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Ground States for Singularly Perturbed Planar
Choquard Equation with Critical Exponential

Growth∗

Limin Zhang1,2, Fangfang Liao3, Xianhua Tang2 and Dongdong Qin2,†

Abstract In this paper, we are dedicated to studying the following singularly
Choquard equation

−ε2∆u+ V (x)u = ε−α [Iα ∗ F (u)] f(u), x ∈ R2,

where V (x) is a continuous real function on R2, Iα : R2 → R is the Riesz
potential, and F is the primitive function of nonlinearity f which has critical
exponential growth. Using the Trudinger-Moser inequality and some delicate
estimates, we show that the above problem admits at least one semiclassical
ground state solution, for ε > 0 small provided that V (x) is periodic in x or
asymptotically linear as |x| → ∞. In particular, a precise and fine lower bound

of f(t)

eβ0t2
near infinity is introduced in this paper.

Keywords Choquard equation, critical exponential growth, Trudinger-Moser
inequality, ground state solution
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1. Introduction

This paper is devoted to studying the following Choquard equation{
−ε2∆u+ V (x)u = ε−α [Iα ∗ F (u)] f(u), x ∈ R2,

u ∈ H1(R2),
(1.1)
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where ε > 0 is a parameter, α ∈ (0, 2) and Iα : R2 → R is the Riesz potential
defined by

Iα(x) =
Γ
(
2−α
2

)
πΓ
(
α
2

)
2α|x|2−α

:=
Aα

|x|2−α
, ∀ x ∈ R2\{0},

F (t) =
∫ t

0
f(s)ds, V ∈ C(R2, (0,∞)) and f : R → R satisfy the following basic

assumptions:
(V0) 0 < infx∈R2 V (x) := V0 ≤ V (x) ≤ supx∈R2 V (x) := V∞ < ∞;

(V1) V (x) is 1-periodic in x1, x2;

(V2) infx∈R2 V (x) := V0 < V∞ := lim|x|→∞ V (x);

(F1) f ∈ C(R,R) and there exists β0 > 0 such that

lim
|t|→∞

|f(t)|
eβt2

= 0, for all β > β0

and

lim
|t|→∞

|f(t)|
eβt2

= +∞, for all β < β0;

(F2) |f(t)| = o(|t|α/2) as |t| → 0.

The majority of the literature focuses on the study of equation (1.1) in RN (N ≥
3). Let us recall some of them as follows. The singularly perturbed elliptic equation

−ε2∆u+ V (x)u = ε2−N−α [Iα ∗G(x, u)] g(x, u)

appears in the theory of Bose-Einstein condensation, and is used to describe the
finite-range many-body interactions between particles. Here, G(x, u) =

∫ u

0
g(x, s)ds.

For more related results, see, for example, [6, 7, 12,14,15,17,18,22] and so on.
In particular, the above equation is the so-called Choquard equation, when

N = 3. For ε =1, α = 1, V (x) ≡ 1 and g(x, u) = u, the autonomous equation

−∆u+ u =
[
I1 ∗ |u|2

]
u in R3

arises from the quantum theory of a polaron by Pekar [27]. Choquard [20] applied it
as an approximation to the Hartree-Fock theory of one-component plasma. In [24],
Penrose proposed it as a model of self-gravitating matter. We also mention [38],
where the fractional case is treated. Concerning other mathematical and physical
background on Choquard problems, see [3,25,28,29,31,33,34] the references therein.

It is well-known that when N ≥ 3 the Sobolev embedding yields H1(RN ) ↪→
Ls(RN ) for all s ∈ [2, 2∗], where 2∗ = 2N

N−2 . Different from N ≥ 3, the case
N = 2 is very special. In such case, the Sobolev exponent 2∗ becomes ∞, but
H1(R2) ̸⊆ L∞(R2). Thanks to the Trudinger-Moser inequality below, it provides
us a perfect replacement, which was first established by Cao in [8] (also seen in
other works [4, 5] and reads as follows).

