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Dynamics of a Deterministic and Stochastic
Susceptible-exposed-infectious-recovered Epidemic

Model∗
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Abstract We investigate a susceptible-exposed-infectious-recovered (SEIR)
epidemic model with asymptomatic infective individuals. First, we formulate
a deterministic model, and give the basic reproduction number R0. We show
that the disease is persistent, if R0 > 1, and it is extinct, if R0 < 1. Then,
we formulate a stochastic version of the deterministic model. By constructing
suitable stochastic Lyapunov functions, we establish sufficient criteria for the
extinction and the existence of ergodic stationary distribution to the model.
As a case, we study the COVID-19 transmission in Wuhan, China, and per-
form some sensitivity analysis. Our numerical simulations are carried out to
illustrate the analytic results.
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MSC(2010) 92D30, 34D05, 60H10.

1. Introduction

It is well-known that mathematical modeling has become a powerful tool in study-
ing dynamic behaviors and predicting the spreading trend of diseases [2,4,8,12,18].
The establishment of an appropriate epidemic model can clearly describe the trans-
mission mechanism of infectious diseases, and then we analyze it and find effective
measures for epidemic control. In 1927, Kermack and Mckendrick [14] first proposed
the SIR epidemic model in which the population is separated into three mutually
exclusive stages of infection: susceptible, infective and recovered individuals accord-
ing to their status related to the disease with numbers at the time t denoted by
S(t), I(t) and R(t) respectively. Moreover, the basic reproduction number which
determines the persistence or extinction of the disease is also described. The SIR
model provides a sound theoretical basis for the use of mathematical models to
study infectious diseases.

Following the idea of Kermack and Mckendrick, many realistic models have
been proposed to investigate the transmission dynamics of infectious diseases (see,
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e.g., [3, 25, 34, 36]). For some diseases (e.g., tuberculosis, influenza, measles), on
adequate contact with an infective individual, a susceptible individual becomes in-
fected, but it has not been infective yet. This individual remains in the exposed
class for a certain latent period before becoming infective [7]. Thus, in [19], the
SEIR model was proposed to further consider the exposed individuals. As a basis,
the SEIR model has multiple variants with different degrees of complexity, includ-
ing those admitting controls, i.e., different kinds of incidence rates, constant and
feedback vaccination and treatment controls or those involving several interacting
patches associated with different towns or regions (see [3,28,32,35,39] and the ref-
erences therein). In the reality, for some infectious diseases (e.g., COVID-19), since
the strong concealment of the asymptomatic infective individuals is verified, the
existence of these individuals has made the control of disease more difficult. There-
fore, it is important to take into account the asymptomatic infective individuals
in the SEIR model. We assume that any individual can move between the classes
according to the following graph.

Figure 1. Transfer diagram of the model

In Figure 1, I1(t) is the number of the infective individuals, which are diagnosed and
symptomatic, and I2(t) is the number of the infective individuals, which are diag-
nosed but asymptomatic. Thus, the model can be written as a system of differential
equations with the form



dS

dt
= Λ− βS(I1 + I2)− µS,

dE

dt
= βS(I1 + I2)− (ε+ µ)E,

dI1
dt

= pεE − (µ+ α+ r1)I1,

dI2
dt

= qεE − (µ+ α+ r2)I2,

dR

dt
= r1I1 + r2I2 − µR.

(1.1)

The biological interpretations of the parameters are shown as the table below.
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Table 1. Biological interpretations for variables and parameters in system (1.1)

Parameters Description

Λ The number of recruitment of susceptible individuals per unit time

β The contact transmission rate

µ The natural mortality rate

ε The rate of diagnosed individuals

p The proportion of symptomatic individuals in all diagnosed individuals

q The proportion of asymptomatic individuals in all diagnosed individuals

α The disease-related mortality rate

r1 The recovery rate of the symptomatic individuals

r2 The recovery rate of the asymptomatic individuals

In Table 1, the parameters Λ and µ are assumed to be positive, the parameters
β, ε, p, q, α, r1 and r2 are non-negative, and p+ q = 1.

For disease-related epidemics, the nature of epidemic growth and spread is
random due to the unpredictability of person-to-person contact [29]. Therefore,
the variability and randomness of the environment are fed through the state of
the epidemic [31]. Besides, in epidemic dynamics, the stochastic model may be
a more appropriate way of modeling epidemics in many circumstances (see e.g.,
[1, 5, 11, 16, 17, 20–22,37, 38, 40]). Following [24], we assume that the environmental
influence on the individuals is proportional to the states S(t), E(t), I1(t), I2(t) and
R(t) to obtain a stochastic version of (1.1) as follows

dS = [Λ− βS(I1 + I2)− µS] dt+ σ1SdB1(t),

dE = [βS(I1 + I2)− (ε+ µ)E] dt+ σ2EdB2(t),

dI1 = [pεE − (µ+ α+ r1)I1] dt+ σ3I1dB3(t),

dI2 = [qεE − (µ+ α+ r2)I2] dt+ σ4I2dB4(t),

dR = [r1I1 + r2I2 − µR] dt+ σ5RdB5(t),

(1.2)

where Bi(t) (i = 1, 2, · · ·, 5) are independent standard Brownian motions, σi are
the intensity of the standard Gaussian white noise, and σ1SdB1(t), σ2EdB2(t),
σ3I1dB3(t), σ4I2dB4(t) and σ5RdB5(t) are used to model the interaction between
the individuals and the environment.

When studying the transmission dynamics of the infection, it is important to
know when the infection will extinct (prevail) in the population. For the deter-
ministic model (1.1), this problem can be solved by showing that the disease-free
equilibrium (endemic-equilibrium) is globally asymptotically stable. However, for
model (1.2), there is no endemic-equilibrium. Then, Khasminskii [15] showed that
the existence of an ergodic stationary distribution to model (1.2) can reveal the
persistence of the infection.

The paper is to study the global dynamics of models (1.1) and (1.2). We will
apply the basic reproduction number R0 to describe whether the disease will prevail
to model (1.1) or not, and establish sufficient criteria for the extinction and existence
of ergodic stationary distribution to model (1.2).
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This paper is organized as follows. In Section 2, the existence and the global
stability of disease-free equilibrium (endemic equilibrium) are investigated in model
(1.1). In Section 3, we are devoted to establishing sufficient criteria for the extinc-
tion and existence of an ergodic stationary distribution. In Section 4, we present a
case study on COVID-19 transmission in Wuhan, China, and carry out some sen-
sitivity analysis to illustrate our results. Finally, we complete our paper with some
concluding remarks.

2. The deterministic model (1.1)

First, we give some basic properties of the solution to model (1.1).

Lemma 2.1. The solutions S(t), E(t), I1(t), I2(t), R(t) of system (1.1) with initial
values S(0) ≥ 0, E(0) ≥ 0, I1(0) ≥ 0, I2(0) ≥ 0, R(0) ≥ 0 are positive for all t ≥ 0.

Proof. By system (1.1), we have

dS(t)

dt

∣∣
S(t)=0

= Λ ≥ 0,
dE(t)

dt

∣∣
E(t)=0

= βS(t)(I1(t) + I2(t) ≥ 0,

dI1(t)

dt

∣∣
I1(t)=0

= pεE(t) ≥ 0,
dI2(t)

dt

∣∣
I2(t)=0

= qεE(t) ≥ 0,

dR(t)

dt

∣∣
R(t)=0

= r1I1(t) + r2I2(t) ≥ 0.

Since the solutions of system (1.1) are continuous, S(t), E(t), I1(t), I2(t), R(t)
remain positive for all t ≥ 0.

Lemma 2.2. The feasible region Ω is positive invariant for system (1.1) with initial
conditions in R5

+ defined by

Ω =

{
(S(t), E(t), I1(t), I2(t), R(t)) ∈ R5

+ | 0 ≤ S(t) + E(t) + I1(t) + I2(t) +R(t) ≤ Λ

µ

}
,

where R5
+ = {(x1, x2, x3, x4, x5)|xi ≥ 0, i = 1, 2, · · ·, 5}.

