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Abstract In this paper, an algorithm of inertial type for approximating so-
lutions of split equality fixed point problems involving quasi-φ-nonexpansive
maps is proposed and studied in the setting of certain real Banach spaces.
Weak and strong convergence theorems are proved under some conditions.
Some applications of the theorems are presented. The results presented ex-
tend and improve some existing results. Finally, some numerical illustrations
are presented to support our theorems and their applications.
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1. Introduction

Let E1, E2 and E3 be real Hilbert spaces, and let D and Q be nonempty closed
and convex subsets of E1 and E2 respectively. Let S : E1 → E3, T : E2 → E3

be bounded linear mappings, and let B : E1 → E1 and A : E2 → E2 be nonlinear
mappings such that F (B) and F (A) are nonempty respectively. The split equality
fixed point problem (SEFPP) is to find

u ∈ F (B) and v ∈ F (A) such that Su = Tv. (1.1)

The problem was first introduced by Moudafi [29], and since then, it has been
studied by many researchers (see, e.g. [14, 33, 36, 37] and the references therein).
It allows asymmetric relations between the two variables u and v, and also covers
many problems such as decomposition methods for partial differential equations
(PDEs), and has applications in game theory and in intensity modulated radiation
therapy (see, e.g. [9]).

Remark 1.1. If E2 = E3 and T = I, the SEFPP (1.1) reduces to the split common
fixed point problem, which was first studied by Censor and Segal [10]. The problem
is to find u ∈ E1 with

u ∈ F (B) and Su ∈ F (A).
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Various algorithms for approximating solutions of the SEFPP (1.1) have been
introduced and studied by numerous researchers in Hilbert spaces and Banach s-
paces more general than Hilbert spaces (see, for example, [1,9,12,13,21,24] and the
references therein).

In 2019, Chidume, Romanus and Nyaba [22] considered the following algorithm
in the setting of some Banach spaces:

Algorithm 1.
x1 ∈ X1, y1 ∈ X2, zn ∈ JX3

(Sxn − Tyn);

xn+1 = J−1X1
(anJX1

un + (1− an)JX1
Bun), un = J−1X1

(JX1
xn − γS∗zn);

yn+1 = J−1X2
(anJX2

vn + (1− an)JX2
Avn), vn = J−1X2

(JX2
yn + γT ∗zn),

(1.2)

where X1 and X2 are Banach spaces that are uniformly smooth and 2-uniformly
convex with weak continuous duality maps JX1

and JX2
, respectively, X3 is a Ba-

nach space with duality map JX3 , A and B are quasi-φ-nonexpansive mappings, T
and S are bounded linear mappings, {an} is a sequence in (0, 1) and γ is a con-
stant that satisfies a certain condition. They proved that the sequence generated
by Algorithm 1 converges weakly to a solution of the SEFPP (1.1).

Many efforts have been devoted to improving the convergence speed of the exist-
ing iterative algorithms (see, e.g. [2, 8, 15, 16,18, 26]). An inertial algorithm was in-
troduced by Polyak [31] to accelerate the process of solving the convex minimization
problem. Since then, various iterative algorithms involving inertial extrapolation
term have been proposed by numerous authors (see [6–8,11,19,23,28,31]).

Motivated by the research on inertial acceleration technique, in this paper, we
incorporate the inertial extrapolation term in Algorithm 1 of Chidume, Romanus
and Nyaba [22] for approximating solution(s) of the SEFPP to get an algorithm
which accelerates approximation of solution of the SEFPP in some Banach spaces.
Unlike in the theorem Chidume, Romanus and Nyaba [22] where weak convergence
was established under weak sequencial continuity of the duality mappings, we prove
weak convergence of theorem in the setting of Opial spaces. In addition, we prove
strong convergence under semi-compactness condition on the quasi-φ-nonexpansive
maps. Furthermore, we give applications of our theorem to split equality equilibri-
um problem, split equality variational inclusion problem and split equality problem.
Finally, some numerical examples are given to support our theorems.

2. Preliminaries

Let X be a real Banach space which is smooth and let φ : X ×X → R be a map
given by

φ(r, s) = ‖r‖2 − 2〈r, Js〉+ ‖s‖2, ∀ r, s ∈ X, (2.1)

with J being the normalized duality map whose definition and properties on some
Banach spaces can be found in, for example, [4]. Alber [4] first introduced this
function, and since then numerous researchers have been studying it (see, for exam-
ple, [3,17,20,27]). By the definition of φ, we can see that if X is a real Hilbert space,
(2.1) reduces to φ(r, s) = ‖r − s‖2, ∀r, s ∈ X. Furthermore, given r, s, t, u ∈ X, φ
has the following properties

(‖r‖ − ‖s‖)2 ≤ φ(r, s) ≤ (‖r‖+ ‖s‖)2,
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φ(r, s) = φ(r, u) + φ(u, s) + 2〈u− r, Js− Ju〉

and

2〈r − s, Ju− Jt〉 = φ(r, t) + φ(s, u)− φ(r, u)− φ(s, t).

Defining a mapping V : X ×X∗ → R by

V (r, r∗) = ‖r‖2 − 2〈r, r∗〉+ ‖r∗‖2,
we can see by the definition of φ that

V (r, r∗) = φ(r, J−1r∗),∀r ∈ X, r∗ ∈ X∗.