Proposition 1.1 (Cao [8]). i) If β > 0 and u ∈ H1(R2), then∫
R2

(
eβu

2

− 1
)
dx < ∞;

ii) if u ∈ H1(R2), ∥∇u∥22 ≤ 1, ∥u∥2 ≤ M < ∞, and β < 4π, then there exists a
constant C(M,β), which depends only on M and β such that∫

R2

(
eβu

2

− 1
)
dx ≤ C(M,β).
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Involving the above Trudinger-Moser inequality, we refer the readers to previous
works [9,10,13,19,26,31,37]. To state our main results, in addition to (F1) and (F2),
we suppose that f verifies the global growth Ambrosetti-Rabinowitz superlinear
condition, i.e.,

(F3) there exists µ̄ > 1 such that f(t)t ≥ µ̄F (t) > 0 for all t ∈ R\{0}.

We also introduce the following assumption.

(F4) there exist M0 > 0 and t0 > 0 such that

F (t) ≤ M0 |f(t)| , ∀ |t| ≥ t0,

which is satisfied for f behaving as exp
(
β0t

2
)
at infinity.

Performing the scaling u(x) = v(εx), we can easily deduce that problem (1.1) is
equivalent to

−∆u+ V (εx)u = [Iα ∗ F (u)] f(u). (1.2)

In view of Proposition 1.1 i), under assumptions (V0), (F1) and (F2), the weak
solutions to equation (1.2) correspond to the critical points of the following energy
functional defined in Eε by

Φε(u) =
1

2

∫
R2

[
|∇u|2 + V (εx)u2

]
dx− 1

2

∫
R2

[Iα ∗ F (u)]F (u) dx. (1.3)

Define cε := infu∈Nε
Φε(u), where

Nε := {u ∈ Eε \ {0} : ⟨Φ′
ε(u), u⟩ = 0} (1.4)

is the Nehari mainfold of Φε(u), and Eε is defined in Section 2.
Now, we give a review of some results related to our work. When 0 lies in a gap

of the spectrum of the operator −∆+V and (V1) holds, the authors [16,30] proved
the existence of a nontrivial solution of equation (1.2) with ε = 1{

−∆u+ V (x)u = (Iα ∗ F (u)) f(u), x ∈ R2,

u ∈ H1(R2).
(1.5)

Precisely, the nonlinearity f(t) satisfies (F1)-(F4) and the following condition.

(F5′) lim inft→∞
f(t)

eβ0t2
= κ >

√
α(1+α)(2+α)√
2πAαρ1+α/2 e4(2+α)π(1+ρ)2B2

0/(2+ρ), where ρ > 0

satisfies 2(2 + α)πρ2B2
0 < 1, and B0 > 0 is an embedding constant defined

by [30, 4.17].

This together with (F4) can help overcome the difficulties caused by the fact that the
embedding of the Sobolev space H1(R2) into the Orlicz space Lφ(R2) determined
by the function φ(t) = exp

(
4πt2

)
− 1 is not compact. It is worthwhile to mention

that they gave a precise estimation of lower bound of lim inft→∞
f(t)

eβ0t2
. In this work,

we only use the special case of condition (F5′), namely,

(F5) lim inft→∞
f(t)

eβ0t2
= κ >

√
α(1+α)(2+α)√
2πAαρ1+α/2 , where ρ = 2√

(2+α)Vρ

≥ 2√
(2+α)V∞

> 0,

Vρ := sup|x|≤ρ V (x).
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Assumption (F5) plays a crucial role to estimate our threshold of the mountain pass

minimax level cV < (2+α)π
2β0

, where cV will be defined later (see Section 3).

