Journal of Nonlinear Modeling and Analysis http://jnma.ca; http://jnma.ijournal.cn
Volume 5, Number 1, March 2023, 108-122 DOI:10.12150/jnma.2023.108

Regularity Criteria to the Axially Symmetric
Tropical Climate Model without Swirl
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Abstract In this paper, we consider the Cauchy problem of the axially sym-
metric tropical climate model with fractional dissipation. By using the energy
method, we establish a new regularity criteria for the axisymmetric solutions
of the 3D Tropical climate model without swirl.
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1. Introduction

In this paper, we consider the following 3D tropical climate model:

Opu+ (u- V)u — pA**u + Vp + div (v @ v) = 0, (1.1)
o+ (u- Vv —vA?Po + Vo + (v-V)u =0, (1.2)
Op + (u- V) —nA?79 + div v = 0, (1.3)
divu =0, (1.4)
(u,v,9)(x,0) = (uo, vo, %0), (1.5)

where the vector fields u(x,t) = (u1(x,t), ua(x,t),us(x,t)) and v(x,t) = (v1(x,t),
va(x,1),v3(x,t)) denote the barotropic mode and the first baroclinic mode of the
velocity, respectively. The scalar functions p(x,t) and ¢ (x,t) represent the pressure
and the temperature, respectively. The fractional Laplacian operator A = (—A)%

is defined by means of the Fourier transform

Aof(e) = [e[* f(e),

where f denotes the Fourier transform of f. In this paper, we set the constants

p=v=n= 1.
In this paper, we study the axially symmetric solution of systems (1.1)-(1.5)
without swirl (ug = 0). Then, u,v and ¥ can be rewritten as

u(x,t) = ur(r, z,t)e, +u (r, 2, t)e,, (1.6)
’U(X, t) = UT(Tazvt)er +’L}Z(’I’,Z,t)€z, (17)
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(x,t) = ¥(r, 2,1). (1.8)

Here,
x = (2,9, 2), (1.9)
eTZ(; %,0), 692(—%,%0)7 e, = (0,0,1), (1.10)

r=+/22+1y% (z,9,2) = (rcosf,rsinb, z). (1.11)
By direct calculation, we obtain
w(x,t) =V X u=wre, +wpey + w,e,,

where

1
wy = —0,Ug, Wy = OUuy — Oplly, W, = ;&(rug).

Now, we review some related results about the tropical climate models (1.1)-
(1.5). By presenting a new quantity and utilizing a logarithmic Gronwall inequality,
Li and Titi [11] established the global existence of strong solutions for systems (1.1)-
(1.5) without diffusion, when « = 8 =1 and > 0, v > 0, n = 0. The global
well-posedness of classical solutions for the tropical climate model was obtained by
Wan [16] in terms of the dissipation of the first baroclinic model of the velocity
and some damping terms at small initial data. By applying the “weakly nonlinear”
energy estimates, the global regularity of a tropical climate model with greatly weak
dissipation of the barotropic mode was proved by Ye in [20] (a« > 0, S =~v =1
and p, v, n > 0). Recently, the global regularity for the 3D tropical climate model
with fractional diffusion on barotropic mode has been established by Zhu [23], when
o> % and p > 0, v =71 = 0. Then, by using the spectral analysis, the global well-
posedness of the 2D viscous tropical climate model with only one damping term
was proved by Ma and Wan in [14], when p = v = 1, = 0. The d-dimensional
system (1.1) was studied by Ma [13], and he got the local smooth solution. More
studies on tropical climate models are available in [4,5,19,21].

When ¢ = 0, the tropical climate models (1.1)-(1.5) become the axisymmetric
MHD system. For the axisymmetric MHD system, the global well-posedness of
classical solutions was established by Lei [7]. Then, the solutions of 3D axially sym-
metric incompressible MHD equation was studied by Wang and Wu in [17]. Also,
they established a group of global smooth solutions by using the one-dimensional
solutions. Lately, the regularity criteria for the axisymmetric solutions to MHD
equation was established by Li and Yuan [10], as long as wg € L94(0,T; LP(R3)) and
ng € L4(0,T; LP(R3)) satisfy

T
L, 32 3
/ (lwoll%s + [Imell%,)dt < oo, with > Jrg <2, 5 <P < o0, 0 < g < o0
0

For more studies about MHD system, we can refer to [12,15].

