x ∈ BR.
According to (H1)− (H4), we can get

|(Ax)(t)|

≤ (t− tk)αk−1

Γqk(αk)

[
|β|+ (MR+ Ω2)k + (LR+ Ω1)tk

]
+

(t− tk)αk−2

Γqk(αk − 1)

[
|γ|+ |β|tk−1 + (M∗R+ Ω3)k

−
k∑
j=1

(tj − tj−1)2

1 + qj−1
(LR+ Ω1) +

k∑
j=1

(LR+ Ω1)(tj − tj−1)(1− tj−1)

+

k∑
j=1

(MR+ Ω2)(j − 1)

]
+

(t− tk)αk−3

Γqk(αk − 2)

[
|β|t2k−1 + |γ|tk−1

+

k∑
j=1

(tj − tj−1)

[
(tj − tj−1)2

1 + qj−1
(LR+ Ω1) + |γ|+ |β|tj−1 + (M∗R+ Ω3)(j − 1)

]

+ (M∗R+ Ω3)k +

k∑
j=1

(tj − tj−1)3

Γqj−1(4)
(LR+ Ω1)
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+

k∑
j=1

(tj − tj−1)2
[
|β|+ (MR+ Ω2)(j − 1) + (tj − tj−1)(LR+ Ω1)

]]
+

(t− tk)αk

Γqk(αk + 1)
(LR+ Ω1).

Multiplying both sides of the above inequality by (t− tk)γ , for t ∈ Jk, we have

(t− tk)γ |(Ax)(t)|

≤ (t− tk)αk−1+γ

Γqk(αk)

[
|β|+ (MR+ Ω2)k + (LR+ Ω1)tk

]
+

(t− tk)αk−2+γ

Γqk(αk − 1)

[
|γ|+ |β|tk−1 + (M∗R+ Ω3)k −

k∑
j=1

(tj − tj−1)2

1 + qj−1
(LR+ Ω1)

+

k∑
j=1

(LR+ Ω1)(tj − tj−1)(1− tj−1) +

k∑
j=1

(MR+ Ω2)(j − 1)

]

+
(t− tk)αk−3+γ

Γqk(αk − 2)

[
|β|t2k−1 + |γ|tk−1 +

k∑
j=1

(tj − tj−1)

[
(tj − tj−1)2

1 + qj−1
(LR+ Ω1)

+ |γ|+ |β|tj−1 + (M∗R+ Ω3)(j − 1)

]
+ (M∗R+ Ω3)k +

k∑
j=1

(tj − tj−1)3

Γqj−1(4)

(LR+ Ω1) +

k∑
j=1

(tj − tj−1)2
[
|β|+ (MR+ Ω2)(j − 1) + (tj − tj−1)(LR+ Ω1)

]]

+
(t− tk)αk+γ

Γqk(αk + 1)
(LR+ Ω1) ≤ ψ1R+ ψ2 ≤ (δ + 1− ε) ≤ R,

which yields ‖Ax‖ ≤ R. Then, we get ABR ⊆ BR.
For any x, y ∈ PCγ(J,R) and for each t ∈ J , we have

|(Ax)(t)− (Ay)(t)|

≤ (t− tk)αk−1

Γqk(αk)
[kM‖x− y‖+ L‖x− y‖tk] +

(t− tk)αk−2

Γqk(αk − 1)[
kM∗‖x− y‖ −

k∑
j=1

(tj − tj−1)2

1 + qj−1
L‖x− y‖ −

k∑
j=1

(tj − tj−1)L‖x− y‖tj−1+

k∑
j=1

L‖x− y‖tj−1 + kM‖x− y‖
]

+
(t− tk)αk−3

Γqk(αk − 2)

[ k∑
j=1

(tj − tj−1)
(tj − tj−1)2

1 + qj−1
L‖x− y‖

+M∗‖x− y‖(j − 1) +M∗‖x− y‖k +

k∑
j=1

(tj − tj−1)3

Γqj−1(4)
L‖x− y‖+

k∑
j=1

(tj − tj−1)2

[M‖x− y‖+ L‖x− y‖
]

+
(t− tk)αk

Γqk(αk+1)
L‖x− y‖.