Alves et al., [2] showed the existence and concentration of semiclassical ground
state solutions of problem (1.1) under (F3) and the following assumptions on f :

(f1) (i) f(t) = 0, ∀ t ≤ 0 and 0 ≤ f(t) ≤ Ce4πt
2

, ∀ t ≥ 0;
(ii) ∃ t1 > 0,M1 > 0 and q ∈ (0, 1] such that 0 < tqF (t) ≤ M1f(t), ∀ |t| ≥ t1;

(f2) there exist p > α/2 and Cp > 0 such that f(t) ∼ Cpt
p, as t → 0;

(f5) limt→+∞
tf(t)F (t)

e8πt2
≥ l > infρ>0

α(1+α)(2+α)2

16π2ρ2+α e(2+α)Vρρ
2/4;

(f6) t 7→ f(t) is strictly increasing on (0,+∞).

By using the mountain pass lemma, the authors showed the mountain pass level
shall be less than (2 + α)/8, which can be derived from condition (f5). Condition
(f1)-(ii) guarantees the weak limit of a Palais-Smale sequence is nonzero which lies
at the heart of the proof (see [2, (2.20), (2.30)]). We also point out that there are two
crucial points in their arguments. First, to show the weak limit of a Palais-Smale
sequence is a solution they used Radon-Nicodym theorem by considering a sequence
of measures which has uniformly bounded total variation. Second, (f2) imposes
strict growth restriction on f near zero which guarantees that the corresponding
energy functional associated with problem (1.5) possesses mountain pass geometry.
Instead of the strict monotonicity condition (f6), we only assume a weak version of
it. That is,

(F6) t → f(t) is nondecreasing on (−∞, 0) ∪ (0,+∞).

In the present paper, we will further study the existence of nontrivial ground
state solutions to problems (1.5) and (1.1). To the best of our knowledge, it seems
that all the previous existence results concerning the ground state solution of Nehari
type for equation (1.1) depend heavily on the monotonicity condition (f6) using the
method introduced in [30], and we will weaken condition (f6). Due to the appearance
of the convolution term and critical exponential growth, we need to overcome the
following three difficulties:

1) giving a detailed estimate for the minimax level and showing that the moun-
tain pass level shall be less than a threshold value under which one can restore the
compactness for the critical case;

2) certifying that the Cerami sequence {un} does not vanish. This requires some
deep analysis in order to use the Trudinger-Moser inequality;

3) showing the weak limit ūε of the sequence {un} is a nontrivial solution for
the energy functional of Φε.

Now, our main results can be stated as follows.

Theorem 1.1. Assume that V and f satisfy (V0), (V1) and (F1)-(F6). Then,
problem (1.5) has at least one ground state solution ũ ∈ E \ {0} such that

ΦV (ũ) = inf
u∈NV

ΦV (u),

where NV will be given in (2.6).

Theorem 1.2. Assume that V and f satisfy (V0), (V2) and (F1)-(F6). Then, for
any ε > 0 small, problem (1.1) has at least one ground state solution uε ∈ Nε such
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that

Φε(uε) = inf
u∈Nε

Φε(u),

where Nε is given in (1.4).

Remark 1.1. Conditions (F1), (F2), (F4)-(F6) are much more general than (f1),
(f2), (f5) and (f6). Thus, Theorems 1.1 and 1.2 improve and extend the [2, Theorems
1.3 and 1.4] and the related results in the literature.

The paper is organized as follows. In Section 2, we give the variational setting
and some preliminaries. In Section 3, we establish the minima estimates of the
energy functional associated with equation (1.5). Theorems 1.1 and 1.2 shall be
proved in Section 4.

Throughout the paper, we make use of the following notations:
• H1(R2) denotes the Sobolev space with the norm ∥u∥ =

[∫
R2

(
|∇u|2 + |u|2

)
dx]

1/2
;

• Ls(R2)(1 ≤ s < ∞) denotes the Lebesgue space with the norm ∥u∥s =(∫
R2 |u|s dx

)1/s
;

• for any x ∈ R2 and r > 0, Br(x) := {y ∈ R2 : |y − x| < r} and Br = Br(0);
• C1, C2, · · · denote positive constants possibly different in different places.