Systems (1.1)-(1.5) reduce to the Navier-Stokes Equations, when ¢ = v = 0. For
more studies about the axisymmetric Navier-Stokes equation, we can refer to [2,6—
9,17,18]. Here, we only introduce some related results. First of all, some regularity
criteria about the axisymmetric weak solutions of 3D Navier-Stokes equations were
established by Chae-Lee in [2]. Then, Wei [18] obtained the global regularity for the
solutions of the axially symmetric Navier-Stokes system, as long as |[rug(r, z,t)||
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or [[rug(r, z,t)|| e (<) 18 smaller than some dimensionless quantity of the initial
data. The result improves the one in Lei and Zhang [9]. In this paper, we will
establish regularity criteria of the solutions to the axially symmetric tropical climate
model without swirl.

Our main results are as follows.

Theorem 1.1. Fora > %, 8>1,v > 3, assume (ug, vo, %) € H'(R?), divug =0

and (u,v,¥)(x,t) is an azially symmetric solution of systems (1.1)-(1.5). If
3 2 3 3 3
wy € LI(0,T; LP), with ———— + - <2, max{—,—,—,1} <p <3,
( ) pmin{a, 8,7} ¢ {30 B’ 2y J
(1.12)
then the solution remains smooth in [0,T].

This paper is organized as follows. In Section 2, we will give some notations and
lemmas which will be used in the proof of Theorem 1.1. We will give the proof of
Theorem 1.1 in Section 3.

2. Notations and lemmas

First of all, let us recall the relation between cylindrical coordinates and rectangular
Cartesian coordinates. The Laplacian operator A and the gradient operator V in
the cylindrical coordinate are

1 1
A= 872 + ;87 + 7,_72892 + 627 V= 67'87' + 67_7989 + ezazv (21)

where u and v are axially symmetric vector fields. We set @ = u.e, + u,e,, v =
vrer +v.e. and the corresponding curl component w. Also, we set © = wre, +w,e,
and V = (9, 0,).

Lemma 2.1 (See [10]). Let v and v be axially symmetric vector fields. Then we
have

Viil® = |22 2 + [V, 2 + [Vu.|?, (2.2)
r
V6|2 = |22 4 Vo, |2 + [V 2. (2.3)
r
Then, let us review the classical Biot-Savart law. For more details, please refer
to [3,22].

Lemma 2.2 (See [10]). (Biot-Savart law) Let u € L*(R®) be a smooth vector field
with div u = 0. Then the corresponding curl component w = curl u € L*(R3)
vanishes sufficiently rapid as x — co. Then, divw = 0, and the velocity

u(z) = . M(z — y)w(y) dx. (2.4)
R
Here, kernel M is a 3 x 3 matrix.

Then, the gradient of u can be denoted by w and the singular integral

Vu = Cw(zr) + K *xw(x), (2.5)
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where the kernel K () is the matrix valued functions homogeneous of degree -3,
defining a singular integral operator by convolution. C'is a constant matric. Hence,

HVUHLP <C ||w||L1’ , 1<p<oo. (2.6)

Lemma 2.3 (See [10]). Let u be the azially symmetric vector field with div u = 0.
Its corresponding vorticity w = curl u vanishes sufficiently fast as + — oo in R3.
Then, Vu can be represented as the singular integral form

Vi(z) = Crwges(z) + [K1 * (wpeg)](z), (2.7)

where the kernel K1(xz) and Ky(z) are the matriz valued functions homogeneous of
degree -3. Cy and Cy are the constant matrics, and f * g(z) = [ps f(z —y)g(y)dy
denote a standard convolution operator.

The proof is anology with the proof of Lemma 2 of [1]. It is easy to have
U = Urer + uye, and div o = 0. Therefore, we get

curl @ = (0,u, — Orus)ep = wyeg. (2.8)

This completes the proof of Lemma 2.3. By (2.5), (2.6) and Lemma 2.3, we have
the lemma as follows.