Definition 2.1. A Banach space X is called Opial space (see, Opial, [30]) or satis-
fies an Opial condition, if given any sequence {yn} in X with weak convergent limit
y ∈ X, the following holds for x 6= y:

lim inf
n→∞

‖yn − y‖ < lim inf
n→∞

‖yn − x‖. (2.2)

Every real Hilbert space is known to be an Opial space (see, for example, Opial, [30]).
Furthermore, lp spaces, 1 < p <∞, are Opial spaces, but Lp spaces 1 < p <∞, p 6=
2 are not.

Remark 2.1. Gosse and Lami-Dozo [25] have shown that when a norm space has
a duality map which is weakly continuous, then it is an Opial space (i.e., it satisfies
condition (2.2)), but the converse implication is not true.

Definition 2.2. LetX be a reflexive, strictly convex and smooth real Banach space.
Let D be a nonempty convex and closed subset of X. The generalized projection
ΠD : X → D is defined by ũ = ΠD(u) ∈ D such that φ(ũ, u) = infv∈D φ(v, u).
The metric projection PD in a real Hilbert space coincides with the generalized
projection ΠD .

Definition 2.3. Let X1 and X2 be smooth, strictly convex and reflexive real
Banach spaces. The collection of linear and continuous maps B : X1 → X2

is a normed linear space. The adjoint operator B∗ : X∗2 −→ X∗1 is defined by
〈B∗u∗, v〉 = 〈u∗, Bv〉, ∀ v ∈ X1, u∗ ∈ X∗2 , and ‖B∗‖ = ‖B‖.

Definition 2.4. Let X be a real Banach space, and let ∅ 6= D ⊂ X be convex and
closed. The mapping S : D → D is

• quasi-φ-nonexpansive, if F (S) := {q ∈ D : Sq = q} 6= ∅ and

φ(p, Sq) ≤ φ(p, q) ∀ p ∈ F (S), q ∈ D.

• semi-compact, if any bounded sequence {yn} ∈ D with yn−Syn → 0 is given,
there exists a subsequence {ynk

} of {yn} such that {ynk
} strongly converges

to some y ∈ C.

• The mapping (I − S) : D → D is demiclosed at origin, when {yn} in D
converges weakly to y ∈ D and {(I − S)yn} strongly converges to 0, then
(I − S)y = 0.

Lemma 2.1 ( [3]). Let X be a smooth, strictly convex and reflexive real Banach
Space, and let X∗ be its dual space. Then,

V (r, r∗) + 2〈J−1r∗ − r, s∗〉 ≤ V (r, r∗ + s∗), ∀ r ∈ X, r∗, s∗ ∈ X∗.
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Lemma 2.2 ( [34]). If X is a smooth and 2-uniformly convex real Banach space,
then for all r, s ∈ X∗,

‖J−1r − J−1s‖ ≤ 1

k
‖r − s‖, for some k > 0.

Lemma 2.3 ( [4]). Let D 6= ∅ be a convex and closed subset of a smooth, reflexive
and smooth real Banach space X. Then,

φ(r,ΠDs) + φ(ΠDs, s) ≤ φ(r, s), ∀ r ∈ D, s ∈ X.

Lemma 2.4 ( [32]). Let X be a smooth, strictly convex and reflexive Banach space,
and let ∅ 6= D ⊂ X be convex and closed. If B : X → 2X

∗
is a maximal monotone

map with B−1(0) 6= ∅, then for d > 0, s ∈ X and r ∈ B−1(0), we have

φ(r,QB
d s) + φ(QB

d s, s) ≤ φ(r, s),

where QB
d : X → X is defined by QB

d y := (J + dB)−1Js.

Lemma 2.5 ( [5]). Let the sequences {Θn},{γn} and {βn} be in [0,∞) with

Θn+1 ≤ Θn + αn(Θn −Θn−1) + γn,

for all n ≥ 1,
∑∞

n=1 γn < +∞, and there exists β ∈ R with 0 ≤ βn ≤ β < 1, for all
n ∈ N. Then, the following holds:
(i)
∑

n≥1[Θn −Θn−1]+ < +∞, where [r]+ = max{r, 0}.
(ii) There exists Θ∗ ∈ [0,∞) such that limn→∞Θn = Θ∗.

Lemma 2.6 ( [34]). Let r > 0. X is uniformly convex, if and only if there exists a
continuous, strictly increasing function f : [0,∞)→ [0,∞) with f(0) = 0 such that

‖γu+ (1− γ)s‖2 ≤ γ‖u‖2 + (1− γ)‖s‖2 − γ(1− γ)f(‖u− s‖), (2.3)

for all γ ∈ [0, 1], and u, s ∈ Br(0), where Br(0) = {w ∈ X : ‖w‖ ≤ r}.

3. Main results

Here, we present the main results of this paper, and start by presenting the following
algorithm.

Algorithm 2.

Step 1: Choose the positive sequences {εn} and {an} satisfying
∑∞

n=1 εn < ∞,
0 < an < 1, 0 < γ < c

‖S‖2+‖T‖2 , c = min{c1, c2}, where c1, c2 are constants as in

Lemma 2.2.
Step 2: Select the arbitrary starting points x0, x1 ∈ X1, y0, y1 ∈ X2, α ∈ (0, 1)
and choose αn such that 0 ≤ αn ≤ ᾱn, where

ᾱn =


min

{
α, εn‖JX1

xn − JX1
xn−1‖−2, εnφ(xn, xn−1)−1,

εn‖JX2
yn − JX2

yn−1‖−2, εnφ(yn, yn−1)−1
}
, xn 6= xn−1, yn 6= yn−1;

α, otherwise.