2. Variational framework and preliminaries

In this section, we first give some preliminary propositions.
Proposition 2.1 (Hardy-Littlewood-Sobolev inequality, [21]). Let s, r > 1 and
0 < µ < 2 with 1

s+
1
r = 4−µ

2 , g ∈ Ls
(
R2
)
and h ∈ Lr

(
R2
)
. Then there exists a

sharp constant C(µ, s, r), independent of g, h such that∫
R2

(I2−µ ∗ g)h dx ≤ C(µ, s, r)∥g∥s∥h∥r.

In particular, ∫
R2

(Iα ∗ g)h dx ≤ C0∥g∥4/(2+α)∥h∥4/(2+α),

where C0 := C (2− α, 4/(2 + α), 4/(2 + α)).

Proposition 2.2 (Cauchy-Schwarz type inequality, [1] and [23]). For g, h∈L1
loc

(
R2
)
,

there holds∫
R2

(Iα ∗ |g|) |h| dx ≤
[∫

R2

(Iα ∗ |g|) |g| dx
∫
R2

(Iα ∗ |h|) |h| dx
] 1

2

.

Let Ω be an open subset of R2. Just for the convenience of description, we
denote

ΨΩ(u) =
1

2

∫
Ω

[Iα ∗ F (u)]F (u) dx, ⟨Ψ′
Ω(u), v⟩ =

∫
Ω

[Iα ∗ F (u)] f(u)v dx

for any u, v ∈ H1(R2). In particular, when Ω = R2, ΨR2(u), and
〈
Ψ′

R2(u), v
〉
are

simply written by Ψ(u) and ⟨Ψ′(u), v⟩ respectively.
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Fixing β > β0, for any ϵ > 0 and q > 0, it follows from (F1) and (F2) that there
exists C = C(ϵ, β, q) > 0 such that

|f(t)| ≤ ϵ|t|α/2 + C|t|q−1
(
eβt

2

− 1
)
, ∀ t ∈ R. (2.1)

Consequently,

|F (t)| ≤ ϵ|t|(2+α)/2 + C|t|q
(
eβt

2

− 1
)
, ∀ t ∈ R. (2.2)

By virtue of (2.2), Propositions 1.1 and 2.1, we can demonstrate that the energy
functional

ΦV (u) =
1

2

∫
R2

(
|∇u|2 + V (x)|u|2

)
dx− 1

2

∫
R2

[Iα ∗ F (u)]F (u) dx

:=
1

2
∥u∥2V −Ψ(u) (2.3)

associated with equation (1.5) is of class C1(H1
(
R2
)
,R), and

⟨Φ′
V (u), v⟩ =

∫
R2

(∇u∇v + V (x)uv) dx−
∫
R2

[Iα ∗ F (u)] f(u)v dx

=

∫
R2

(∇u∇v + V (x)uv) dx− ⟨Ψ′(u), v⟩ (2.4)

for all u, v ∈ H1(R2).
Let E denote the space H1

(
R2
)
equipped with the norm ∥ · ∥V , which is equiv-

alent to the standard Sobolev norm. In addition, for s ∈ [2,∞), there exists τs > 0
such that

∥u∥s ≤ τs∥u∥V , ∀ u ∈ E. (2.5)

Define
NV := {u ∈ E \ {0} : ⟨Φ′

V (u), u⟩ = 0} , (2.6)

which is the Nehari mainfold of ΦV (u).
Under assumption (V0), for ε > 0, the set

Eε :=

{
u ∈ E :

∫
R2

V (εx)|u|2 dx < ∞
}

(2.7)

is a Hilbert space endowed with the norm

∥u∥ε :=
[∫

R2

(
|∇u|2 + V (εx)|u|2

)
dx

]1/2
,

which is equivalent to the standard Sobolev norm. Note that conditions (V0), and
(V2) were introduced by Rabinowitz in [32]. Hereafter, we will denote by