Lemma 2.4 (See [10]). Suppose 1 < p < oco. Then

IVl Lo < Cllwsll o - (2.9)

3. Proof of the main theorem

In this section, we prove Theorem 1.1. First, we state a priori L? -estimates for
systems (1.1)-(1.5). Multiplying (1.1)-(1.3) by (u,v,%) after integration by parts
and using V - u = 0, we have the following energy estimate
T 2
(22 + I + 90132 +2 [ (Au@ + [a%0]], +1460122) as
=[luoll? + llvoll 72 + Ilvol 72 -

Multiplying (1.1), (1.2) and (1.3) by —Au, —Av and — A4t respectively, integrating
them in R? and adding the resulting equations, we obtain

(3.1)

1d
sa

:/ (u-V)u-Audw—l—/(v-V)v-Audm+/(V-v)v~Audw
R3 R3 R3

IVull3e + IVl + IVeI132) + A a7, + [|A%+ 0]}, + |7,

R3

—l—/ (u-V)U~Avdac—|—/ (v-V)u-Avdw—F/ (u-V)Y- Ay dr
R3 R3
=L+ L+ I3+ 14+ Is + I,

where we have used the following fact

Vi - Av dx + / (V- v)Ay dz =0, (3.3)
R3

R3



112 X. Chen & X. Cheng

/Rgdz'v(v®v).Audx:/Rg(v.V)v.Auder/ (V- v)v- Au da. (3.4)

R3

Next, we will estimate Iy — Is by applying (1.6)-(1.11) and the Sobolev inequality.
For I, we have

1
I :/ (u-Vu-Au dx = / [(wrOptty + u 0,y ) (02U, + —0Opuy + 02u,)
R3 R3 r
1
+ (urOpuy + u0,us) (02u, + =0pu, + 02u,)] dx
r
1
:/ (Uraruf“azur + ;uraTurarur + Urarurafur + uzazurﬁ,%ur (3.5)
RS
1 1
+ ;uzazur&ur + uzé?zuTafuT + uTaTuzafuz + ;urﬁruz&uz
1
+ u,,aruzﬁfuz + uzazuzafuz + ;uzﬁzuzﬁruz + uzﬁzuzﬁfuz) dx
Then, further simplifying (3.5) by using integration by parts, we obtain
I :/ [(Brur)gazuz - (8zuT)23Tur — (8zu,«)282uz — Opy Opt, 05Uy
]R3
— 0,0, u,Optt, — (0u.)?0.u, + %(&ur)z + %(&nuz)ﬂ dx (3.6)
:=K1+K2+K3+K4+K5+K6+K7+K8,
where we have used the fact
Veu= L4 O, + O =0, (3.7)
Now, we estimate the right-hand side of (3.6) one by one. By Lemma 2.1, we get
U
|7|7|arur|7|azur‘>‘aruz|’|azuz| < |Vu| (38)
First of all, we estimate K7 as follows
|Kq| = |/ (Orur)?0,u, dx
R(}

2
S N0zuall o [Vull ] 2o,

5 (3.9)
< C 10zl IIVuHL ||A“+1U||
H e el L sl A2
Here, we have used the following Gagliardo-Nirenberg inequality
3
IVul| 2 <C ||Vu||L2”" HAH“uHQP" e <p< oo (3.10)
Lp-1
Similary, we have
|K3| + | K| < CHazuzlle IIVUIIZLP
(3.11)

||A°““uHL2 +C0sus | T |V e
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[ K|+ [Ka| + [Ks| < C|0zur| IIVUII2 22

, (3.12)

S Al + C 10 B vl

and
| K7| + | Ks| < \VUH
(3.13)
2;7(1 3
HAO‘“uHLQ +C H V2 .
Hence, combining the above estimates (3.9), (3.11)—(3.13)7 we obtain
1< 2 IA 2, + ORI FE + o B + |75 ol

(3.14)

We will estimate the I>. Applying a method similar to I;, we have

1
I =/ (v-V)v-Audz = / (vrawrafur + ~0,.0,0,.0,u, + UT&UT(‘??UT
R3 R3 T

1 1
+ vzazwﬁfur + ;vzazvrarur + vzﬁzvragur + vrﬁrvzafuz + ;vr&,vzaruz

1
+ vr&,vz@guz + ”uzﬁzvzafuz + ;vzazvzc?ruz + vzazvzﬁfuz) dx

(3.15)
Then, we can further simplify (3.15) by using integration by parts and (3.7). We
obtain