Step 3: Compute

wn = J−1X1
(JX1

xn + αn(JX1
xn − JX1

xn−1))

and

xn+1 = J−1X1
(anJX1

un + (1− an)JX1
Bun), un = J−1X1

(JX1
wn− γS∗JX3

(Swn− Ttn).
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Step 4: Compute

tn = J−1X2
(JX2

yn + αn(JX2
yn − JX2

yn−1))

and

yn+1 = J−1X2
(anJX2

vn + (1− an)JX2
Avn), vn = J−1X2

(JX2
tn + γT ∗JX3

(Swn + Ttn).

Step 5: Set n = n+ 1 and go to Step 2.

Remark 3.1. Step 2 of Algorithm 2 can be easily implemented, since it only in-
volves the computation of two previous iterates xn−1 and xn, and yn−1 and yn.

3.1. Weak convergence

Theorem 3.1. Let X1 and X2 be 2-uniformly convex and uniformly smooth real
Banach spaces which satisfy the Opial condition, and let X3 be a smooth real Banach
space. Let S : X1 → X3 and T : X2 → X3 (with S, T 6= 0) be two bounded linear
maps with adjoints S∗ and T ∗ respectively. Let B : X1 → X1 and A : X2 → X2 be
quasi-φ-nonexpansive mappings. Suppose I−B and I−A are demiclosed at origin,
we set Ω = {(x, y) ∈ F (B)×F (A) : Sx = Ty} and assume Ω 6= ∅. Let the sequence
{(xn, yn)} be generated by Algorithm 2, and then {(xn, yn)} converges weakly to a
point (x∗, y∗) in Ω.

Proof. Let (x, y) ∈ Ω. Using Lemma 2.1 and fact that B is quasi-φ-nonexpansive,
we get

φ(x, xn+1) = φ(x, J−1X1
(anJX1

un + (1− an)JX1
Bun))

= V (x, anJX1
un + (1− an)JX1

Bun)

≤ anV (x, JX1
un) + (1− an)V (x, JX1

Bun)

= anφ(x, un) + (1− an)φ(x,Bun)

≤ φ(x, un).

(3.1)

Using Lemma 2.1, we obtain

φ(x, un) = φ(x, J−1X1
(JX1

wn − γS∗JX3
(Swn − Ttn))

= V (x, JX1wn − γS∗JX3(Swn − Ttn)

≤ V (x, JX1wn)

− 2γ〈J−1X1
(JX1

wn − γS∗JX3
(Swn − Ttn))− x, S∗JX3

(Swn − Ttn)〉
= φ(x,wn)− 2γ〈Sun − Sx, JX3

(Swn − Ttn)〉.

(3.2)

Therefore,

φ(x, xn+1) ≤ φ(x,wn)− 2γ〈Sun − Sx, JX3
(Swn − Ttn)〉. (3.3)

Similarly,

φ(y, yn+1) ≤ φ(y, tn)− 2γ〈Tvn − Ty, JX3
(Swn − Ttn)〉. (3.4)

Since Sx = Ty, by adding (3.3) and (3.4), we obtain

φ(x, xn+1) + φ(y, yn+1) ≤ φ(x,wn) + φ(y, tn)− 2γ〈Sun − Tvn, JX3
(Swn − Ttn)〉.

(3.5)
Using the properties of φ, we have

φ(x,wn) = φ(x, xn) + φ(xn, wn) + 2〈xn − x, JX1
wn − JX1

xn〉
= φ(x, xn) + φ(xn, wn) + 2αn〈xn − x, JX1

xn − JX1
xn−1〉

= φ(x, xn) + φ(xn, wn) + αnφ(xn, xn−1) + αnφ(x, xn)
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− αnφ(x, xn−1). (3.6)

φ(x,wn) = φ(x, J−1X1
(JX1xn + αn(JX1xn − JX1xn−1)))

= ‖x‖2 + ‖JX1xn + αn(JX1xn − JX1xn−1)‖2

− 2〈x, JX1xn + αn(JX1xn − JX1xn−1)〉
= ‖x‖2 + ‖JX1

xn + αn(JX1
xn − JX1

xn−1)‖2 − 2〈x, JX1
xn〉

− 2αn〈x, JX1
xn − JX1

xn−1〉
≤ ‖x‖2 + ‖xn‖2 + k2αn

2‖JX1
xn − JX1

xn−1‖2

+ 2αn〈JX1
xn − JX1

xn−1, xn〉 − 2〈x, JX1
xn〉 − 2αn〈x, JX1

xn − JX1
xn−1〉

= φ(x, xn) + k2αn
2‖JX1xn − JX1xn−1‖2

+ 2αn〈JX1xn − JX1xn−1, xn〉 − 2αn〈x, JX1xn − JX1xn−1〉. (3.7)

By (3.6) and (3.7), we get

φ(xn, wn) ≤ k2αn
2‖JX1xn − JX1xn−1‖2. (3.8)

Similarly,

φ(y, tn) ≤ φ(y, yn) + φ(yn, tn) + αnφ(yn, yn−1) + αnφ(y, yn)− αnφ(y, yn−1) (3.9)

and

φ(yn, tn) ≤ k2αn
2‖JX2

yn − JX2
yn−1‖2. (3.10)

Now,

− 2γ〈Sun − Tvn, JX3
(Swn − Ttn)〉

= −2γ‖Swn − Ttn‖2 − 2γ〈Sun − Tvn, JX3(Swn − Ttn)〉
+ 2γ〈Swn − Ttn, JX3(Swn − Ttn)〉
= −2γ‖Swn − Ttn‖2 + 2γ〈S(wn − un), JX3