Again, multiplying both sides of the above inequality by (t − tk)γ , for t ∈ Jk, we
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have
|(t− tk)γ(Ax)(t)− (t− tk)γ(Ay)(t)|

≤ (t− tk)αk−1+γ

Γqk(αk)
[kM‖x− y‖+ L‖x− y‖tk] +

(t− tk)αk−2+γ

Γqk(αk − 1)

[
kM∗‖x− y‖

−
k∑
j=1

(tj − tj−1)2

1 + qj−1
L‖x− y‖ −

k∑
j=1

(tj − tj−1)L‖x− y‖tj−1 +

k∑
j=1

L‖x− y‖tj−1

+ kM‖x− y‖
]

+
(t− tk)αk−3+γ

Γqk(αk − 2)

[ k∑
j=1

(tj − tj−1)
(tj − tj−1)2

1 + qj−1
L‖x− y‖

+M∗‖x− y‖(j − 1) +M∗‖x− y‖k +

k∑
j=1

]
(tj − tj−1)3

Γqj−1(4)
L‖x− y‖

+

k∑
j=1

(tj − tj−1)2[M‖x− y‖+ L‖x− y‖
]

+
(t− tk)αk+γ

Γqk(αk+1+γ)
L‖x− y‖,

which implies ‖x− y‖ ≤ ψ1‖x− y‖.
As ψ1 < 1, by the Banach contraction mapping principle, we can draw the

conclusion that A has a fixed point, which is a unique solution of (1.2) on J .
We consider another Banach space PC(J,R) with the norm ‖x‖ = ‖x‖∞ and

‖x‖∞ = sup{| · |, t ∈ J, t 6= tk}, x ∈ PC(J,R), where PC(J,R) = {x : J → R, x(t)
is continuous everywhere except for some tk, at which x(t+k ) and x(t−k ) exist and
x(t−k ) = x(tk), k = 1, 2, · · · ,m}.

Define an integral operator A : PC(J,R)→ PC(J,R).

Lemma 3.1. Assume that
(H5) there exist continuous functions a(t), b(t), such that |f(t, x)| ≤ a(t) +

b(t)|x|, (t, x) ∈ J × R with sup
t∈J
|a(t)| = a1, sup

t∈J
|b(t)| = b1;

(H6) there exist nonnegative constants ak, bk such that |ϕk(x)| ≤ ak|x|, |ϕ∗k(x)| ≤

bk|x|, |ϕ∗∗k (x)| ≤ ck|x|,∀x ∈ R, k = 1, 2, · · · ,m, and note a =
m∑
k=1

ak, b =
m∑
k=1

bk, c =

m∑
k=1

ck.

Then, the operator A is completely continuous.

Proof. The proof consists of several steps.
(i) By the continuity of f, Ik, I

∗
k , it is easy to get A is continuous.

(ii) A maps bounded sets into bounded sets in PC(J,R). Let BR = {x ∈
PC(J,R) : ‖x‖ ≤ R} be a bounded set in PC(J,R), t ∈ (tk, tk+1) and x ∈ BR.
Then, we have

|(Ax)(t)|

=
(t− tk)αk−1

Γqk(αk)

[
|β|+

[ ∑
0<tk<t

ϕk(x(tk)) + tk−1
Iqk−1

f(tk, x(tk))− tkIqkf(tk, x(tk))

]]

+
(t− tk)αk−2

Γqk(αk − 1)
[|γ|+ |β|tk−1 +

∑
0<tk<t

[
ϕ∗k(x(tk))− tk−1

I2
qk−1

f(tk, x(tk))

− tkI
2
qk
f (tk, x(tk)] +

∑
0<tk<t

(tk − tk−1)tk−1
Iqk−1

f(tk, x(tk))
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+
∑

0<tk<t

∑
0<tj<tk

[
tj−1

Iqj−1
f(tj , x(tj))

]
+

∑
0<tk<t

ϕj(x(tj)) +
(t− tk)αk−3

Γqk(αk − 2)[
|γtk−1|+ |βt2k−1|+

∑
0<tk<t

∑
0<tj<tk

(tk − tk−1)

[
tj−1I

2
qj−1

f(tj , x(tj))

− tjI
2
qjf(tj , x(tj)) + |γ|+ |βtk−1|+ ϕ∗k−1x(tk−1)

]
+

∑
0<tk<t

ϕ∗k(x(tk))+

∑
0<tk<t

∑
0<tj<tk

[
tj−1I

3
qj−1

f(tj , x(tj))− tjI
3
qjf(tj , x(tj))

]
+

∑
0<tk<t

∑
0<tj<tk

(tk − tk−1)2

[
|β|+ ϕk−1x(tk−1) + tj−1Iqj−1f(tj , x(tj))− tjIqjf(tj , x(tj))