Proof. Adding all the equations of system (1.1), we obtain

dN

dt
= Λ− µN − α(I1 + I2) ≤ Λ− µN.

It follows that

0 ≤ N(t) ≤ Λ

µ
+N(0)e−µt,

where N(0) represents the initial values of the total population.
Thus, lim

t→∞
supN(t) = Λ

µ , which implies that the region Ω is a positive invariant

set for system (1.1).

2.1. Disease-free equilibrium and the basic reproduction num-
ber

It is easy to see that model (1.1) has a disease-free equilibrium

E0 := (S0, 0, 0, 0, 0) =

(
Λ

µ
, 0, 0, 0, 0

)
.
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We rearrange (1.1) as follows

dE

dt
= βS(I1 + I2)− (ε+ µ)E,

dI1
dt

= pεE − (µ+ α+ r1)I1,

dI2
dt

= qεE − (µ+ α+ r2)I2,

dS

dt
= Λ− βS(I1 + I2)− µS,

dR

dt
= r1I1 + r2I2 − µR.

Let X := (E, I1, I2, S,R)T . Then system (1.1) can be written as

dX

dt
= F(x)− V(x),

where

F(x) =



βS(I1 + I2)

0

0

0

0


, V(x) =



(ε+ µ)E

(µ+ α+ r1)I1 − pεE

(µ+ α+ r2)I2 − qεE

µS + βS(I1 + I2)− Λ

µR− r1I1 − r2I2


.

The Jacobian matrices of F(x) and V(x) at the disease-free equilibrium E0 are
respectively

DF(E0) =



0 βS0 βS0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


, DV(E0) =



ε+ µ 0 0 0 0

−pε µ+ α+ r1 0 0 0

−qε 0 µ+ α+ r2 0 0

0 βS0 βS0 µ 0

0 −r1 −r2 0 µ


.

The reproduction number of model (1.1), denoted by R0, is given by [9]

R0 =ρ(FV −1)

=
βS0

µ+ ε

(
pε

µ+ α+ r1
+

qε

µ+ α+ r2

)
=

βΛ

(µ+ ε)µ

(
pε

µ+ α+ r1
+

qε

µ+ α+ r2

)
.

By Theorem 2 of [9], on the local stability of E0, we have the following result.

Theorem 2.1. The disease-free equilibrium E0 is locally asymptotically stable for
R0 < 1 and unstable otherwise.

2.2. Global stability of disease-free equilibrium

Theorem 2.2. For system (1.1), the disease-free equilibrium E0 is globally asymp-
totically stable, if R0 < 1.
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Proof. We construct a Lyapunov function V as follows

V (t) = E(t) +
βS0

µ+ α+ r1
I1(t) +

βS0

µ+ α+ r2
I2(t).

Then, we obtain

dV

dt
=
dE

dt
+

βS0

µ+ α+ r1

dI1
dt

+
βS0

µ+ α+ r2

dI2
dt
.

By system (1.1), we have

dV

dt
=

[
−(ε+ µ) +

βS0pε

µ+ α+ r1
+

βS0qε

µ+ α+ r2

]
E + βSI1 − βS0I1 + βSI2 − βS0I2

≤
[
−(ε+ µ) +

βS0pε

µ+ α+ r1
+

βS0qε

µ+ α+ r2

]
E

= (ε+ µ)(R0 − 1)E ≤ 0.

Setting dV
dt = 0, then E(t) = 0.

Plugging it into the equations of system (1.1), we get

lim
t→∞

S(t) =
Λ

µ
, lim
t→∞

I1(t) = lim
t→∞

I2(t) = lim
t→∞

R(t) = 0.

By LaSalle invariance principle [27], the disease-free equilibrium E0 is globally
asymptotically stable, if

R0 < 1.

2.3. Global stability of the endemic equilibrium

If R0 > 1, then system (1.1) has a unique endemic equilibrium

E∗ := (S∗, E∗, I∗1 , I
∗
2 , R

∗),

where

S∗ =
Λ

βE∗
(

pε
µ+α+r1

+ qε
µ+α+r2

)
+ µ

, E∗ =
Λ(R0 − 1)

R0(µ+ ε)
,

I∗1 =
pε

µ+ α+ r1
E∗, I∗2 =

qε

µ+ α+ r2
E∗, R∗ =

1

µ

(
r1pε

µ+ α+ r1
+

r2qε

µ+ α+ r2

)
.

Theorem 2.3. If R0 > 1, the endemic equilibrium E∗ of system (1.1) is globally
asymptotically stable.

Proof. If R0 > 1, there exists a unique endemic equilibrium E∗. Motivated
by [13,26], we define the following Lyapunov function

V = V1 + V2 + V3 + V4,
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where

V1 = S − S∗ − S∗ln S

S∗
,

V2 = A

(
E − E∗ − E∗ln E

E∗

)
,

V3 = B

(
I1 − I∗1 − I∗1 ln

I1
I∗1

)
,

V4 = C

(
I2 − I∗2 − I∗2 ln

I2
I∗2

)
.

Then, we obtain

dV

dt
=
dS

dt

(
1− S∗

S

)
+A

dE

dt

(
1− E∗

E

)
+B

dI1
dt

(
1− I∗1

I1

)
+ C

dI2
dt

(
1− I∗2

I2

)
=

(
1− S∗

S

)
(Λ− µS − βS(I1 + I2)) +A

(
1− E∗

E

)
(βS(I1 + I2)

−(ε+ µ)E) +B

(
1− I∗1

I1

)
(pεE − (µ+ α+ r1)I1)

+ C

(
1− I∗2

I2

)
(qεE − (µ+ α+ r2)I2)

=

(
1− S∗

S

)
(βS∗(I∗1 + I∗2 ) + µS∗ − µS − βS(I1 + I2))

+A

(
1− E∗

E

)(
βS(I1 + I2)− βS∗(I∗1 + I∗2 )

E∗
E

)
+B

(
1− I∗1

I1

)
(pεE−

pεE∗

I∗1
I1

)
+ C

(
1− I∗2

I2

)(
qεE − qεE∗

I∗2
I2

)
.

Letting x := S
S∗ , y := E

E∗ , z := I1
I∗1
, m := I2

I∗2
, then

dV

dt

=

(
1− 1

x

)
(βS∗(I∗1 + I∗2 ) + µS∗ − µS∗x− βS∗I∗1xz − βS∗I∗2xm)

+A

(
1− 1

y

)
(βS∗I∗1xz + βS∗I∗2xm− βS∗(I∗1 + I∗2 )y)

+B

(
1− 1

z

)
(pεE∗y − pεE∗z) + C

(
1− 1

m

)
(qεE∗y − qεE∗m)

=βS∗(I∗1 + I∗2 ) + µS∗ − µS∗x− βS∗I∗1xz − βS∗I∗2xm− [βS∗(I∗1 + I∗2 ) + µS∗]
1

x
+ µS∗ + βS∗I∗1 z + βS∗I∗2m+A(βS∗I∗1xz + βS∗I∗2xm− βS∗(I∗1 + I∗2 )y

− (βS∗I∗1xz + βS∗I∗2xm)
1

y
+ βS∗(I∗1 + I∗2 ) + aR∗)

+B
(
pεE∗y − pεE∗z − pεE∗ y

z
+ pεE∗

)
+ C

(
qεE∗y − qεE∗m− qεE∗ y

m
+ qεE∗

)
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=− µS∗
(
x+

1

x
− 2

)
+ βS∗(I∗1 + I∗2 ) +AβS∗(I∗1 + I∗2 ) +BpεE∗ + CqεE∗

+D(r1I
∗
1 + r2I

∗
2 ) + xzβS∗I∗1 (A− 1) + xmβS∗I∗2 (A− 1) + y(−AβS∗(I∗1 + I∗2 )

+BpεE∗ + CqεE∗) + z(−BpεE∗ + βS∗I∗1 ) +m(−CqεE∗ + βS∗I∗2 )

− 1

x
βS∗(I∗1 + I∗2 )− xz

y
AβS∗I∗1 −

xm

y
AβS∗I∗2 −

y

z
BpεE∗ − y

m
CqεE∗.