(Swn − Ttn)〉
+ 2γ〈T (vn − tn), JX3

(Swn − Ttn)〉
= −2γ‖Swn − Ttn‖2 + 2γ〈wn − un, S∗JX3

(Swn − Ttn)〉
+ 2γ〈vn − tn, T ∗JX3

(Swn + Ttn)〉
= −2γ‖Swn − Ttn‖2

+ 2γ〈wn − J−1X1
(JX1

wn − γS∗JX3
(Swn − Ttn)), S∗JX3

(Swn − Ttn)〉
+ 2γ〈J−1X2

(JX2tn + γT ∗JX3(Swn + Ttn))− tn, T ∗JX3(Swn + Ttn)〉
= −2γ‖Swn − Ttn‖2

+ 2γ〈J−1X1
JX1

wn − J−1X1
(JX1

wn − γS∗JX3
(Swn − Ttn)), S∗JX3

(Swn − Ttn)〉
+ 2γ〈J−1X2

(JX2tn + γT ∗JX3(Swn + Ttn))− J−1X2
JX2tn, T

∗JX3(Swn + Ttn)〉

≤ −2γ‖Swn − Ttn‖2 +
2γ2‖S‖2

c
‖(Swn − Ttn))‖2 +

2γ2‖T‖2

c
‖(Swn − Ttn)‖2

= −
(

2γ − 2γ2(‖S‖2 + ‖T‖2)

c

)
‖(Swn − Ttn)‖2.

(3.11)
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Putting (3.6), (3.9) and (3.11) in (3.5) and 0 < γ < c
‖S‖2+‖T‖2 , we have

φ(x, xn+1) + φ(y, yn+1)

≤ φ(x, xn) + φ(y, yn)

+ αn[(φ(x, xn) + φ(y, yn))− (φ(x, xn−1) + φ(y, yn−1))]

− (2γ − 2γ2(‖S‖2 + ‖T‖2)

c
)‖(Swn − Ttn)‖2

+ k2αn
2(‖JX1xn − JX1xn−1‖2 + ‖JX2yn − JX2yn−1‖2)

+ αn(φ(xn, xn−1) + φ(yn, yn−1))

≤ φ(x, xn) + φ(y, yn)

+ αn[(φ(x, xn) + φ(y, yn))− (φ(x, xn−1) + φ(y, yn−1))]

+ k2αn(‖JX1
xn − JX1

xn−1‖2 + ‖JX2
yn − JX2

yn−1‖2)

+ αn(φ(xn, xn−1) + φ(yn, yn−1)).

(3.12)

From Lemma 2.5, we have that Θn(x, y) is convergent, where Θn(u, v) := φ(u, xn)+
φ(v, yn). Therefore, the sequences {xn} and {yn} are bounded. Consequently, we
have that {wn}, {tn}, {un} and {vn} are also bounded. By (3.12), we have

lim
n→∞

‖Swn − Ttn‖ = 0, (3.13)

‖un − wn‖ = ‖J−1X1
(JX1

wn − γS∗JX3
(Swn − Ttn))− J−1X1

(JX1
wn‖

≤ γ‖S‖
c
‖Swn − Ttn‖.

(3.14)

By (3.13) and (3.14), we obtain

lim
n→∞

‖un − wn‖ = 0.

Similarly,
lim
n→∞

‖vn − tn‖ = 0.

Since J−1X1
and J−1X2

are uniformly continuous on bounded sets, then from Algorithm
2, (3.8) and (3.10), we have

lim
n→∞

‖xn − wn‖ = 0

and
lim
n→∞

‖yn − tn‖ = 0.

Then,
‖vn − yn‖ ≤ ‖vn − tn‖+ ‖tn − yn‖ → 0 as n→∞.

From the definition of φ, the quasi-φ-nonexpansiveness of B and Lemma 2.6, we get

φ(x, xn+1) = φ(x, J−1X1
(anJX1

un + (1− an)JX1
Bun))

= ‖x‖2 − 2〈x, anJX1
un + (1− an)JX1

Bun〉
+ ‖anJX1

un + (1− an)JX1
Bun‖2

≤ |x‖2 − 2〈x, anJX1un + (1− an)JX1Bun〉
+ an‖un‖2 + (1− an)‖Bun‖2 − an(1− an)g1(‖JX1

un − JX1
Bun‖)

= anφ(x, un) + (1− an)φ(x,Bun)− an(1− an)g1(‖JX1
un − JX1

Bun‖)
≤ φ(x, un)− an(1− an)g1(‖JX1

un − JX1
Bun‖).



An Accelerated Algorithm for Solving Split Problems 61

By (3.2) and (3.6), we obtain

φ(x, xn+1) ≤ φ(x, xn) + αn(φ(x, xn)− φ(x, xn−1))

+ φ(xn, wn) + αnφ(xn, xn−1)

− 2γ〈Sun − Sx, JX3(Swn − Ttn)〉
− an(1− an)g1(‖JX1un − JX1Bun‖).

(3.15)

Similarly,
φ(y, yn+1) ≤ φ(y, yn) + αn(φ(y, yn)− φ(y, yn−1))

+ φ(yn, tn) + αnφ(yn, yn−1)

+ 2γ〈Tvn − Ty, JX3(Swn − Ttn)〉
− an(1− an)g2(‖JX2vn − JX2Avn‖).