]]
+ tkI

αk
qk
f(t, x(t))

≤ (t− tk)αk−1

Γqk(αk)

[
|β|+ aR+ tk−1

Iqk−1
(a1 + b1R) + tkIqk(a1 + b1R)

]
+

(t− tk)αk−2

Γqk(αk − 1)

[
|γ|+ |β|tk−1

+ b1R+ tk−1
I2
qk−1

(a1 + b1R) + tkI
2
qk

(a1 + b1R)

+ (tk − tk−1)tk−1
Iqk−1

(a1 + b1R) + aR

]
+

(t− tk)αk−3

Γqk(αk − 2)
(|γtk−1|+ |βt2k−1|)

+ (tk − tk−1)

[
tj−1

I2
qj−1

(a1 + b1R) + tjI
2
qj (a1 + b1R) + |γ|+ |βtk−1|+ bR

]
+ bR+

[
tj−1

I3
qj−1

(a1 + b1R) + tjI
3
qj (a1 + b1R)

]
+ (tk − tk−1)2

[
|β|+ aR+ tj−1Iqj−1(a1 + b1R) + tjIqj (a1 + b1R)

]
+ tkI

αk
qk

(a1 + b1R)

≤ (t− tk)αk−1

Γqk(αk)
[|β|+ aR+ 2tkIqk(a1 + b1R)] +

(t− tk)αk−2

Γqk(αk − 1)

[
|γ|+ |β|+ b1R

+ 2tkI
2
qk

(a1 + b1R) + 2tk−1
Iqk−1

(a1 + b1R)

]
+

(t− tk)αk−3

Γqk(αk − 2)

[
2|γ|+ 2|β|+ (2tjI

2
qj (a1 + b1R) + 2bR) + 2tjI

3
qj (a1 + b1R)

+ |β|+ aR+ 2tjIqj (a1 + b1R)

]
+ tkI

αk
qk

(a1 + b1R)

≤ T ′

Γ′

[
5|β|+ 2aR+ 4tkIqk(a1 + b1R) + 3|γ|+ 3bR+ 4tkI

2
qk

(a1 + b1R)

+ 2tk−1
Iqk−1

I3
qk

(a1 + b1R) + tkI
αk
qk

(a1 + b1R)

]
=
T ′

Γ′

[
5|β|+ 3|γ|+ (2a+ 3b)R+ 4(tk − tk−1)(a1 + b1R) +

4(tk − tk−1)2

1 + qk−1
(a1 + b1R)

+ 2(tk − tk−1)(a1 + b1R) +
2(tk − tk−1)3

Γqk−1
(4)

(a1 + b1R) +
(t− tk)αk

Γqk(αk + 1)
(a1 + b1R)

]
=
T ′

Γ′

[
5|β|+ 3|γ|+ 4a1(tk − tk−1) +

4a1(tk − tk−1)2

1 + qk−1
+ 2a1(tk − tk−1)
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+
2a1(tk − tk−1)3

Γqk−1
(4)

+
a1(t− tk)αk

Γqk(αk + 1)

]
+

[
2a+ 3b+ 6b1(tk − tk−1) +

4b1(tk − tk−1)2

1 + qk−1

+
2b1(tk − tk−1)3

Γqk−1
(4)

+
b1(t− tk)αk

Γqk(αk + 1)

]
R

= A1 +B1R := M,

where T ′ = max{Tαk−3, Tαk−2, Tαk−1}, Γ′ = min{Γqk(αk − 2), Γqk(αk − 1),
Γqk(αk), k = 0, 1, 2, · · ·m}, and γ + αk > 3,

A1 =5|β|+ 3|γ|+ 4a1(tk − tk−1) +
4a1(tk − tk−1)2

1 + qk−1
+ 2a1(tk − tk−1)

+
2a1(tk − tk−1)3

Γqk−1
(4)

+
a1(t− tk)αk

Γqk(αk + 1)
,

B1 =2a+ 3b+ 6b1(tk − tk−1) +
4b1(tk − tk−1)2

1 + qk−1
+

2b1(tk − tk−1)3

Γqk−1
(4)

+
b1(t− tk)αk

Γqk(αk + 1)
.