The variable terms that appear in dV
dt with positive coefficients are xz, xm, y, z, m.

If the total of these coefficients is positive, then there is a possibility that dV
dt is

positive.
Let the coefficients of xz, xm, y, z and m be equal to zero, we have

A− 1 = 0,

−AβS∗(I∗1 + I∗2 ) +BpεE∗ + CqεE∗ = 0,

−BpεE∗ + βS∗I∗1 = 0,

−CqεE∗ + βS∗I∗2 = 0,

by which we get

A = 1, B =
βS∗I∗1
pεE∗

, C =
βS∗I∗2
qεE∗

.

Hence, we have

dV

dt
= −µS∗ (x− 1)2

x
+ 3βS∗(I∗1 + I∗2 )− 1

x
βS∗(I∗1 + I∗2 )− xz

y
βS∗I∗1 −

xm

y
βS∗I∗2

− y

z
βS∗I∗1 −

y

m
βS∗I∗2

= −µS∗ (x− 1)2

x
+ βS∗I∗1

(
3− 1

x
− xz

y
− y

z

)
+ βS∗I∗2

(
3− 1

x
− xm

y
− y

m

)
.

Since the arithmetical mean is greater than or equal to the geometrical mean,

3− 1

x
− xz

y
− y

z
≤ 0, for x > 0, y > 0, z > 0 and 3− 1

x
− xz

y
− y

z
= 0

if and only if

x = 1, y = z;

3− 1

x
− xm

y
− y

m
≤ 0, for x > 0, y > 0, m > 0 and 3− 1

x
− xm

y
− y

m
= 0

if and only if

x = 1, y = m.

Then,

V̇ ≤ 0.

Thus, for system (1.1), the endemic equilibrium is globally asymptotically stable, if
R0 > 1 by LaSalle invariance principle [27].
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3. The stochastic model (1.2)

First, we give some preliminaries in this section.
Let (Ω,F , {Ft}t≥0 , P ) be a complete probability space with a filtration {Ft}t≥0

satisfying the usual condition (i.e., it is increasing and right continuous, while {F0}
contains all P -null sets), and we also let Rd+ =

{
x ∈ Rd : xi > 0, 1 ≤ i ≤ d

}
.

In general, consider the d-dimensional stochastic differential equation

dx(t) = f (t, x(t)) dt+ g (t, x(t)) dBt, (3.1)

where f (t, x(t)) is a function in Rd defined in [t0,∞] × Rd, g (t, x(t)) is a d×m ma-
trix, and f, g are locally Lipschitz functions in x. Bt denotes anm-dimensional stan-
dard Brownian motion defined on the complete probability space (Ω, F , {Ft}t≥0,

P ). Denoted by C2,1
(
Rd × [t0,∞] ;R+

)
, the family of all nonnegative functions

V (x, t) defined on Rd × [t0,∞] are continuously twice differentiable in x and once
in t. The differential operator L of equation (3.1) is defined [23] by

L = ∂
∂t +

∑d
i=1 fi(t)

∂
∂xi

+
1

2

∑d
i,j=1

[
gT (x, t) g (x, t)

]
ij

∂2

∂xi∂xj
.

If L acts on a function V ∈ C2,1
(
Rd × [t0,∞] ;R+

)
, then

LV (x, t) = Vt (x, t) + Vx (x, t) f (x, t) +
1

2
trace

[
gT (x, t)Vxxg (x, t)

]
,

where Vt (x, t) = ∂V
∂t , Vx (x, t) =

(
∂V
∂x1

, · · · , ∂V∂xd

)
, Vxx =

(
∂2V
∂xi∂xj

)
d×d

.

By Itô’s formula, if x(t) is the solution of (3.1), then

dV (x, t) = LV (x, t) dt+ Vx (x, t) g (x, t) dBt.

Let X(t) be a regular time-homogeneous Markov process in Rd+ described by

dX(t) = b(X)dt+

k∑
r=1

σr(X)dBr(t),

and the diffusion matrix is defined by

A(X) = (aij(x)), aij(x) =

k∑
r=1

σir(x)σjr(x).

3.1. The well-posedness of the solution

Lemma 3.1. For any initial value (S(0), E(0), I1(0), I2(0), R(0)) ∈ R5
+, there is a

unique solution X(t) = (S(t), E(t), I1(t), I2(t), R(t)) of system (1.2) on t ≥ 0, and
the solution will remain in R5

+ with probability one.

Proof. Since the coefficients of system (1.2) satisfy the local Lipschitz condition,
for any initial value (S(0), E(0), I1(0), I2(0), R(0)) ∈ R5

+, there is a unique local
solution in [0,τe], where τe is the explosion time [23]. To show that this solution
is global, we only need to prove that τe = ∞ is almost sure (abbreviated as a.s.).
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To this end, let k0 be sufficiently large such that every component of X0 lies in the
interval [ 1

k0
, k0]. For each integer k > k0, we define the stopping time with the form

τk = inf

{
t ∈ [0, τe) : minX(t) ≤ 1

k
or maxX(t) ≥ k

}
.

Throughout this paper, we set inf∅ = ∞ (as usual, ∅ denotes the empty set). It
is easy to see that τk is increasing as k → ∞. Setting τ∞ = lim

k→∞
τk, then τ∞ ≤ τe

a.s. If we show τ∞ = ∞ a.s., then τe = ∞ and X(t) ∈ R5
+ a.s., for all t ≥ 0. In

other words, to complete the proof, what we need to show is τ∞ = ∞ a.s. If this
assertion is violated, then there are a pair of constants T > 0 and η ∈ (0, 1) such as
P{τ∞ ≤ T} > η. Consequently, there is an integer k1 ≥ k0 such as P{τk ≤ T} > η,
for all k ≥ k1.

Define a C2-function V: R5
+ → R1

+ as

V (S,E, I1, I2, R)

=(S − c− ln
S

c
) + (E − 1− lnE) + (I1 − 1− lnI1) + (I2 − 1− lnI2) + (R− 1− lnR).

The non-negativity of this function can be obtained from

u− 1− lnu ≥ 0 for any u > 0.

Using Itô’s formula, we have

dV (S,E, I1, I2, R)

=LV dt+ σ1(S − 1)dB1(t) + σ2(E − 1)dB2(t) + σ3(I1 − 1)dB3(t)

+ σ4(I2 − 1)dB4(t) + σ5(R− 1)dB5(t),

where

LV =
(

1− c

S

)
(Λ− µS − βS(I1 + I2)) +

(
1− 1

E

)
(βS(I1 + I2)− (ε+ µ)E)

+

(
1− 1

I1

)
(pεE − (µ+ α+ r1)I1) +

(
1− 1

I2

)
(qεE − (µ+ α+ r2)I2)

+

(
1− 1

R

)
(r1I1 + r2I2 − µR) +

1

2
(σ2

1 + σ2
2 + σ2

3 + σ2
4 + σ2

5)

=Λ + 5µ+ ε+ 2α+ r1 + r2 + cβ(I1 + I2)− cΛ

S
− βS(I1 + I2)

E
− pεE

I1
− qεE

I2

− r1I1 + r2I2
R

− µ(S + E + I1 + I2 +R)− α(I1 + I2)

+
1

2
(σ2

1 + σ2
2 + σ2

3 + σ2
4 + σ2

5).