(3.16)

From (3.15), (3.16), Sx = Ty, (3.11) and the condition on γ, we obtain

Θn+1(x, y) ≤ Θn(x, y) + αn(Θn(x, y)−Θn−1(x, y)

+ k2(αn‖JX1
xn − JX1

xn−1‖2 + αn‖JX2
yn − JX2

yn−1‖2)

+ αn(φ(xn, xn−1) + φ(yn, yn−1))

− an(1− an)[g1(‖JX1
un − JX1

Bun‖) + g2(‖JX2
vn − JX2

Svn‖)].
(3.17)

Since the limit of Θn(x, y) exists,

lim
n→∞

αn‖JX1
xn − JX1

xn−1‖ = 0 = lim
n→∞

αn‖JX2
yn − JX2

yn−1‖

and
lim

n→∞
αnφ(xn, xn−1) = 0 = lim

n→∞
αnφ(yn, yn−1),

and we obtain from (3.16) that

lim
n→∞

g1(‖JX1un − JX1Bun‖) = 0 = lim
n→∞

g2(‖JX2vn − JX2Avn‖).

Using the properties of g1 and g2, we get

lim
n→∞

‖JX1
un − JX1

Bun‖ = 0 = lim
n→∞

‖JX2
vn − JX2

Avn‖.

Since J−1X1
and J−1X2

are uniformly continuous on bounded sets,

lim
n→∞

‖un −Bun‖ = 0 = lim
n→∞

‖vn −Avn‖.

Since {xn} and {yn} are bounded, there exist the subsequences {xnk
} of {xn},

{ynk
} of {yn} such that xnk

⇀ x∗ and ynk
⇀ y∗ for some x∗ ∈ X1, y∗ ∈ X2.

Since
lim
n→∞

‖un − xn‖ = 0 = lim
n→∞

‖vn − yn‖,

we have unk
⇀ x∗ and vnk

⇀ y∗. By demiclosedness of I − B and I − A at 0, we
have x∗ ∈ F (B) and y∗ ∈ F (A). Since ‖.‖ is weakly lower semi continuous, we have

‖Sx∗ − Ty∗‖ ≤ lim inf
k→∞

‖Sxnk
− Tynk

‖ = lim
k→∞

‖Sxnk
− Tynk

‖ = 0,

which implies Sx∗ = Ty∗. Therefore, (x∗, y∗) ∈ Ω.
Let {xnj

} be an arbitrary subsequence of {xn} such that xnj
⇀ p as j → ∞.

We claim p = x∗. Suppose this claim is false, then p 6= x∗. Since X1 satisfies the
Opial condition, we get

lim inf
n→∞

‖xn − x∗‖ < lim inf
n→∞

‖xn − p‖ < lim inf
n→∞

‖xn − x∗‖,

and this contradiction gives p = x∗.
Hence, {xn} has a single weak cluster point. Therefore, xn ⇀ x∗.
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Following the similar argument, we get that {yn} converges weakly to y∗.

Corollary 3.1. Let X1 and X2 be lp spaces, 1 < p ≤ 2, and let X3 be a smooth
real Banach space. Setting Ω = {(x, y) ∈ F (B) × F (A) : Sx = Ty} and assuming
Ω 6= ∅, then the sequence {(xn, yn)} generated by Algorithm 2 converges weakly to
some point (x∗, y∗) in Ω.

3.2. Strong convergence

Theorem 3.2. Let X1, X2 and X3 be real Banach spaces as in Theorem 3.1. Let
S, T , A and B also be mappings as in Theorem 3.1 such that B and A are semi-
compact. Set Ω = {(x, y) ∈ F (B) × F (A) : Sx = Ty} and assume Ω 6= ∅. Then,
the sequence {(xn, yn)} generated by Algorithm 2 strongly converges to some point
(x∗, y∗) in Ω.

Proof. Following the same proof as that of Theorem 3.1, we obtain

lim
n→∞

‖un − xn‖ = 0 = lim
n→∞

‖vn − yn‖ (3.18)

and
lim
n→∞

‖un −Bun‖ = 0 = lim
n→∞

‖vn − Svn‖. (3.19)

Therefore, we have un ⇀ x∗ and also vn ⇀ y∗. Since B and A are semi-compact,
there exist the subsequences {unj

} of {un} and {vnj
} of {vn} such that unj

→ x∗

and vnj
→ y∗, as j → ∞. Let {uni

} be another subsequence of {un} such that
uni
→ q, as i→∞. Let

m := lim inf
n→∞

(φ(q, un) + φ(x∗, un)).

Then,
φ(q, un) + φ(x∗, un) = 2〈x∗ − q, JX1

un〉+ ‖q‖2 − ‖x‖2. (3.20)

Using (3.20), uni
→ q, as i→∞ and unj

→ x∗ as j →∞, we have

m = 2〈x∗ − q, JX1
x∗〉+ ‖q‖2 − ‖x‖2,

m = 2〈x∗ − q, JX1
q〉+ ‖q‖2 − ‖x‖2.

Thus, 〈x∗ − q, JX1
x∗ − JX1

q〉 = 0. Hence, x∗ = q. By the strict monotonicity of
JX1 , {un} strongly converges to x∗. From (3.18), {xn} converges strongly to x∗.
Using the similar argument, we have that {yn} converges strongly to y∗.

Corollary 3.2. Let X1 and X2 be lp spaces, 1 < p ≤ 2, and let X3 be a real
Banach space. Let S, T , A and B also be mappings as in Theorem 3.1 such that B
and A are semi-compact, and (I − B) and (I − A) are demiclosed at zero. Setting
Ω = {(x, y) ∈ F (B) × F (A) : Sx = Ty} and assuming Ω 6= ∅, then the sequence
{(xn, yn)} generated by Algorithm 2 strongly converges to (x∗, y∗) in Ω.