I :/ [%arvzazvr — Opur (0p0,)? — Opty 0200, — 0,1,0,0,0p0,
]RB

— O,U,0,0,0,V, — Opty.0r.0, 0,1, — O,Up0,0,0,0, — 8zu,,8§vrvz
— 0, U, 0,0, 0,0, — 8ruz8,%vzvr — 0,u,0,0,v,0, — Opt,0,v,0,v,
— 0pu,0,0,v,v0, — O,u(0,v,)* — 0,u,0%v,v,] da

=L+ o+ I3+ I+ I5+...+ 5.

(3.16)

Now, we estimate the right-hand side of (3.16) one by one. First, from Lemma 2.1,
we get

Uy

|7"|87“u7“‘7‘azur|7|aruz|a|azuz| < |VU‘ (317)

and v
|7r|, |8TUT|7 Iazvrla |arvz|7 |8Z’Uz| < |VU‘ (3.18)

We estimate J; and J> as follows
|J1] = |/ &arvzazu, dx|
rR3 T

U
<= ||Vv||2L
'

(3.19)

e, IvolF Az

QPB 3

frmw e

||VU||L27
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|Jo| = |/ (0rv, )%, di|
R3
< |1Ovur| L» ||VU||2LP
< C||(9 Ul HVUHLz HABHUH
||AB+1U||L2 +C'|o, ur||2p5 = Vo2,

where we have used the followmg Gagliardo-Nirenberg inequality
Tl IRECMIE
P
HVUHL% < CVl,2 HA ||L‘; , 3 <p< oo
Similary, we get
[Jal +[J7| < C HaZuTHLP IIWHQLP

S ||AﬂJrl 152 +C - ur||2”" *IVolze,

[Jo| + [ 12 < Cllﬁruzllm IIVUIIQLP
!IAﬂ“vHH e Nl A

and )
[Ji1] + |J1a] < C ||3zUzHLp HVUH 2

HAB+1 off. +C - uzllz”ﬁ *IVollze -

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

It is different to estimate J3 and Jg. By using the Young inequality and the Holder

inequality, we have

| 3|+ |Js| = |/ Opty02vpv, dx| + |/ Or 0,000, dz|

< C 10| o V]| o | V20|
< C0vurll 1o IVl 2 ||v2

L5p 6

<C Ha urll Lo IIVvlle HAB“UH

<5 (A, + € o 902

Here, we have also used the following Sobolev inequality

Byll78 3 <
9] e, < 1Pl 2002 < p <
Similary, we have
[ J5] + | Js| <C ”azuTHLp oll s [[ V2]
<5 AP0l + C 0. rnw 3 Hwniz,

(3.25)

(3.26)

(3.27)
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| o] + |13 <C ||8ruz||LP loll e HV2

(3.28)
||Aﬁ+1 o3, +C 0, uzllz”ﬁ Vol
and )
|J15| <C ”azuZ”Lp vl o IV
1 (3.29)
2ps
< HAff+ W||2, + C 0w 757 (Vo] 2s .
Therefore, combining (3.19)-(3.29) with (3.16), we have
L] <= A’8+1U +C ‘ 21713 3 Oty 2pl‘3 3
12| H I;. +C + 10rur [l (3.30)
+ [|0- UTHM "+ 10n UZHW 4 10-u zHM ) IVolls -
For I3, we have
I3 z/ (V-v)v-Aude = / [(Orvr + oy 0,0, ) (v 02, + U—T&»ur—l-
R3 R3 T r
0. 0%, + v,0%u, + %&uz +v,0%u,)] dx
r
:/ (UT&UT@?W + vlarv,«&nur + Urﬁrvrﬁfw + vz&«vrﬁfuz—k
R3 " (3.31)