M :=
{
x ∈ R2 : V (x) ≡ V0

}
(2.8)

the minimum points set of V (x).
By Sobolev embedding theorem, for s ∈ [2,∞), there exists γs > 0 such that

∥u∥s ≤ γs∥u∥ε, ∀ u ∈ Eε. (2.9)
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Particularly, γ2 ≤ 1/
√
V0. By (V0), (2.2) and Proposition 1.1, we know that the

functional Φε defined by (1.3) is well defined on Eε. Moreover, by standard argu-
ments, Φε ∈ C1(Eε,R) with

⟨Φ′
ε(u), v⟩ =

∫
R2

[∇u∇v + V (εx)uv] dx− ⟨Ψ′(u), v⟩ , ∀ u, v ∈ Eε. (2.10)

Hence, the solutions of equation (1.2) are the critical points of function (2.10).
In order to prove our results, we give the following preliminary lemmas.

Lemma 2.1. Assume that (V0), (F1) and (F2) hold. Then, there exists ϱ > 0,
independent of ε such that

∥u∥ε ≥ ϱ, ∀ u ∈ Nε.

Proof. By (V0), there exists ϑ0 = 1 > 0 such that

∥∇u∥2 ≤ ∥u∥ε, ∀ u ∈ Eε. (2.11)

Let u ∈ Nε. It follows from (2.1) and (2.2) that there exist constants β > β0 and
C1 > 0 such that

|f(t)| ≤
(

|t|√
2γ2

)α/2

+ C1|t|
(
eβt

2

− 1
)
, ∀ t ∈ R (2.12)

and

|F (t)| ≤
(

|t|√
2γ2

)(2+α)/2

+ C1|t|2
(
eβt

2

− 1
)
, ∀ t ∈ R. (2.13)

In view of Proposition 1.1 ii), one has∫
R2

(
e4βu

2/α − 1
)
dx =

∫
R2

(
e4β

2∥u∥2
ε(u/∥u∥ε)

2/α − 1
)
dx (2.14)

≤ C (γ2, 2π) , ∀ ∥u∥ε ≤
√
απ/2β.

Similarly, ∫
R2

(
e8βu

2/α − 1
)
dx ≤ C (γ2, 2π) , ∀ ∥u∥ε ≤

√
απ/4β. (2.15)

Then, from (2.12)-(2.15) and the Hölder inequality, we obtain∫
R2

|F (u)|4/(2+α)
dx

≤
∫
R2

[(
|u|√
2γ2

)(2+α)/2

+ C1

(
eβu

2

− 1
)
|u|2
]4/(2+α)

dx

≤ 2

∫
R2

[
1

2γ2
2

|u|2 + C
4/(2+α)
1

(
eβu

2

− 1
)4/(2+α)

|u|8/(2+α)

]
dx (2.16)

≤ 2

{
1

2γ2
2

∥u∥22 + C
4/(2+α)
1

[∫
R2

(
eβu

2

− 1
)4/α

dx

]α/(2+α)

∥u∥8/(2+α)
4

}
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≤ 1

γ2
2

∥u∥22 + 2C
4/(2+α)
1

[∫
R2

(
e4βu

2/α − 1
)
dx

]α/2+α

∥u∥8/(2+α)
4

≤ ∥u∥2ε + 2
(
γ8
4C

4
1Cα (γ2, 2π)

)1/(2+α) ∥u∥8/(2+α)
ε

:= ∥u∥2ε + C2 ∥u∥8/(2+α)
ε , ∀ ∥u∥ε ≤

√
απ/2β,

and for all ∥u∥ε ≤
√
απ/4β, one has∫

R2

|f (u)|4/α dx

≤
∫
R2

[(
|u|√
2γ2

)α/2

+ C1

(
eβu

2

− 1
)
|u|

]4/α
dx

≤ 24/α
∫
R2

[
1

2γ2
2

|u|2 + C
4/α
1

(
eβu

2

− 1
)4/α

|u|4/α
]
dx

≤ 24/α

{
1

2γ2
2

∥u∥22 + C
4/α
1

[∫
R2

(
eβu

2

− 1
)8/α

dx

]1/2
∥u∥4/α8/α

}
(2.17)