4. Applications

4.1. Split equality equilibrium problem (SEEP)

Let D and R be nonempty closed and convex subsets of a real Banach space X,
and let H : D ×D → R be a bifunction. The following problem:

find t ∈ D such that H(t, s) ≥ 0, ∀ s ∈ D
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is the Equilibrium Problem, and the solution set of the problem is denoted by
EP (H). To solve the equilibrium problem, the bifunction H is usually assumed to
satisfy the following conditions:

(1) H(r, r) = 0, for all r ∈ D.

(2) H is monotone, i.e., H(r, s) +H(s, r) ≤ 0, ∀r, s ∈ D.

(3) For each r, s, t ∈ D and k ∈ (0, 1), lim
k→0

H(kt+ (1− k)r, s) ≤ H(r, s).

(4) For each r ∈ D, s 7−→ H(r, s) is lower semi continuous and convex.

Next we define the split equality equilibrium problem (SEEP) which is a gener-
alization of the equilibrium problem. The SEEP is to find

r∗ ∈ D, s∗ ∈ R such that g(r∗, r) ≥ 0, f(s∗, s) ≥ 0 and Sr∗ = Ts∗,

for all r ∈ D, s ∈ R, where g : D × D → R, f : R × R → R are bifunctions that
satisfy (1) to (4). We denote the set of solutions of the split equality equilibrium
problem by Γ.

Lemma 4.1 ( [35]). Let X be a strictly convex, uniformly smooth and reflexive
Banach space, and let D be a nonempty closed and convex subset of X. Let H :
D×D → R be a bifunction which satisfies assumptions (1) to (4) above. Then, for
r ∈ X and d > 0, there exists a unique t ∈ D such that

H(z, y) +
1

d
〈s− t, Jt− Jr〉 ≥ 0, ∀s ∈ D.

Lemma 4.2 ( [35]). Let X be a smooth strictly convex and reflexive Banach space,
and let D 6= ∅ be a convex and closed subset of X. Let H : D × D → R be bif-
unctional which satisfies assumptions (1)-(4). Given r ∈ X and d > 0, if we define
a map Gd : X → D by

Gdr = {r ∈ D : H(t, s) +
1

d
〈s− t, Jt− Jr〉 ≥ 0, ∀s ∈ D},

the following holds

1. Gd is single-valued.

2. Gd is firmly nonexpansive type, i.e.,

〈Gdr −Gds, JGdr − JGds〉 ≤ 〈Gdr −Gds, r − s〉, ∀r, s ∈ X.

3. F (Gd) = EP (H).

4. EP (H) is convex and closed.

5. φ(r,Gdw) + φ(Gdw,w) ≤ φ(r, w),∀r ∈ F (Gd), w ∈ X.

Algorithm 3.

Step 1: Choose the positive sequences {εn} and {an} satisfying
∑∞

n=1 εn < ∞,
0 < an < 1, 0 < γ < c

‖S‖2+‖T‖2 , c = min{c1, c2}, where c1, c2 are constants as in

Lemma 2.2.
Step 2: Select the arbitrary starting points x0, x1 ∈ X1, y0, y1 ∈ X2, α ∈ (0, 1)
and choose αn such that 0 ≤ αn ≤ ᾱn, where

ᾱn =


min

{
α, εn‖JX1xn − JX1xn−1‖−2, εnφ(xn, xn−1)−1,

εn‖JX1yn − JX1yn−1‖−2, εnφ(yn, yn−1)−1
}
, xn 6= xn−1, yn 6= yn−1;

α, otherwise.
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Step 3: Compute

wn = J−1X1
(JX1

xn + αn(JX1
xn − JX1

xn−1))

and

xn+1 = J−1X1
(anJX1

un +(1−an)JX1
Gdun), un = J−1X1

(JX1
wn−γS∗JX3

(Swn−Ttn).

Step 4: Compute

tn = J−1X2
(JX2

yn + αn(JX2
yn − JX2

yn−1))

and

yn+1 = J−1X2
(anJX2

vn + (1− an)JX2
Tdvn), vn = J−1X2

(JX2
tn + γB∗JX3

(Swn + Ttn).

Step 5: Set n = n+ 1 and go to Step 2.

Theorem 4.1. Let X1, X2 and X3 be real Banach spaces as in Theorem 3.1. Let
D and R be nonempty convex and closed subsets of X1 and X2, respectively, and
let g : D × D → R and f : R × R → R be bifunctions which satisfy (1) to (4)
with EP (g) 6= ∅ and EP (f) 6= ∅. Let S and T be bounded operators as in Theorem
3.1. Assuming that Ω is nonempty, we let the sequence {(xn, yn)} be generated by
Algorithm 3, where Gdr = {t ∈ D : g(t, s) + 1

d 〈s− t, JX1
t−JX1

r〉 ≥ 0,∀s ∈ D}, r ∈
X1, Tdv = {x ∈ R : h(x, s) + 1

d 〈s − x, JX2x − JX2v〉 ≥ 0,∀s ∈ R}, v ∈ X2, d > 0.
Then, the sequence {(xn, yn)} converges weakly to (x∗, y∗) in Ω.

Proof. Letting B = Gd and A = Td, by Lemma 4.2, we obtain that A and B
are quasi-φ-nonexpansive. Therefore, by Theorem 3.1 and Lemma 4.2(3), the result
follows.

4.2. Split equality variational inclusion problem (SEVIP)

Let N : X1 → 2X1
∗

and M : X2 → 2X2
∗

be maximal monotone operators. The
split equality variational inclusion problem is to

find x ∈ N=1(0), y ∈M−1(0) such that Sx = Ty,

where N−1(0) = {z ∈ X1 : 0 ∈ Nz} and M−1(0) = {x ∈ X2 : 0 ∈Mx} are the sets
of zeros of N and M respectively.