2 2
v—z(?rvr@ruz + v,0,v,0%u, + v—T@TQuT + (ﬂ)QaruT + U—Tafur—&—
r r r r

Uz Ur UrUz

Up 9
7vzaruz + 2 Opt, +

afuz + vrazvzafur + or 0,0, 00U+
r
000,02, + v,0,v,0%u, + vz Oru 0,0, +v,0,v,0%u,) da.
T

Further simplifying (3.31) by using integration by parts and (3.7), we obtain

vrvz

IS :/ [(%) ar Uy + 87’“2 + %821}287"'07’ - (arvr)Zarur - arurafvrvr
R3
— 0,u,0, vrﬁ UT — vTa u,.0,0,v, — O uzarvra v, — O, u282vrvz — 0,u,0, 8 UV,
— 20,u,0, vr - 2 L 0,040, — Opi 0, vr — Opu, 0y vz — 0,u,0, vr
T T r r
— ('Luzc')zvz— - vrarazvzarur — 0,u,0,0,0,v, — 8zurafvzvr — Op,0,0,0,0,
r

— Op,0p0,0,0, — 0,U,0,0,0,0, — (‘Luzagvzvz} dz

:M1+M2+...+M23.
(3.32)
We will estimate the right-hand side of (3.32) one by one. First, we estimate M;
as follows

[Mi| + |Ma| + M| = \/ )20rur dz| + I/ (Orvr)?Orur da| + |2/ 8Turarv,«— dz|

< Clorur|| Ly V0l L2

2pB—3
< 10l 1902 HAﬁ+1

L2

2p
< L2, + clomn B Ivuz,
(3.33)
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where we used the following Gagliardo-Nirenberg inequality

QZBES 1453 23;s 3
P
IVoll 2o < ClIVoll 27 [[AT P 757 25 SP <o

Similary, we get

[ Ms| + |Miz| + [Mig| <C ||3zur||Lp IIWII2 2,

<7 HAB+1 172 +Cllo: w75 IVl

|Ma| + |[Ms| + |Mus| + [Mya] + |[Mao| < C||0ruz| 1» ||Vv||2 2

S0 ||Aﬂ+1 152 +C o uzllw *IVolze,

ez

IVol|? 2
Lr Lp—1

2p[1‘ 3

<o Il + 0 [ 2|77 vl

and

|My5| + | Mig| + [Maz| SCH@zqum ||VUH2LP

_72

||Aﬁ+1 HLQ +C0. uz||2”B Vo3, .

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

It is different to estimate My and Mi;. By applying the Young inequality and the

Holder inequality, we have

Ms| + [Mye]| = | / By, 20,0, da] + | / 0,0,0.0: 0,y d
R3 R3

<C ”arUTHLp ||v||L6 ||V2

<C ”aTUTHLp ||VU||L2 HVZ

< CIIC') Ul o IIWIILz ||A/3“v||

2
HAﬁ“vHLz + 9, uTHM TVl -
Here, we have also used the following Gagliardo-Nirenberg inequality

3<p<3

[9%0], oo, <OVl a2, 5=

Similary, we have

| M| + [ M| SCHazurHLp olls [[ V2]l

HAﬁ“ I3, +Cllo. uruw ; ||W||12 ,

M| + |Maa| <C [0zl 0] 6 || V20

L5P

AP |2, 4 C 0us| B |Vv||iz

<7

(3.39)

(3.40)

(3.41)

(3.42)
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and ,
| Miol + [Mas| <C[|0:uzll, 0] s [V
1 (3.43)
2pB—3
anM+Mm+mw%nf\Nwm.
Hence, combining the above estimates (3.33)-(3.43), we obtain
et B8
13| <f AP+ 1|2, +C(l R e
(3.44)

102+ 0B + 10al ) (901

For I, applying a derivation similar to Iy, we have
1
Iy :/ (u-V)v-Avdx = / (U 0y 0,070y + —1p 0y 0,00y + Uy 0p0, 00,
R3 R3 T
1 1
+ uzazvrafvr + ;uzﬁzvrarvr + uzazvragvr + urarvzﬁfvz + ;urarvzarvz

1
+ urarvzagvz + uzazvzafvz + ~u,0,v,0,v, + uzazvzafvz) dx
r
(3.45)