Choosing c = µ
β , we can get

LV ≤ Λ + 5µ+ ε+ 2α+ r1 + r2 +
1

2
(σ2

1 + σ2
2 + σ2

3 + σ2
4 + σ2

5)
.
= F,

where F is a suitable positive constant, which is independent of S(t), E(t), I1(t),
I2(t), R(t) and t. Therefore, we have

dV ≤Fdt+ σ1(S − 1)dB1(t) + σ2(E − 1)dB2(t) + σ3(I1 − 1)dB3(t)

+ σ4(I2 − 1)dB4(t) + σ5(R− 1)dB5(t).
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Integrating both sides from 0 to τk ∧ T and taking expectations, then we have

EV ≤ V (S(0), E(0), I1(0), I2(0), R(0)) + FT.

For any positive k ≥ k1 we set Ωk = {τk < T}, and then it leads to P (Ωk) > η
2 .

Note that for every υ ∈ Ωk, there is at least one of (S(υ), E(υ), I1(υ), I2(υ), R(υ))
equaling 1

k or k, then

V ≥ (
1

k
− 1− ln

1

k
) ∧ (

1

k
− c− cln 1

ck
) or V ≥ (k − 1− lnk) ∧ (k − c− clnk

c
).

Therefore, we obtain

V (S(0), E(0), I1(0), I2(0), R(0)) + FT

≥E[IΩk
V (S(t), E(t), I1(t), I2(t), R(t))]

=P (Ωk)V (S(t), E(t), I1(t), I2(t), R(t))

>
η

2

[(
1

k
− 1− ln

1

k

)
∧ (

1

k
− c− cln 1

ck
)

]
∧ η

2

[
(k − 1− lnk) ∧ (k − c− clnk

c
)

]
,

where IΩk
is the indicator function of Ωk.

Setting k →∞, we have

∞ > V (S(0), E(0), I1(0), I2(0), R(0)) + FT =∞.

This completes the proof.

3.2. Extinction of the stochastic model

First, we give a lemma that can be proved by using the same arguments as that in
Lemma 3.1 of [41]. Thus, it is omitted here.

Lemma 3.2. Let (S(t), E(t), I1(t), I2(t), R(t)) be any solution of system (1.2) with

initial value. Assume µ >
σ2
max

2 . Then,

(i) lim
t→∞

S(t)
t = lim

t→∞
E(t)
t = lim

t→∞
I1(t)
t = lim

t→∞
I2(t)
t = lim

t→∞
R(t)
t = 0 a.s. Moreover,

lim
t→∞

lnS(t)
t = lim

t→∞
lnE(t)
t = lim

t→∞
lnI1(t)
t = lim

t→∞
lnI2(t)
t = lim

t→∞
lnR(t)
t = 0 a.s.;

(ii) lim
t→∞

1
t

∫ t
0
S(u)dB1(u) = lim

t→∞
1
t

∫ t
0
E(u)dB2(u) = lim

t→∞
1
t

∫ t
0
I1(u)dB3(u) =

lim
t→∞

1
t

∫ t
0
I2(u)dB4(u) = lim

t→∞
1
t

∫ t
0
R(u)dB5(u) = 0 a.s., where σmax = σ2

1 ∨ σ2
2 ∨

σ2
3 ∨ σ2

4 ∨ σ2
5 .

Set

Rs0
.
=

3εβΛ(ε+ µ)

µ[(ε+ µ)2(µ+ α+ r1 + 1
2σ

2
3) ∧ (ε+ µ)2(µ+ α+ r2 + 1

2σ
2
4) ∧ 1

2ε
2σ2

2 ]
.

Theorem 3.1. Let (S(t), E(t), I1(t), I2(t), R(t)) be the solution of model (1.2) with
any initial value (S(0), E(0), I1(0), I2(0), R(0) ∈ R5

+.



Dynamics of a Deterministic and Stochastic SEIR Epidemic Model 35

If Rs0 < 1, µ >
σ2
max

2 , then the solution (S(t), E(t), I1(t), I2(t), R(t)) of model (1.2)
satisfies

lim
t→∞

1

t

∫ t

0

S(u)du =
Λ

µ
,

lim
t→∞

1

t

∫ t

0

E(u)du

= lim
t→∞

1

t

∫ t

0

I1(u)du = lim
t→∞

1

t

∫ t

0

I2(u)du = lim
t→∞

1

t

∫ t

0

R(u)du = 0.

Proof. Let P (t) = εE(t) + (ε+ µ)(I1(t) + I2(t)). Applying Itô′s formula, we have

dlnP (t) =

(
εβS(t)(I1(t) + I2(t))− (ε+ µ)(µ+ α+ r1)I1(t)

εE(t) + (ε+ µ)(I1(t) + I2(t)

−(ε+ µ)(µ+ α+ r2)I2(t)

εE(t) + (ε+ µ)(I1(t) + I2(t)
+

ε2σ2
2E

2(t) + (ε+ µ)2σ2
3I

2
1 (t)

2[εE(t) + (ε+ µ)(I1(t) + I2(t))]2

+
(ε+ µ)2σ2

4I
2
2 (t)

2[εE(t) + (ε+ µ)(I1(t) + I2(t))]2

)
dt

+
εσ2E(t)dB2(t) + (ε+ µ)σ3I1(t)dB3(t) + (ε+ µ)σ4I2(t)dB4(t)

εE(t) + (ε+ µ)(I1(t) + I2(t))

≤εβS(t)

ε+ µ
dt− 1

[εE(t) + (ε+ µ)(I1(t) + I2(t))]2
[
(ε+ µ)2(µ+ α+ r1

+
1

2
σ2

3)I2
1 (t) + (ε+ µ)2(µ+ α+ r2 +

1

2
σ2

4)I2
2 (t) +

1

2
ε2σ2

2E
2(t)

]
dt

+
εσ2E(t)dB2(t) + (ε+ µ)σ3I1(t)dB3(t) + (ε+ µ)σ4I2(t)dB4(t)

εE(t) + (ε+ µ)(I1(t) + I2(t))

≤εβS(t)

ε+ µ
dt− 1

3(ε+ µ)2

[
(ε+ µ)2(µ+ α+ r1 +

1

2
σ2

3)

∧(ε+ µ)2

(
µ+ α+ r2 +

1

2
σ2

4

)
∧ 1

2
ε2σ2

2

]
+
εσ2E(t)dB2(t) + (ε+ µ)σ3I1(t)dB3(t) + (ε+ µ)σ4I2(t)dB4(t)

εE(t) + (ε+ µ)(I1(t) + I2(t))
.

(3.2)

It follows from system (1.2) that

dN(t) =[Λ− µN(t)− α(I1(t) + I2(t))]dt+ σ1S(t)dB1(t) + σ2E(t)dB2(t)

+ σ3I1(t)dB3(t) + σ4I2(t)dB4(t) + σ5R(t)dB5(t).
(3.3)

Integrating (3.3) from 0 to t, together with Lemma 3.2, we have

lim
t→∞

sup

(
1

t

∫ t

0

N(s)ds

)
≤ Λ

µ
a.s. (3.4)

Integrating (3.2) from 0 to t, together with (3.4), and noting Rs0 < 1, we get

lim
t→∞

sup
lnP (t)

t
≤ εβΛ

µ(ε+ µ)
− 1

3(ε+ µ)2

[
(ε+ µ)2(µ+ α+ r1 +

1

2
σ2

3)

∧(ε+ µ)2(µ+ α+ r2 +
1

2
σ2

4) ∧ 1

2
ε2σ2

2

]
< 0 a.s.,

(3.5)
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which implies lim
t→∞

E(t) = lim
t→∞

I1(t) = lim
t→∞

I2(t) = 0 a.s.

That is to say, the prepatent individual E(t) and the infective individuals I1(t)
and I2(t) will exponentially tend to zero with probability one.