Algorithm 4.

Step 1: Choose the positive sequences {εn} and {an} satisfying
∑∞

n=1 εn < ∞,
0 < an < 1, 0 < γ < c

‖S‖2+‖T‖2 , c = min{c1, c2}, where c1, c2 are constants as in

Lemma 2.2.
Step 2: Select the arbitrary starting points x0, x1 ∈ X1, y0, y1 ∈ X2, α ∈ (0, 1)
and choose αn such that 0 ≤ αn ≤ ᾱn, where

ᾱn =


min

{
α, εn‖J +X1xn − JX1

xn−1‖−2, εnφ(xn, xn−1)−1,

εn‖JX2
yn − JX2

yn−1‖−2, εnφ(yn, yn−1)−1
}
, xn 6= xn−1, yn 6= yn−1;

α, otherwise.

Step 3: Compute

wn = J−1X1
(JX1

xn + αn(JX1
xn − JX1

xn−1))

and

xn+1 = J−1X1
(anJX1

un+(1−an)JX1
Qr

Nun), un = J−1X1
(JX1

wn−γS∗JX3
(Swn−Ttn).
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Step 4: Compute

tn = J−1X2
(JX2

yn + αn(JX2
yn − JX2

yn−1))

and

yn+1 = J−1X2
(anJX2

vn+(1−an)JX2
Qr

Mvn), vn = J−1X2
(JX2

tn+γT ∗JX3
(Swn+Ttn).

Step 5: Set n = n+ 1 and go to Step 2.

Theorem 4.2. Let X1, X2 and X3 be real Banach spaces as in Theorem 3.1. Let
N : X1 → 2X

∗
1 and M : X2 → 2X

∗
2 be maximal monotone mappings with N−1(0)

and M−1(0) nonempty. Let S : X1 → X3 and T : X2 → X3 be operators as in
Theorem 3.1. Setting Ω = {(x, y) ∈ N−1(0) × M−1(0) : Sx = Ty} 6= ∅, then
the sequence {(xn, yn)} generated by Algorithm 4, where QN

r = (JX1
+ rN)−1JX1

,
QM

r = (JX2
+ rM)−1JX2

, Sr > 0 converges weakly to (x∗, y∗) in Ω.

Proof. Putting B = QN
r and A = QM

r , by Lemma 2.4, QN
r and QM

r are quasi-φ-
nonexpansive. Therefore, by Theorem 3.1, the result follows.

4.3. Split equality problem

The problem of finding

x ∈ D, y ∈ R such that Sx = Ty

is called split equality problem.

Algorithm 5.

Step 1: Choose the positive sequences {εn} and {an} satisfying
∑∞

n=1 εn < ∞,
0 < an < 1, 0 < γ < c

‖S‖2+‖T‖2 , c = min{c1, c2}, where c1, c2 are constants as in

Lemma 2.2.
Step 2: Select the arbitrary starting points x0, x1 ∈ X1 y0, y1 ∈ X2, α ∈ (0, 1) and
choose αn such that 0 ≤ αn ≤ ᾱn, where

ᾱn =


min

{
α, εn‖JX1xn − JX1xn−1‖−2, εnφ(xn, xn−1)−1,

εn‖JX2yn − JX2yn−1‖−2, εnφ(yn, yn−1)−1
}
, xn 6= xn−1, yn 6= yn−1;

α, otherwise.

Step 3: Compute

wn = J−1X1
(JX1

xn + αn(JX1
xn − JX1

xn−1))

and

xn+1 = J−1X1
(anJX1

un+(1−an)JX1
ΠDun), un = J−1X1

(JX1
wn−γB∗JX3

(Swn−Ttn).

Step 4: Compute

tn = J−1X2
(JX2

yn + αn(JX2
yn − JX2

yn−1))

and

yn+1 = J−1X2
(anJX2

vn + (1− an)JX2
ΠRvn), vn = J−1X2

(JX2
tn + γT ∗JX3

(Swn + Ttn).

Step 5: Set n = n+ 1 and go back to Step 2.

Theorem 4.3. Let X1, X2 and X3 be real Banach spaces as in Theorem 3.1. Let
S and T be operators as in Theorem 3.1.
Assuming Ω 6= ∅, then the sequence {(xn, yn)} generated by Algorithm 5 converges
weakly to some (x∗, y∗) in Ω.
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Proof. Letting B = ΠD and A = ΠR, by Lemma 2.3,ΠD and ΠR are quasi-φ-
nonexpansive. Therefore, by Theorem 3.1, the result follows.

5. Numerical illustrations

We shall examine the effect of the inertial extrapolation term in accelerating the
convergence of the sequence generated by our algorithm.

Example 5.1.

In Algorithms 1 and 2, set X1 = R, X2 = R2 and X3 = R2. Let S : X1 → X3 and
let T : X2 → X3 be defined by

Sr =
(r

2
,
r

3

)
, T (r, s) =

(
r + 2s, s

)
respectively. We can easily verify

S∗(n,m) =
n

2
+
m

3
and T ∗(n,m) = (n, 2n+m).

Let B : X1 → X1 and A : X2 → X2 be defined by

Bx =
r

2
and A(n,m) = (n,m).