Further simplifying (3.45) by using integration by parts and (3.7), we obtain

Iy :/ [—0rtr (0pv,)? — Optty (0p02)* — 0,001, 00, — Opvy 0,0, 0p
R3

_ (azvr)QazUz - (82:712)23,3% — azvzazurarﬂz _ a’rvzazvzaruz] dx (346)
::Nl+N2+N3+N4+N5+N6+N7+N8,

We will estimate the right-hand side of (3.46) one by one. First, we estimate Ny
and N, as follows

|N1| + |N2| = |/ (3Tvr)25‘rur dz| + l/ (arvz)237,ur dz|
R3 R3

2
< 0rtr]l o VOI 22,

s N (3.47)
<mmwmwwmﬁ 420
||Aﬂ+1 ;. +Clo, urllw = Vo2,
where we have used the following Gagliardo-Nirenberg inequality
Vo]l = <C ||Vvl|L2"f’ }|A1+%|y;gﬁ , % <p < oo (3.48)
Similary, we have
[ Na| + |Ns| SCllaruzlle IIVvllzf
) (3.49)
35 (857, + C 10 | 190
[Ns| + [N7| <C|0zur]|Lp HWH 2
. ) (3.50)
waM+Hp+CW%A”ﬁWVWm
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and )
[N + [No| <C 10zl s VIl 22,
(3.51)

S@ HAB+1’UHL2 +C 0. uz||2p3 SV, .

Therefore, putting (3.47)-(3.51) to (3.46), we have

(L] <3 HABHUHLQ +C([|9- UTIIQ”" " +119- urllw [ uzllw ’

2p8

10wl 27 ) IVl ze

(3.52)

For I5, applying a derivation similar to I, we have

I :/ (v-Vu-Avdx = / [(v-Oruy + vzazur)(afvr + %&vr + 8§vr)
RS

R3

+ (v Oruy +v,0,u,) (02, + %&avz + 0%v,)]
= /R3 (v,,aru,ﬁfvr + %Brurarvr + UTarurﬁgvr + vzazurafvr (3.53)
+ %@urawr + vzazuragvr + Uraruzafvz + vf@ruz&avz
+ 0, 0pu,0%v, +v,0,u,0%v, + %@uz@rvz +v,0,u,0%v,) dx
Then, further simplifying (3.53) by using integration by parts and (3.7), we obtain
Iy = /11&3 (0,-0p 1 020, + Uf@,u,ﬂ&nvr + 0.0 20, — 8,005 0pv + Oy, 0y 0,00,

+ 0y 0,0, 0,0, + vz(?zuTafvr + vraruzﬁzvz + &aruzarvz + vraruzafvz
r

— 0p0,0,u, 0,0, + Opu,0pv,0,v, + 0pu,0,0,V,V, + vzazuzagvz) dx

I:P1+P2+...+P14.
(3.54)
We will estimate the right-hand side of (3.54) one by one. First, we estimate P as
follows

|Py| = |/ o Oyundyvy dal
r3 T

2
< 10rtr|| o V0Nl 22,

2?[3_3 1 3 (3.55)
< Clla Ul o [ VOll 57 ||AB+ U||”ﬁ
<& HABHUHLQ +C o, UTHW *IVollZa
where we have used the following Gagliardo-Nirenberg inequality
3
D 1 P
IVoll 20 < CHV@HLz e A +%|\zf '35 <p < oo. (3.56)
Similary, we get
2
| P4l + | Ps| SC(Ilf)rurlle F10zurll o) VOl 20,
(3.57)

D D 2
5 ||AﬁJrl 152 + CUounl 7 P 0 ) 19012
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|Pol + [Pua|+[Prz| < C([0ruzll o + 10-uzll 1) HWH27
(3.58)
1 B+1 2p5 3 2p5 3

B A va + CI0ru= ) 7577 + 10:u 1 757 V0]l -

It is different to estimate P; and Ps;. By using the Sobolev inequality, we have

|Py| + | P3| = |/}RS Opt, 0200, da| + |/]R<3 Ort,. 0200, dx|
< Clorurll o [0l o [V