≤ 24/α−1

γ2
2

∥u∥22 + (2C1)
4/α

[∫
R2

(
e8βu

2/α − 1
)
dx

]1/2
∥u∥4/α8/α

≤ 24/α−1 ∥u∥2ε +
(
2γ8/αC1

)4/α C1/2 (γ2, 2π) ∥u∥4/αε .

Hence, combining with (1.4), (2.16), (2.17), u ∈ Nε, Proposition 2.1 and the Hölder
inequality, we have

∥u∥2ε =

∫
R2

[Iα ∗ F (u)] f(u)u dx

≤ C0∥F (u)∥4/(2+α)∥f(u)u∥4/(2+α)

≤ C0∥F (u)∥4/(2+α)∥f(u)∥4/α∥u∥2

≤ γ2C0
[
∥u∥2ε + C2 ∥u∥8/(2+α)

ε

](2+α)/4

∥u∥ε

×
[
24/α−1 ∥u∥2ε +

(
2γ8/αC1

)4/α C1/2 (γ2, 2π) ∥u∥4/αε

]α/4
≤ 4γ2C0∥u∥2+α

ε + C3∥u∥4ε.

Therefore, there exists 0 < ϱ <
√

απ/4β such that the conclusion holds.

Lemma 2.2. Assume that (V0), (F1), (F2) and (F3) hold. Then, there exist a
sequence {un} ⊂ Eε and κ0 > 0 independent of ε such that

Φε(un) → cε ≥ κ0, ∥Φ′
ε(un)∥ (1 + ∥un∥ε) → 0, (2.18)

as n → +∞, where cε is given by

cε = inf
γ∈Γ

max
t∈[0,1]

Φε (γ(t))

with

Γ = {γ ∈ C ([0, 1], Eε) : γ(0) = 0,Φε(γ(1)) < 0} .
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Proof. By using the argument which is used in the proof of Lemma 2.1, one can
easily obtain that there exists κ0, ρ > 0 independent of ε such that

Φε(u) ≥ κ0, ∀ u ∈ S := {u ∈ Eε : ∥u∥ε = ρ} . (2.19)

On the other hand, for any fixed u0 ∈ Eε\{0}, we set

ζ(t) = Ψ

(
tu0

∥u0∥ε

)
, ∀ t ∈ R\{0}.

Obviously, ζ(t) > 0, by (F3) and

ζ ′(t)

ζ(t)
≥ 2µ̄

t
,

which implies that ζ(t)
|t|2µ̄ is increasing on (−∞, 0)∪ (0,+∞). Consequently, choosing

t > 1/∥u0∥ε, we have

Ψ(tu0) ≥ (t∥u0∥ε)2µ̄ Ψ
(

u0

∥u0∥ε

)
. (2.20)

Hence, by (1.3) and (2.20), for any t > 1/∥u0∥ε, one has

Φε(tu0) ≤
1

2
∥tu0∥2ε − (t∥u0∥ε)2µ̄ Ψ

(
u0

∥u0∥ε

)
=

t2

2

[
∥u0∥2ε − 2t2µ̄−2∥u0∥2µ̄ε Ψ

(
u0

∥u0∥ε

)]
.

Then, µ̄ > 1, and we assert limt→∞ Φε(tu0) = −∞. Thus, combining with (2.19),
we can choose T > 0 independent of ε such that e = Tu0 ∈ {u ∈ Eε : ∥u∥ε > ρ}
and Φε(e) < 0. Then, in view of the mountain pass lemma [35], we deduce that
there exist cε ∈

[
κ0, supt≥0 Φε(tu0)

]
and a sequence {un} ⊂ Eε satisfying (2.18).