By model (1.2), it is easy to see

lim
t→∞

R(t) = 0 a.s. (3.6)

It also means

lim
t→∞

1

t

∫ t

0

I1(u)du = lim
t→∞

1

t

∫ t

0

I2(u)du = lim
t→∞

1

t

∫ t

0

R(u)du = 0 a.s. (3.7)

On the other hand, applying Itô’s formula, we have

dN(t) =[Λ− µN(t)− α(I1(t) + I2(t)]dt+ σ1S(t)dB1(t) + σ2E(t)dB2(t)

+ σ3I1(t)dB2(t) + σ4I2(t)dB4(t) + σ5dB5(t).
(3.8)

Integrating (3.8) from 0 to t and then dividing by t on both sides, we can derive

N(t)−N(0)

t
=Λ− µ

t

∫ t

0

N(u)du− α

t

∫ t

0

I1(u)du− α

t

∫ t

0

I2(u)du

+
σ1

t

∫ t

0

S(u)dB1(u) +
σ2

t

∫ t

0

E(u)dB2(u) +
σ3

t

∫ t

0

I1(u)dB3(u)

+
σ4

t

∫ t

0

I2(u)dB4(u) +
σ5

t

∫ t

0

R(u)dB5(u).

(3.9)
Taking the superior limit on the both sides of (3.9) and combining with Lemma 3.2
and (3.7), one can obtain

lim
t→∞

1

t

∫ t

0

S(u)du =
Λ

µ
a.s.

This completes the proof.

3.3. Stationary distribution and ergodicity of the stochastic
model

The following lemma in [15] is crucial to proving the existence of a stationary
distribution.

Lemma 3.3. The Markov process X(t) has a unique ergodic stationary distribution
m(·), if there exists a bounded domain U ∈ Rd with regular boundary such that its
closure Ũ ⊂ Rd has the following properties.

(i) In the open domain U and some neighborhood thereof, the smallest eigenvalue
of the diffusion matrix A(t) is bounded away from zero.

(ii) If x ∈ Rd \ U , the mean time τ at which a path issuing from x reaches the
set U is finite, and supx∈KE

xτ <∞ for every compact K ⊂ Rd.
Moreover, if f(·) is a function integrable with respect to measure m, then

P

(
lim
T→∞

1

T

∫ T

0

f(Xx(t))dt =

∫
Rd

f(Xx(t))m(dx)

)
= 1,
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for all x ∈ Rd.

Remark 3.1. To verify condition (i), it is sufficient to prove that F is uniformly
elliptical in U , where F (u) = b(x)ux+ 1

2 trace(A(x)uxx). That is, there is a positive

number M such that
∑d
i,j=1 aij(x)ζiζj ≥M |ζ|2, x ∈ U, ζ ∈ Rd [10,30]. To validate

condition (ii), it is sufficient to show that there are a nonnegative C2-function V
and a neighborhood U such that for some K > 0, LV¡−K, x ∈ Rd \ U [42].

Set

R̂s0 =
36Λ2β2pqε2

28
(
µ+

σ2
1

2

)2 (
ε+ µ+

σ2
2

2

)2 (
µ+ α+ r1 +

σ2
3

2

)(
µ+ α+ r2 +

σ2
4

2

) .
Theorem 3.2. Assume that R̂s0 > 1. Then, model (1.2) has a unique stationary
distribution m(·), and it has the ergodic property.

Proof. The diffusion matrix of system (1.2) is given by

A =



σ2
1S

2(t) 0 0 0 0

0 σ2
2E

2 0 0 0

0 0 σ2
3I

2
1 0 0

0 0 0 σ2
4I

2
2 0

0 0 0 0 σ2
5R

2


.

Choosing

m = min
X(t)∈R5

+

{σ2
1S

2(t), σ2
2E

2(t), σ2
3I

2
1 (t), σ2

4I
2
2 (t), σ2

5R
2(t)},

we can get

5∑
i,j=1

aij(S(t), E(t), I1(t), I2(t), R(t)ζiζj

=σ2
1S

2(t) + σ2
2E

2(t) + σ2
3I

2
1 (t) + σ2

4I
2
2 (t) (3.10)

+ σ2
5R

2(t) ≥ m | ζ |2,

where (S(t), E(t), I1(t), I2(t), R(t)) ∈ Dδ, ζ ∈ R5
+, and Dδ is defined as

Dδ =

{
(S,E, I1, I2, R) ∈ R5

+ : δ ≤ S, I1, I2 ≤
1

δ
, δ2 ≤ R ≤ 1

δ2
, δ3 ≤ E ≤ 1

δ3

}
,

(3.11)
where δ > 0 is a sufficiently small number.

Thus, condition (i) in Lemma 3.3 is satisfied.
By Lemma 3.1, we have obtained that for any initial value (S(0), E(0), I1(0), I2(0),

R(0)) ∈ R5
+, and there is a unique global solutionX(t): (S(t), E(t), I1(t), I2(t), R(t)) ∈

R5
+. First, we define

V1 = −C1lnS − C2lnE − C3lnI1 − C4lnI2.
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Applying Itô’s formula, we have

LV1 =− C1

(
Λ

S
− µ− β(I1 + I2)− σ2

1

2

)
− C2

(
βS(I1 + I2)

E
− (ε+ µ)− σ2

2

2

)
− C3

(
pεE

I1
− (µ+ α+ r1)− σ2

3

2

)
− C4

(
qεE

I2
− (µ+ α+ r2)− σ2

4

2

)
=− ΛC1

S
− βC2S(I1 + I2)

E
− C3pεE

I1
− C4qεE

I2
+ βC1(I1 + I2)

+

(
µ+

σ2
1

2

)
C1 +

(
ε+ µ+

σ2
2

2

)
C2 +

(
µ+ α+ r1 +

σ2
3

2

)
C3

+

(
µ+ α+ r2 +

σ2
4

2

)
C4

=−
(

ΛC1

2S
+
βC2SI1
E

+
C3pεE

I1

)
−
(

ΛC1

2S
+
βC2SI2
E

+
C4qεE

I2

)
+ βC1(I1 + I2) +

(
µ+

σ2
1

2

)
C1 +

(
ε+ µ+

σ2
2

2

)
C2

+

(
µ+ α+ r1 +

σ2
3

2

)
C3 +

(
µ+ α+ r2 +

σ2
4

2

)
C4

≤− 6

(
Λ2C2

1β
2C2

2C3C4pqε
2

4

) 1
6

+ βC1(I1 + I2) +

(
µ+

σ2
1

2

)
C1

+

(
ε+ µ+

σ2
2

2

)
C2 +

(
µ+ α+ r1 +

σ2
3

2

)
C3

+

(
µ+ α+ r2 +

σ2
4

2

)
C4.

Let

(
µ+

σ2
1

2

)
C1 =

(
ε+ µ+

σ2
2

2

)
C2 = Λ,(

µ+ α+ r1 +
σ2

3

2

)
C3 =

(
µ+ α+ r2 +

σ2
4

2

)
C4 = Λ,

then

C1 =
Λ

µ+
σ2
1

2

, C2 =
Λ

ε+ µ+
σ2
2

2

,

C3 =
Λ

(µ+ α+ r1 +
σ2
3

2 )
, C4 =

Λ

(µ+ α+ r2 +
σ2
4

2 )
.
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As a result,

LV1

≤− 4Λ

 36Λ2β2pqε2

28
(
µ+

σ2
1

2

)2 (
ε+ µ+

σ2
2

2

)2 (
µ+ α+ r1 +

σ2
3

2

)(
µ+ α+ r2 +

σ2
4

2

)


1
6

+ 4Λ +
βb(I1 + I2)

µ+
σ2
1

2

=− 4Λ[(R̂s0)− 1] +
βΛ(I1 + I2)

µ+
σ2
1

2

.
=− λ+

βΛ(I1 + I2)

µ+
σ2
1

2

.

Then, we define

V2 =
1

θ + 1
(S + E + I1 + I2 +R)θ+1.