(iii) A maps bounded sets into equicontinuous sets of PC(J,R).
Let τ2, τ1 ∈ Jk ∈ (tk, tk+1] for some k ∈ {0, 1, 2, · · · ,m} and BR be bound set

of PC(J,R) as before. Then, for x ∈ BR, we have

|Ax(τ2)−Ax(τ1)|

≤ (τ2 − tk)αk−1 − (τ1 − tk)αk−1

Γqk(αk)

[
|β|+

[ ∑
0<tk<t

ϕk(x(tk)) + tk−1
Iqk−1

f(tk, x(tk))

− tkIqkf(tk, x(tk))

]]
+

(τ2 − tk)αk−2 − (τ1 − tk)αk−1

Γqk(αk − 1)

[
|γ|+ |β|tk−1

+
∑

0<tk<t

[
ϕ∗k(x(tk))− tk−1

I2
qk−1

f(tk, x(tk))− tkI
2
qk
f(tk, x(tk)

]
+

∑
0<tk<t

(tk − tk−1)tk−1
Iqk−1

f(tk, x(tk)) +
∑

0<tk<t

∑
0<tj<tk

[
tj−1

Iqj−1
f(tj , x(tj))

]
+

∑
0<tk<t

ϕj(x(tj))

]
+

(τ2 − tk)αk−3 − (τ1 − tk)αk−1

Γqk(αk − 2)

[
|γtk−1|+ |βt2k−1|

+ (tk − tk−1) +
∑

0<tk<t

∑
0<tj<tk

(tk − tk−1)
[
tj−1I

2
qj−1

f(tj , x(tj))− tjI
2
qjf(tj , x(tj))

+ |γ|+ |βtk−1|+ ϕ∗k−1x(tk−1)
]

+
∑

0<tk<t

ϕ∗k(x(tk))

+
∑

0<tk<t

∑
0<tj<tk

[
tj−1I

3
qj−1

f(tj , x(tj))− tjI
3
qjf(tj , x(tj))

]]

+
(τ2 − tk)αk − (τ1 − tk)αk

Γqk(αk + 1)
f(t, x(t))→ 0(τ2 → τ1).

As a consequence of the Arzela-Asoli theorem, we can conclude that A : PC(J,R)→
PC(J,R) is completely continuous. The proof has been completed.

Theorem 3.2. Assume that (H5) and (H6) hold. Suppose that B1 < 1 holds
further, then the boundary value problem (1.2) has at least one solution.
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Proof. In view of Lemma 3.1, it is easy to know that A is completely continuous.
It is clear that x(t) ∈ PC(J,R) is a solution of boundary value problem (1.2), if
and only if x is a fixed point of A. We need to show that the set

E = {x(t) ∈ PC(J,R) : x(t) = λAx(t), 0 ≤ λ ≤ 1}

is bounded, which is independent of λ. Let x(t) ∈ E, then x(t) = λAx(t) for some
0 ≤ λ ≤ 1.

By (H5) and (H6), for each t ∈ (tk, tk+1], according to (ii) of Lemma 3.1, we
have

|(x(t))| = |λA(x(t))| ≤ |A(x(t))| ≤ A1 +B1‖x‖.

Consequently,

‖x‖ ≤ A

1−B1
:= M1.

This show that the set E is bounded. By Theorem 2.3, we can draw the conclu-
sion that the boundary value problem (1.2) has at least one solution, by which we
complete the proof.

In order to get the main result with Schaefer’s fixed point theorem well, we
replace (H5)′ with (H5).

(H5)′ there exists L > 0 such that |f(t, x(t))| ≤ L(1+|x(t)|),∀t ∈ (tk, tk+1], x(t) ∈
R.

Theorem 3.3. Assume that (H5)′ and (H6) hold, then the boundary value problem
(1.2) has at least one solution.

Proof. In view of Lemma 3.1, it is easy to know that A is completely continuous.
It is clear that x(t) ∈ PC(J,R) is a solution of boundary value problem (1.2), if
and only if x(t) is a fixed point of A. We need to show that the set

E = {x(t) ∈ PC(J,R) : x(t) = λAx(t), 0 ≤ λ ≤ 1}

is bounded, which is independent of λ. Let x(t) ∈ E, then x(t) = λAx(t) for some
0 ≤ λ ≤ 1. By (H5)′ and (H6), for each t ∈ (tk, tk+1], according to (ii) of Lemma
3.1, we have

|(Ax)(t)|

≤ (t− tk)αk−1

Γqk(αk)
[|β|+ a+ 2tkIqkL(1 + |x(tk)|)]

+
(t− tk)αk−2

Γqk(αk − 1)