Lemma 2.3. Assume that (V0), (F1), (F2), (F3) and (F6) hold. Then,

Φε(u) ≥ Φε(tu) +
1− t2

2
⟨Φ′

ε(u), u⟩ , ∀ u ∈ Eε, t ≥ 0, (2.21)

Φε(u) > Φε(tu) +
1− t2

2
⟨Φ′

ε(u), u⟩ , ∀ u ∈ Eε \ {0}, t ≥ 0 and t ̸≡ 1. (2.22)

Proof. It is easy to see that (F3) implies

F (t)

t
strictly increasing on (−∞, 0) ∪ (0,+∞). (2.23)

For every t ≥ 0, let

ξ(t) := Ψ(tu)−Ψ(u) +
1− t2

2
⟨Ψ′(u), u⟩ .

Then, it follows from (F6) and (2.23) that

ξ′(t) = ⟨Ψ′(tu), u⟩ − ⟨Ψ′(u), tu⟩



256 L. Zhang, F. Liao, X. Tang & D. Qin

=

∫
R2

[Iα ∗ F (tu)] f(tu)u dx−
∫
R2

[Iα ∗ F (u)] f(u)tu dx

=

∫
R2

∫
R2

Iα(x− y)

[
F (tu(y))

tu(y)
f(tu(x))− F (u(y))

u(y)
f(u(x))

]
tu(x)u(y) dxdy

=

∫
R2

∫
R2

Iα(x− y)

{
F (tu(y))

tu(y)
[f(tu(x))− f(u(x))]

+

[
F (tu(y))

tu(y)
− F (u(y))

u(y)

]
f(u(x))

}
tu(x)u(y) dxdy≥ 0, t ≥ 1;

≤ 0, 0 < t < 1,
(2.24)

which derives ξ(t) ≥ ξ(1) = 0 immediately. Moreover, the above inequality is strict,
if u ∈ Eε \ {0} and t ≡ 1. Hence, from (1.3) and (2.10), one has

Φε(u)− Φε(tu) =
1− t2

2
∥u∥2ε −Ψ(u) + Ψ(tu)

=
1− t2

2
⟨Φ′

ε(u), u⟩ −Ψ(u) + Ψ(tu) +
1− t2

2
⟨Ψ′(u), u⟩

≥ 1− t2

2
⟨Φ′

ε(u), u⟩ , ∀ u ∈ Eε, t ≥ 0.

This shows that (2.21) holds.
From Lemma 2.3, we have the following corollary at once.

Corollary 2.1. Assume that (V0), (F1), (F2), (F3) and (F6) hold. Then,

Φε(u) ≥ max
t≥0

Φε(tu), ∀ u ∈ Nε,

and the above inequality is strict, if t ̸≡ 1.

Lemma 2.4. Assume that (V0), (F1), (F2) and (F6) hold. Then, for any u ∈
Eε \ {0}, there exists a unique tu > 0 such that tuu ∈ Nε.

Proof. Let u ∈ Eε \ {0} be fixed and define a function ς(t) := Φε(tu) on [0,∞).
Clearly, by (1.3), we have for t ̸= 0

ς ′(t) = 0 ⇔ t∥u∥2ε − ⟨Ψ′
ε(tu), u⟩ = 0

⇔ t2∥u∥2ε − ⟨Ψ′
ε(tu), tu⟩ = 0

⇔ ⟨Φ′
ε(tu), tu⟩ = 0

⇔ tu ∈ Nε.

By (F1), (F2) and (2.19), one has ς(0) = 0 and ς(t) > 0 for t > 0 small and ς(t) < 0
for t large. Therefore, maxt∈(0,∞) ς(t) is achieved at some tu > 0, so that ς ′(tu) = 0
and tuu ∈ Nε. By Corollary 2.1, tu is unique.

From (2.19), Corollary 2.1 and Lemma 2.4, we can similarly prove the following
lemma as in [36, Lemma 2.6].