We can see that B and A are quasi-φ-nonexpansive, and (I − B) and (I − A) are
demiclosed at zero. Furthermore, since 0 ∈ Ω, then Ω 6= ∅. In Algorithm 1, we take
γ = 0.35, an = 1

(n+1)2 , and in Algorithm 2, we take εn = 1
n6 , αn = ᾱn, α = 0.5,

γ = 0.3, an = 1
(n+1)2 . It is clear that the parameters satisfy the hypothesis of these

Algorithms. Using a tolerance 10−8 and setting n = 100, we have the following:

Table 1. Numerical results of Example 5.1

Table of values choosing x0 = −2, x1 = 1, y0 = (1,−2)T and y1 = (0, 3)T

Algorithm 1 Algorithm 2

n |xn+1 − xn| ‖yn+1 − yn‖ |xn+1 − xn| ‖yn+1 − yn‖

1 0.421 6.1527 0.3072 5.2737

10 0.7097 3.9251 0.0274 0.1429

20 0.4238 2.3554 7.33E-4 0.0209

30 0.2546 1.4165 1.68E-4 0.0122

40 0.1531 0.8524 9.43E-5 0.0072

50 0.0921 0.513 5.53E-5 0.0042

60 0.0554 0.3088 3.25E-5 0.0024

70 0.0333 0.1859 1.91E-5 0.0014

80 0.0201 0.1119 1.12E-5 8.64E-4

90 0.0121 0.0673 6.62E-6 5.08E-4

99 0.0076 0.0426 4.11E-6 3.15E-4
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Table 2. Numerical results of Example 5.1

Table of values choosing x0 = 0.5, x1 = 1.5, y0 = (1, 0)T and y1 = (0, 0.25)T

Algorithm 1 Algorithm 2

n |xn+1 − xn| ‖yn+1 − yn‖ |xn+1 − xn| ‖yn+1 − yn‖

1 0.608 1.2187 0.6015 1.0446

10 0.1665 0.9209 0.0066 0.0332

20 0.0993 0.5526 1.22E-4 0.0011

30 0.0597 0.3323 9.128E-6 5.52E-4

40 0.0359 0.2 4.27E-6 3.25E-4

50 0.0216 0.1203 2.49E-6 1.91E-4

60 0.013 0.0724 1.46E-6 1.12E-4

70 0.0078 0.0436 8.63E-7 6.62E-5

80 0.0047 0.0262 5.07E-7 3.89E-5

90 0.0028 0.0158 2.98E-7 2.29E-5

99 0.0017 0.01 1.85E-7 1.42E-5

Figure 1(a). Some iterates of
Algorithms 1 and 2

choosing x0 = −2 and x1 = 1

Figure 1(b). Some iterates of
Algorithms 1 and 2

choosing x0 = 0.5 and x1 = 1.5

Figure 2(a). Some iterates of
Algorithms 1 and 2

choosing y0 = (1,−2)T and
y1 = (0, 3)T

Figure 2(b). Some iterates of
Algorithms 1 and 2

choosing y0 = (1, 0)T and
y1 = (0, 0.25)T

Example 5.2.

In Algorithms 1 and 2, set X1 = X2 = X3 = L2([0, 1]). Let S : X1 → X3 and
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T : X2 → X3 be defined by

(Sy)(g) = 2y(g) and (Ty)(g) = y(g), then S∗ = S and T ∗ = T.

Let B : X1 → X1 and A : X2 → X2 be defined by

(By)(g) =
y(g)

8
and (Ay)(g) =

y(g)

2
.

Obviously, B and A are semi-compact and quasi-φ-nonexpansive, and (I −B) and
(I−A) are demiclosed at zero. Furthermore, since zero belongs to Ω, Ω is nonempty.
In Algorithm 1, we take γ = 0.1, a = 0.2, and Algorithm 2, we take εn = 1

(n+1)6 ,

αn = ᾱn, α = 0.8, γ = 0.01, an = 1
(n+1)2 . It is clear that the parameters satisfy the

hypothesis of our theorems.
Using a tolerance 10−8 and setting n = 7, we have the following.

Table 3. Numerical results of Example 5.2

Table of values choosing x0(t) = t2 + 1, x1(t) = t, y0(t) = t+ 1 and y1(t) = sin t

Algorithm 1 Algorithm 2

n |xn+1 − xn| ‖yn+1 − yn‖ |xn+1 − xn| ‖yn+1 − yn‖

1 0.5389 0.2917 0.6122 0.6483

2 0.2161 0.2041 0.1768 0.1097

3 0.0501 0.1156 0.0259 0.006

4 0.0597 0.0617 0.002 0.0097

5 0.0015 0.032 4.7E-4 0.0044

6 2.83E-4 0.1203 2.39E-4 0.0013

Table 4. Numerical results of Example 5.2

Table of values choosing x0(t) = 2, x1(t) = et, y0(t) = t+ cos t and y1(t) = 1 + 2 sin t

Algorithm 1 Algorithm 2

n |xn+1 − xn| ‖yn+1 − yn‖ |xn+1 − xn| ‖yn+1 − yn‖

1 1.2562 0.8021 1.4127 1.6572

2 0.5044 0.566 0.4223 0.3769

3 0.1173 0.3222 0.068 0.0767

4 0.0217 0.1722 0.0083 0.0285

5 0.0037 0.0895 0.0014 0.0108

6 6.88E-4 0.0458 5.17E-4 0.0038
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Figure 3(a). Some iterates of
Algorithms 1 and 2

choosing x0(t) = t2 + 1 and x1(t) = t,

Figure 3(b). Some iterates of
Algorithms 1 and 2

choosing x0(t) = 2 and x1(t) = et

Figure 4(a). Some iterates of
Algorithms 1 and 2

choosing y0(t) = t+ 1 and y1(t) = sin t

Figure 4(b). Some iterates of
Algorithms 1 and 2

choosing y0(t) = t+ cos t and
y1(t) = 1 + 2 sin t
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