[
|γ|+ |β|+ b+ 2tkI

2
qk
L(1 + |x(tk)|) + (tk − tk−1)tkIqkL(1 + |x(tk)|)

+tk IqkL(1 + |x(tk)|) + a

]
+

(t− tk)αk−3

Γqk(αk − 2)

[
|γ|+ |β|

+ (tk − tk−1)
[
2tkI

2
qk
L(1 + |x(tk)|) + |γ|+ |β|+ 2b

]
+ 2tkI

3
qk
L(1 + |x(tk)|)

+ (tk − tk−1)2 [|β|+ a+ 2tkIqkL(1 + |x(tk)|)] +tk I
αk
qk
f(t, x(t))

]
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≤ T ′

Γ′

[
5|β|+ 3(a+ b+ |γ|) + (3 + T )L(1 + |x(tk)|)tk + 2T 2tkL(1 + |x(tk)|)

+ (2 + 2T )
(tk − tk−1)2

1 + qk−1
L(1 + |x(tk)|) + 2

(tk − tk−1)3

1 + q2
k−1

L(1 + |x(tk)|)
]

+tk I
αk
qk
f(t, x(t))

= A′ +
1

Γqk(αk)

∫ t

tk
tk(t− tkφqk(t))αk−1

qk
L(1 + |x(s)|)tkdqks

= A′ +
L

Γqk(αk)

∫ t

tk
tk(t− tkφqk(t))αk−1

qk tkdqks

+
L

Γqk(αk)

∫ t

tk
tk(t− tkφqk(t))αk−1

qk
|x(s)|tkdqks

= A′ +
L

Γqk(αk)
(t− tk)αkBq(αk, 1) +

L

Γqk(αk)

∫ t

tk
tk(t− tkφqk(t))αk−1

qk
|x(s)|tkdqks

= A′′ +
L

Γqk(αk)

∫ t

tk
tk(t− tkφqk(t))αk−1

qk
|x(s)|tkdqks,

where

A′ =
T ′

Γ′

[
5|β|+ 3(a+ b+ |γ|) + (3 + T )L(1 + |x(tk)|)tk + 2T 2tkL(1 + |x(tk)|)

+ (2 + 2T )
(tk − tk−1)2

1 + qk−1
L(1 + |x(tk)|) + 2

(tk − tk−1)3

1 + q2
k−1

L(1 + |x(tk)|)
]
,

A′′ = A′ +
L

Γqk(αk)
(t− tk)αkBq(αk, 1).

We need to show that the set

E = {x(t) ∈ PC(J,R) : x(t) = λAx(t), 0 ≤ λ ≤ 1}

is bounded, which is independent of λ. Let x(t) ∈ E, then x(t) = λAx(t) for some
0 ≤ λ ≤ 1.

By (H5)′ and (H6), for each t ∈ (tk, tk+1], according to (ii) of Lemma 3.1, we
have

|x(t)| = |λA(x(t))| ≤ |A(x(t))| ≤ A′′ + L

Γqk(αk)

∫ t

tk
tk(t− tkφqk(t))αk−1

qk
|x(s)|tkdqks.

According to q-Gronwall inequality, we deduce

|x(t)| ≤ A′′ +
∫ t

tk

∞∑
n=1

L
(Γqk (αk)Γqk(αk))n

Γqk(nαk)
(t−tk φqk(t))αk−1A′′dqks := M ′

This show that the set E is bounded. As a consequence of Schaefer’s fixed point
theorem, we deduce that A has at least one fixed point, which means that the
problem (1.2) has at least one solution. The proof is complete.
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4. Examples

Consider the following impulsive fractional qk-difference initial value problem

tkD
k2−2k+5

2k3+k+2

k3−3k+7

2k4+k+8

x(t) = e− cos2 t|x(t)|

20(t+1)2(1+|x(t)|) , t ∈ [0, 1
2 ], t 6= tk,

∼
∆ x(tk) = |x(tk)|

4(k+2)+|x(tk)| , k = 1, 2, tk = k
5 ,

∆∗x(tk) = |x(tk)|
6(k+3)+|x(tk)| , k = 1, 2, tk = k

5 ,

∆∗∗x(tk) = |x(tk)|
5(k+4)+|x(tk)| , k = 1, 2, tk = k

5 ,

x(0) = 0, 0D
3
2
7
8

x(0) = 3
4 , 0D

1
2
7
8

x(0) = 2
3 .