By simple calculation, we have

LV2 = Nθ[Λ− µN − α(I1 + I2)] +
θ

2
Nθ−1(σ2

1S
2 + σ2

2E
2 + σ2

3I
2
1 + σ2

4I
2
2 + σ2

5R
2)

≤ Nθ(Λ− µN) +
θ

2
Nθ+1σ2

max

= ΛNθ −Nθ+1

(
µ− θσ2

max

2

)
≤ P − 1

2

(
µ− θσ2

max

2

)
Nθ+1

≤ P − 1

2

(
µ− θσ2

max

2

)(
Sθ+1 + Eθ+1 + Iθ+1

1 + Iθ+1
2 +Rθ+1

)
,

where

P = sup
X(t)∈R5

+

{
ΛNθ − 1

2

(
µ− θσ2

max

2

)
Nθ+1

}
.

We define V3 as follows

V3 = −lnS − lnE − lnI1 − lnR.

Then, we have

LV3 =− Λ

S
+ β(I1 + I2)− βS(I1 + I2)

E
− pεE

I1
− r1I1 + r2I2

R
+ 4µ+ ε+ α

+ r1 +
1

2
(σ2

1 + σ2
2 + σ2

3 + σ2
5).

After that, we construct a C2-function Q : R5
+ → R in the following form

Q(S(t), E(t), I1(t), I2(t), R(t)) = MV1 + V2 + V3,
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where M > 0 satisfies −Mλ+W ≤ −2, and

W

= sup
X(t)∈R5

+

{−1

2

(
µ− θσ2

max

2

)(
Sθ+1 + Eθ+1 + Iθ+1

1 + Iθ+1
2 +Rθ+1

)
+ P + 4µ+ ε

+ α+ r1 +
1

2

(
σ2

1 + σ2
2 + σ2

3 + σ2
5

)
}.

It is easy to check

lim
k→∞,(S(t),E(t),I1(t),I2(t),R(t)∈R5

+\Uk

Q(S(t), E(t), I1(t), I2(t), R(t)) = +∞,

where Uk =
(

1
k , k
)
×
(

1
k , k
)
×
(

1
k , k
)
×
(

1
k , k
)
×
(

1
k , k
)
.

In addition, Q(S(t), E(t), I1(t), I2(t), R(t)) is a continuous function.
Thus, Q(S(t), E(t), I1(t), I2(t), R(t)) has a minimum point Qmin in the interior of
R5

+.
Then, we define a nonnegative C2-function V : R5

+ → R as

V(S(t), E(t), I1(t), I2(t), R(t)) = Q(S(t), E(t), I1(t), I2(t), R(t))−Qmin.

The differential operator L acting on the function V(S(t), E(t), I1(t), I2(t), R(t))
yields

LV

≤ −Mλ+
MβΛ

µ+ 1
2
σ2
1

+ (I1 + I2) + P −
1

2

(
µ−

θσ2
max

2

)(
Sθ+1 + Eθ+1 + Iθ+1

1 + Iθ+1
2

+Rθ+1
)
−

Λ

S
+ β(I1 + I2)−

βS(I1 + I2)

E
−
r1I1 + r2I2

R
−
pεE

I1
+ 4µ+ ε+ α+ r1

+
1

2

(
σ2
1 + σ2

2 + σ2
3 + σ2

5

)
≤−Mλ+

(
MβΛ

µ+ 1
2
σ2
1

+ β

)
(I1 + I2)−

1

2

(
µ−

θσ2
max

2

)(
Sθ+1 + Eθ+1 + Iθ+1

1 + Iθ+1
2

+Rθ+1
)
−

Λ

S
−
βSI1

E
−
r1I1

R
+ P + 4µ+ ε+ α+ r1 +

1

2
(σ2

1 + σ2
2 + σ2

3 + σ2
5).

In the set R5
+ \Dδ, Dδ is defined here in (3.11), we can choose the sufficiently

small δ such that

− Λ

δ
+W1 ≤ −1, (3.12)

−Mλ+

(
MβΛ

µ+ 1
2σ

2
1

+ β

)
δ +W2 ≤ −1, (3.13)

−Mλ+

(
MβΛ

µ+ 1
2σ

2
1

+ β

)
δ +W3 ≤ −1, (3.14)

− r1

δ
+W1 ≤ −1, (3.15)

− β

δ
+W1 ≤ −1, (3.16)

− 1

4

(
µ− θσ2

max

2

)
1

δθ+1
+W4 ≤ 1, (3.17)
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− 1

4

(
µ− θσ2

max

2

)
1

δθ+1
+W5 ≤ 1, (3.18)

− 1

4

(
µ− θσ2

max

2

)
1

δθ+1
+W6 ≤ 1, (3.19)

− 1

4

(
µ− θσ2

max

2

)
1

δ2θ+2
+W7 ≤ 1, (3.20)

− 1

4

(
µ− θσ2

max

2

)
1

δ3θ+3
+W8 ≤ 1, (3.21)

where Wi(i = 1, ..., 8) are positive constants which can be found from the following
inequations.

For the sake of convenience, we divide R5
+ \Dδ into the following domains

D1 = {X(t) ∈ R5
+, 0 < S < δ}; D2 = {X(t) ∈ R5

+, 0 < I1 < δ};
D3 = {X(t) ∈ R5

+, 0 < I2 < δ};
D4 = {X(t) ∈ R5

+, I1 ≥ δ, 0 < R < δ2};

D5 = {X(t) ∈ R5
+, S ≥ δ, I1 ≥ δ, 0 < E < δ2}; D6 = {X(t) ∈ R5

+, S >
1

δ
};

D7 = {X(t) ∈ R5
+, I1 >

1

δ
}; D8 = {X(t) ∈ R5

+, I2 >
1

δ
};

D9 = {X(t) ∈ R5
+, R >

1

δ2
}; D10 = {X(t) ∈ R5

+, E >
1

δ3
}.

Next, we will show LV ≤ −1 on R5
+ \Dδ, which is equivalent to proving it on

the above 10 domains.

Case 1. If X(t) ∈ D1, one can see

LV

≤ −Mλ+

(
MβΛ

µ+ 1
2σ

2
1

+ β

)
(I1 + I2)− 1

2

(
µ− θσ2

max

2

)(
Sθ+1 + Eθ+1 + Iθ+1

1

+Iθ+1
2 +Rθ+1

)
− Λ

S
− βSI1

E
− r1I1

R
+ P + 4µ+ ε+ α+ r1

+
1

2

(
σ2

1 + σ2
2 + σ2

3 + σ2
5

)
≤− Λ

S
+W1 ≤ −

Λ

δ
+W1 ≤ −1,

where

W1 = sup
X(t)∈R5

+

{−1

2

(
µ− θσ2

max

2

)(
Sθ+1 + Eθ+1 + Iθ+1

1 + Iθ+1
2 +Rθ+1

)
+ (

MβΛ

µ+ 1
2σ

2
1

+ β)(I1 + I2) + P + 4µ+ ε+ α+ r1 +
1

2

(
σ2

1 + σ2
2 + σ2

3 + σ2
5

)
}.

According to (3.12), we have LV ≤ −1, for all X(t) ∈ D1.
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Case 2. If X(t) ∈ D2, we get

LV

≤ −Mλ+

(
MβΛ

µ+ 1
2σ

2
1

+ β

)
(I1 + I2)− 1

2

(
µ− θσ2

max

2

)(
Sθ+1 + Eθ+1 + Iθ+1

1

+Iθ+1
2 +Rθ+1

)
− Λ

S
− βSI1

E
− r1I1

R
+ P + 4µ+ ε+ α+ r1

+
1

2

(
σ2

1 + σ2
2 + σ2

3 + σ2
5

)
≤−Mλ+

(
MβΛ

µ+ 1
2σ

2
1

+ β

)
I1 +W2 ≤ −Mλ+

(
MβΛ

µ+ 1
2σ

2
1

+ β

)
δ +W2 ≤ −1,

where

W2 = sup
X(t)∈R5

+

{−1

2

(
µ− θσ2

max

2

)(
Sθ+1 + Eθ+1 + Iθ+1

1 + Iθ+1
2 +Rθ+1

)
+

(
MβΛ

µ+ 1
2σ

2
1

+ β

)
I2 + P + 4µ+ ε+ α+ r1 +

1

2

(
σ2

1 + σ2
2 + σ2

3 + σ2
5

)
}.