< CllOrur| Lo IIVUIILQ HV2 (3.59)
<C ||<9 tr |y IIVUIIL ||A’B+1U||p’3
HAB+1 o3, +C 0, w90l
Here, we have also used the following Gagliardo-Nirenberg inequality
9%, e, < IV Ao, 2spsa oo
Similary, we have
| Ps| + |P8|+|P10| + |Pia| < C(l0rurll o + 1070 10) 0]l o || V20|
) (3.61)
\|A5+ o7, +Clo, wHM A+ lor uz||2”5 ’) ||VU||L2,
|Pr| + [ Pra SC(IlazurHLP + 110z o) 0l o | V20|
, (362
HAB+1 5. + o ur\lw T+ ||5z zHW IVl .
Hence, combimng the above estimates (3.55)-(3.62), we obtain
5] < 1A ol + OO0 |57 + 10|57 + 0.0, 2
(3.63)
+ 0. uzllg”ﬁ ) IVollzs -
We will estimate Is. For I, applying a derivation similar to I5, we have
1
k:/(wvwwmwm:/Xm@¢+%@w@w+f@¢+£w
R3 R3
Uy .64
— [ 002+ SO0 + w002 + w00+ o0 PO
R
+u.0.90%p) dx
Further simplifying (3.64) by using integration by parts and (3.7), we obtain
o= [ (006700, = 0.00.0,0, — (901, ~ 0,60.00,u.] da
RS (3.65)

=01 + Q2 + Q3 + Qa.
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We estimate the right-hand side of (3.65) one by one. First, we estimate () as
follows

il = / (Op)2ru, da
R3
< 10 [V 2,

(3.66)
< C 10t Lo IIWJHLz ||A”+1w!|
SIS+ C o |27 IV
where we have used the following Gagliardo-Nirenberg inequality
3
VIl 2o, < Cllvlﬁllfm HA”WIIZ’” )5y S (3.67)
Similary, we have
|Qa| Scllazurl\m IIV¢II27
) (3.68)
||A”+1¢||L2 +C')|0: uTHz” TV,
|Qs| <C|[0zuzl| s ||WJ||27
) (3.69)
||A”+1w!|L2 +C')|9: uz||2” IVl
and
2
|Qal <COruall o VYT 22,
) (3.70)
< I )2, + Clual 577 Vs
Therefore, putting (3.66)-(3.70) to (3.65), we have
o] <* 1A 9|7, + O, url\z‘” P+ 10r uz||2‘°” C+ 0. urllz‘” ’
(3.71)

o) V)2

Combining the above estimates (3.14), (3.30), (3.44), (3.52), (3.63), (3.71) with
(3.2), we obtain

d 2 2 2 2 2 2
2 IVl +1Vollze + VL) + A | + [[AP ||+ (AT ]
2 {o.B8,7} min{o min{a
H ZPZ:I:,I::E‘OCOB W’}Y 3 + ||a UT”% + ||a UZ”%
. % o, % \V/ 2 \v/ 2 \V/ 2
+ 10zur || 5 + [0 uz 15 JUIVul[ze + [[Vollze + [V[|72).
(3.72)

From Lemma 2.1, we get

|%|7 10yt 195t 10y, |9sus| < |V (3.73)
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By using (3.73), Lemma 2.3 and Lemma 2.4, we have

<

ol

d
S (IVulZe + 9015 + IV9l5) + A ][5, + 4%, +[]A 1,

22pr_ni?{aéﬂ,;/}3 2p min{a,B8,7} 2p min{o,B8,v}
pmin{a, 8,7} — Spmin{o,B,7}—3 Spmin{a,B,7}—3
) + [|0rur| 15 + [|0ruz|l 15

L
2p min{o,B8,v} 2p min{o,B8,v}

o 0:u | BT 0, BT ([9ul e + Vol + V)

2pmin{a,B,v}

|| Zpmin{a,B,71 -3 2 2 2
<C|VallZZ™™ " ([Vullze + Vol + 1Va)lz2)

2p min{a, 8,7}

Spmin{a,B,7} -3 2 2 2
<Clwoll 5™ (IVullze + [IVUllze + [IV[l72).

(3.74)

This completes the proof of Theorem 1.1 by (3.1) and Gronwall’s inequality.
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