(4.1)

Here,

αk =
k2 − 2k + 5

2k3 + k + 2
, qk =

k3 − 3k + 7

2k4 + k + 8
, k = 0, 1, 2,m = 2, T =

1

2
, β =

3

4
, γ =

2

3
,

f(t, x(t)) =
e− cos2 t|x(t)|

20(t+ 1)2(1 + |x(t)|)
, ϕk(x(tk)) =

|x(tk)|
4(k + 2) + |x(tk)|

,

ϕ∗k(x(tk)) =
|x(tk)|

6(k + 3) + |x(tk)|
, ϕ∗∗k (x(tk)) =

|x(tk)|
5(k + 4) + |x(tk)|

.

Since

|f(t, x)− f(t, y)| ≤ 1

20
‖x− y‖,

|ϕk(x)− ϕk(y)| ≤ 1

12
‖x− y‖,

|ϕ∗k(x)− ϕ∗k(y)| ≤ 1

24
‖x− y‖,

|ϕ∗∗k (x)− ϕ∗∗k (y)| ≤ 1

25
‖x− y‖,

we choose γ = 13
4 , and we have that (H1), (H2), (H3) and (H4) are satisfied with

L = 1
20 , M = 1

12 ,M
∗ = 1

24 , M
∗∗ = 1

25 .

We find that
∼
T= 0.01205530547,

∼
Γ= 0.875, and

ψ1 =

∼
T
∼
Γ

{
(M + 2M∗)m+ Ltm +

m∑
j=1

(tj − tj−1)3

Γqj−1
(4)

L+

m∑
j=1

(tj − tj−1)2M(m− 1)

+

m∑
j=1

(tj − tj−1)3L+

m∑
j=1

L(tj − tj−1)(1− tj−1)−
m∑
j=1

(tj − tj−1)2

1 + qj−1
L+

m∑
j=1

(j − 1)

M +

m∑
j=1

(tj − tj−1)3

1 + qj−1
L+

m∑
j=1

(tj − tj−1)(j − 1)M∗ + L

}
≈ 0.1317463686.

Therefore, according to Theorem 3.1, the initial value problem (4.1) has a unique
solution on J . This means that our hypothesis is reasonable, that is, the uniqueness
of the solution to the equation.
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Example 4.2. Consider the following impulsive fractional qk-difference equa-
tions 

tkD
k2−2k+5

2k3+k+2

k3−3k+7

2k4+k+8

x(t) = x(t) sin x2(t)

16(1+et2 )(et+|x(t)|)
, t ∈ [0, 1

2 ], t 6= tk,

∼
∆ x(tk) = |x(tk)|

4(k+2) , k = 1, 2, tk = k
5 ,

∆∗x(tk) = |x(tk)|
6(k+3))| , k = 1, 2, tk = k

5 ,

∆∗∗x(tk) = |x(tk)|
5(k+4))| , k = 1, 2, tk = k

5 ,

x(0) = 0, 0D
3
2
7
8

x(0) = 3
4 , 0D

1
2
7
8

x(0) = 2
3 .

(4.2)

Here, αk = k2−2k+5
2k3+k+2 , qk = k3−3k+7

2k4+k+8 , k = 0, 1, 2,m = 2, T = 1
2 , β = 3

4 , γ =
2
3 , f(t, x(t)) = x(t) sin x2(t)

16(1+et2 )(et+|x(t)|)
, ϕk(x(tk)) = |x(tk)|

4(k+2) , ϕ
∗
k(x(tk)) = |x(tk)|

6(k+3) , ϕ∗∗k (x(tk))

= |x(tk)|
5(k+4) .

Obviously, we have |f(t, x(t))| ≤ 1
64 (1 + |x|), L = 1

64 , a = 1
12 , b = 1

18 ,M
′ = 0.087.

Thus, all the assumptions in Theorem 3.3 are satisfied, which means that (4.2) has
at least one solution.

In equation (4.2), if we set f(t, x) = e−t

10 + ln(1 + |t|)x, where a(t) = e−t

10 , b(t) =
ln(1+ |t|), we can obtain a = 1

10 , b = ln 2, and by calculation, we get B1 = 0.12 < 1.
That is to say, Theorem 3.2 is satisfied. However, if we set f(t, x) = e−t + sin t|x|,
where a(t) = e−t, b(t) = sin t, by calculation, we get a = b = 1, B1 = 1.167 > 1.
That is to say, B1 < 1 is not necessary for the function f(t, x) to be true.
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