According to (3.13), we have LV ≤ −1, for all X(t) ∈ D2.
Case 3. If X(t) ∈ D3, we derive

LV

≤ −Mλ+

(
MβΛ

µ+ 1
2σ

2
1

+ β

)
(I1 + I2)− 1

2

(
µ− θσ2

max

2

)(
Sθ+1 + Eθ+1 + Iθ+1

1

+Iθ+1
2 +Rθ+1

)
− Λ

S
− βSI1

E
− r1I1

R
+ P + 4µ+ ε+ α+ r1

+
1

2

(
σ2

1 + σ2
2 + σ2

3 + σ2
5

)
≤−Mλ+

(
MβΛ

µ+ 1
2σ

2
1

+ β

)
I2 +W3 ≤ −Mλ+

(
MβΛ

µ+ 1
2σ

2
1

+ β

)
δ +W3 ≤ −1,

where

W3 = sup
X(t)∈R5

+

{−1

2

(
µ− θσ2

max

2

)(
Sθ+1 + Eθ+1 + Iθ+1

1 + Iθ+1
2 +Rθ+1

)
+

(
MβΛ

µ+ 1
2σ

2
1

+ β

)
I1 + P + 4µ+ ε+ α+ r1 +

1

2

(
σ2

1 + σ2
2 + σ2

3 + σ2
5

)
}.

According to (3.14), we have LV ≤ −1, for all X(t) ∈ D3.
Case 4. If X(t) ∈ D4, one can obtain

LV

≤ −Mλ+

(
MβΛ

µ+ 1
2σ

2
1

+ β

)
(I1 + I2)− 1

2

(
µ− θσ2

max

2

)(
Sθ+1 + Eθ+1 + Iθ+1

1

+Iθ+1
2 +Rθ+1

)
− Λ

S
− βSI1

E
− r1I1

R
+ P + 4µ+ ε+ α+ r1

+
1

2

(
σ2

1 + σ2
2 + σ2

3 + σ2
5

)
≤− r1I1

R
+W1 ≤ −

r1

δ
+W1 ≤ −1.
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According to (3.15), we have LV ≤ −1, for all X(t) ∈ D4.
Case 5. If X(t) ∈ D5, we can obtain

LV

≤ −Mλ+

(
MβΛ

µ+ 1
2σ

2
1

+ β

)
(I1 + I2)− 1

2

(
µ− θσ2

max

2

)(
Sθ+1 + Eθ+1 + Iθ+1

1

+Iθ+1
2 +Rθ+1

)
− Λ

S
− βSI1

E
− r1I1

R
+ P + 4µ+ ε+ α+ r1

+
1

2

(
σ2

1 + σ2
2 + σ2

3 + σ2
5

)
≤− βSI1

E
+W1 ≤ −

β

δ
+W1 ≤ −1.

According to (3.16), we have LV ≤ −1, for all X(t) ∈ D5.
Case 6. If X(t) ∈ D6, one can see

LV

≤ − 1

4

(
µ− θσ2

max

2

)
Sθ+1 − 1

4

(
µ− θσ2

max

2

)
Sθ+1 − 1

2

(
µ− θσ2

max

2

)
(Eθ+1

+ Iθ+1
1 + Iθ+1

2 +Rθ+1) +

(
MβΛ

µ+ 1
2σ

2
1

+ β

)
(I1 + I2) + P + 4µ+ ε+ α+ r1

+
1

2

(
σ2

1 + σ2
2 + σ2

3 + σ2
5

)
≤− 1

4

(
µ− θσ2

max

2

)
Sθ+1 +W4 ≤ −

1

4

(
µ− θσ2

max

2

)
1

δθ+1
+W4 ≤ −1,

where

W4 = sup
X(t)∈R5

+

{−1

4

(
µ− θσ2

max

2

)
Sθ+1 − 1

2

(
µ− θσ2

max

2

)(
Eθ+1 + Iθ+1

1 + Iθ+1
2

+Rθ+1
)

+

(
MβΛ

µ+ 1
2σ

2
1

+ β

)
(I1 + I2) + P + 4µ+ ε+ α+ r1

+
1

2

(
σ2

1 + σ2
2 + σ2

3 + σ2
5

)
}.

In view of (3.17), we can conclude LV ≤ −1 on D6.
Case 7. If X(t) ∈ D7, we can see

LV

≤ − 1

4

(
µ− θσ2

max

2

)
Iθ+1
1 − 1

4

(
µ− θσ2

max

2

)
Iθ+1
1 − 1

2

(
µ− θσ2

max

2

)
(Sθ+1

+ Eθ+1 + Iθ+1
2 +Rθ+1) +

(
MβΛ

µ+ 1
2σ

2
1

+ β

)
(I1 + I2) + P + 4µ+ ε+ α+ r1

+
1

2

(
σ2

1 + σ2
2 + σ2

3 + σ2
5

)
≤− 1

4

(
µ− θσ2

max

2

)
Iθ+1
1 +W5 ≤ −

1

4

(
µ− θσ2

max

2

)
1

δθ+1
+W5 ≤ −1,
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where

W5

= sup
X(t)∈R5

+

{−1

4

(
µ− θσ2

max

2

)
Iθ+1
1 − 1

2

(
µ− θσ2

max

2

)(
Sθ+1 + Eθ+1 + Iθ+1

2

+Rθ+1
)

+
MβΛ

µ+ 1
2σ

2
1

(I1 + I2) + P + 4µ+ ε+ α+ r1 +
1

2

(
σ2

1 + σ2
2 + σ2

3 + σ2
5

)
}.

In view of (3.18), we can conclude LV ≤ −1 on D7.

Case 8. If X(t) ∈ D8, we can see

LV

≤ − 1

4

(
µ− θσ2

max

2

)
Iθ+1
2 − 1

4

(
µ− θσ2

max

2

)
Iθ+1
2 − 1

2

(
µ− θσ2

max

2

)
(Sθ+1

+ Eθ+1 + Iθ+1
1 +Rθ+1) +

(
MβΛ

µ+ 1
2σ

2
1

+ β

)
(I1 + I2) + P + 4µ+ ε+ α

+ r1 +
1

2

(
σ2

1 + σ2
2 + σ2

3 + σ2
5

)
≤− 1

4

(
µ− θσ2

max

2

)
Iθ+1
2 +W6 ≤ −

1

4

(
µ− θσ2

max

2

)
1

δθ+1
+W6 ≤ −1,

where

W6

= sup
X(t)∈R5

+

{−1

4

(
µ− θσ2

max

2

)
Iθ+1
2 − 1

2

(
µ− θσ2

max

2

)(
Sθ+1 + Eθ+1 + Iθ+1

1

+Rθ+1
)

+

(
MβΛ

µ+ 1
2σ

2
1

+ β

)
(I1 + I2) + P + 4µ+ ε+ α+ r1

+
1

2

(
σ2

1 + σ2
2 + σ2

3 + σ2
5

)
}.

In view of (3.19), we can conclude LV ≤ −1 on D8.

Case 9. If X(t) ∈ D9, one can obtain

LV

≤ − 1

4

(
µ− θσ2

max

2

)
Rθ+1 − 1

4

(
µ− θσ2

max

2

)
Rθ+1 − 1

2

(
µ− θσ2

max

2

)
(Sθ+1

+ Eθ+1 + Iθ+1
1 + Iθ+1

2 ) +

(
MβΛ

µ+ 1
2σ

2
1

+ β

)
(I1 + I2) + P + 4µ+ ε+ α+ r1

+
1

2

(
σ2

1 + σ2
2 + σ2

3 + σ2
5

)
≤− 1

4

(
µ− θσ2

max

2

)
Rθ+1 +W7 ≤ −

1

4

(
µ− θσ2

max

2

)
1

δ2θ+2
+W7 ≤ −1,
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where

W7 = sup
X(t)∈R5

+

{−1

4

(
µ− θσ2

max

2

)
Rθ+1 − 1

2

(
µ− θσ2

max

2

)(
Sθ+1 + Eθ+1 + Iθ+1

1

+Iθ+1
2

)
+

(
MβΛ

µ+ 1
2σ

2
1

+ β

)
(I1 + I2) + P + 4µ+ ε+ α+ r1

+
1

2

(
σ2

1 + σ2
2 + σ2

3 + σ2
5

)
}.

In view of (3.20), we can conclude LV ≤ −1 on D9.
Case 10. If X(t) ∈ D10, we can see

LV

≤ − 1

4

(
µ− θσ2

max

2

)
Eθ+1 − 1

4

(
µ− θσ2

max

2

)
Eθ+1 − 1

2

(
µ− θσ2

max

2

)
(Sθ+1

+ Iθ+1
1 + Iθ2 +Rθ+1) +

(
MβΛ

µ+ 1
2σ

2
1

+ β

)
(I1 + I2) + P + 4µ+ ε+ α+ r1

+
1

2

(
σ2

1 + σ2
2 + σ2

3 + σ2
5

)
≤− 1

4

(
µ− θσ2

max

2

)
Eθ+1 +W8 ≤ −

1

4

(
µ− θσ2

max

2

)
1

δ3θ+3
+W8 ≤ −1,

where

W8

= sup
X(t)∈R5

+

{−1

4

(
µ− θσ2

max

2

)
Eθ+1 − 1

2

(
µ− θσ2

max

2

)(
Sθ+1 + Iθ+1

1 + Iθ2 +Rθ+1
)

+
MβΛ

µ+ 1
2σ

2
1

(I1 + I2) + P + 4µ+ ε+ α+ r1 +
1

2

(
σ2

1 + σ2
2 + σ2

3 + σ2
5

)
}.

In view of (3.21), we can conclude LV ≤ −1 on D10.
Clearly, from above, we can draw that LV ≤ −1, for all X(t) ∈ R5

+ \Dδ.
Therefore, (ii) in Lemma 3.3 is satisfied.
This completes the proof.

4. A case study

In this section, we study the COVID-19 transmission case in Wuhan, Hubei, China.
In the following, we use numerical simulation to verify the correctness of the the-
oretical analysis, and give some suggestions on pandemic control according to the
real data.

4.1. Model validation

Since the outbreak of COVID-19 in Wuhan, China, in late December, 2019, the
Chinese government had quickly adopted a series of effective measures such as
keeping social distancing, contact tracing and testing, self-quarantine or isolation,
closing schools, and so on. Beside, up to now, the pandemic in China has been
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fundamentally controlled. Based on the official data and the study of some scholars,
with the assistance of simple data analysis, we get some important parameters in
the following table.

Table 2. Relevant variables and parameters values

Parameters Values References

β 2.65×10−8 [33]

Λ 100000 Estimate

µ 7.14×10−3 [6]

ε 0.2 [33]

p 0.6834 [33]

q 0.3166 [33]

α 0.0009 [33]

r1 0.1029 [33]

r2 0.2978 [33]

σ1 0.006 Estimate

σ2 0.1 Estimate

σ3 0.08 Estimate

σ4 0.08 Estimate

σ5 0.008 Estimate

S(0) 11081000 [33]

E(0) 600 [33]

I1(0) 410 [33]

I2(0) 30 [33]

R(0) 2 [33]

According to the data in Table 2 and our system (1.2), we simulate the spread of
the COVID-19 in the early days in China. By numerically computing the threshold
R̂s0 under the same set of parameter values as Table 2, we can obtain R̂s0 = 2.1279 >
1, and the long-term behaviors of the individuals at different stages are shown in
Figure 2. In this case, the pandemic will persist.
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Figure 2. The spread of the COVID-19 in Wuhan

Since the outbreak of the pandemic, the Chinese government has tried to control
the spread of the disease by sealing off cities and the traffic. The aim is to reduce
population mobility and cut down the number of exposed individuals. Therefore,
the contact transmission coefficient at the later stage of the pandemic is smaller.
We set β = 9.13 × 10−11, and keep the other parameters unchanged in Table 2.
Then, we can obtain the threshold Rs0 = 0.7950 < 1. In this case, the long-term
behaviors of the individuals at different stages are shown in Figure 3, which implies
that the pandemic will die out.
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Figure 3. The spread of the COVID-19 in Wuhan

4.2. Sensitivity analysis of Rs
0 and R̂s

0

In order to control the pandemic, it is important to explore the effect of different
factors for COVID-19 transmission. Thus, we study the relationship between some
parameters, Rs0, R̂s0 and the possible measures to control the spread of pandemic.
In what follows, except the parameter interval we set, all the other parameter values
are the same as those in Table 2.

The influence of the contact transmission rate β and the intensity of the white
noises σ2 on Rs0 are shown (see Figure 4(a)-(b)).
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Figure 4. The relationship between Rs
0 and the related parameters

The influence of the contact transmission rate β, the intensity of the white noise
σi, i = 1, 2, . . . , 4, and the recovery rate of the infected individuals r1, r2 on R̂s0
are shown (see Figure 5(a)-(e)).
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Figure 5. The relationship between R̂s
0 and the related parameters

The sensitivity analysis of Rs0 and R̂s0 above shows that reducing contact rate
(see Figure 4(a), Figure 5(a) and Figure 5(e)), improving recovery rate (see Fig-
ure 5(d)) and increasing the intensity of the white noise (see Figure 5(b)-(c)) can
inhibit the spread of disease. However, compared with the effect of reducing the
contact rate, the effect of increasing the intensity of the white noise is not relatively
noticeable (see Figure 5(e) and Figure 4(a)-(b)). Moreover, compared with the re-
covery rate, it is obvious that R̂s0 is more sensitive to variation in the value of β (see
Figure 5(a)). In conclusion, reducing contact rate is the most effective measure in
controlling the spread of the disease. This is also in line with the current response
to the pandemic.
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5. Concluding remarks

In this paper, we have proposed an SEIR epidemic model by considering asymp-
tomatic infective individuals. First, we construct the deterministic model (1.1), and
obtain the basic reproduction number R0. We show that the disease-free equilib-
rium is globally asymptotically stable, if R0 < 1, and the endemic equilibrium is
globally asymptotically stable, if R0 > 1. Due to the stochastic perturbations in
the environment, we further construct the stochastic model (1.2). By construct-
ing suitable Lyapunov functions, we establish sufficient criteria for the existence of
ergodic stationary distribution as well as the extinction of the pandemic. These
results show whether the pandemic will be cleared or persist.

We obtain some feasible coefficients from some of the published works on COVID-
19 transmission in Wuhan, Hubei, China as a case. Moreover, we measure the risk of
the pandemic by Rs0 and R̂s0. Our numerical results show that the contact transmis-

sion rate β strongly affects the value of Rs0 and R̂s0 compared with the influence of
recovery rates ri (i = 1, 2) and the intensities of the white noises σi (i = 1, 2, · · · , 5).
This indicates that prevention is the most effective measure in controlling the spread
of the pandemic.

As we know, quarantine and vaccination are important ways of controlling the
spread of diseases. What effect these factors will make is worthy of further study. At
the same time, it should be noted that we assume that the environmental influence
on the individuals is proportional to each state in our paper. In fact, there are some
different continuous and discontinuous stochastic perturbations like Lévy jumps
noises, which can be considered in the model. We leave these investigations for our
further work.
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