Lemma 2.5. Assume that (V0), (F1), (F2), (F3) and (F6) hold. Then,

cε = inf
Nε

Φε(u) = inf
u∈Eε\{0}

max
t≥0

Φε(tu) ≥ κ0.
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Lemma 2.6. Assume that (V0), (F1), (F2), (F3) and (F6) hold. Then, any se-
quence {un} satisfying (2.18) is bounded in Eε.

Proof. To prove the boundedness of {un}, arguing by contradiction, suppose that
∥un∥ε → ∞ as n → ∞. From (F3), (1.3), (2.10) and (2.18), one has

cε + o(1) = Φε(un)−
1

2
⟨Φ′

ε(un), un⟩

=
1

2
⟨Ψ′(un), un⟩ −Ψ(un) (2.25)

≥ µ̄− 1

2µ̄
⟨Ψ′(un), un⟩ .

Then, it follows from (2.18) and (2.25) that

1 =
1

∥un∥2ε
⟨Ψ′(un), un⟩+ o(1) = o(1).

This contradiction shows that {un} is bounded in Eε.

3. Minimax estimates

In this section, we will estimate the minimax level of the energy functional defined
by (2.3). Let

ρ :=
2√

(2 + α)Vρ

. (3.1)

Then, (F5) implies that

κ2 >
α(1 + α)(2 + α)2

2πeAαρ2+α
e(2+α)Vρρ

2/4. (3.2)

As in [11], we define Moser type functions wn(x) supported in Bρ as follows:

wn(x) =
1√
2π


√
log n, 0 ≤ |x| ≤ ρ/n;

log(ρ/|x|)√
logn

, ρ/n ≤ |x| ≤ ρ;

0, |x| ≥ ρ.

(3.3)

By an elemental computation, we have

∥∇wn∥22 =

∫
R2

|∇wn|2 dx = 1 (3.4)

and ∫
R2

V (x)w2
n dx ≤ Vρ

∫
Bρ

w2
n dx = Vρρ

2δn, (3.5)

where

Vρ := sup
|x|≤ρ

V (x), δn :=
1

4 log n
− 1

4n2 log n
− 1

2n2
> 0. (3.6)

In view of the proof of [2, (2.11)], one has∫
Bρ/n

dx

∫
Bρ/n

dy

|x− y|2−α
≥ 4π2

α(1 + α)(2 + α)

( ρ
n

)2+α

. (3.7)
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Applying Lemma 2.2 to the functional ΦV , there exists a sequence {un} ⊂ Eε

such that
∥Φ′

V (un)∥ (1 + ∥un∥V ) → 0, ΦV (un) → cV , (3.8)

where cV can be characterized by

0 < cV := inf
γ∈Γ

max
t∈[0,1]

ΦV (γ(t)) (3.9)

with
Γ :=

{
γ ∈ C1([0, 1], E) : γ(0) = 0,ΦV (γ(1)) < 0

}
.

We shall control the minimax-levels cV by a fine threshold, which can help
restore the compactness.
Lemma 3.1. Assume that (V0), (F1), (F2), (F3) and (F5) hold. Then, there exists
n̄ ∈ N such that

max
t≥0

ΦV (twn̄) <
(2 + α)π

2β0
. (3.10)

Proof. By (3.2), we can choose ϵ > 0 such that

(2 + α)Vρρ
2

4
+ log

(1 + ϵ)α(1 + α)(2 + α)2

2πAα(κ− ϵ)2ρ2+α
< 1. (3.11)

Note that

lim inf
t→∞

tF (t)

eβ0t2
≥ lim inf

t→∞

∫ t

0
sf(s) ds

eβ0t2
= lim inf

t→∞

f(t)

2β0eβ0t2
. (3.12)

It follows from (F5) and (3.12) that there exists tϵ > 0 such that

f(t) ≥ (κ− ϵ)eβ0t
2

, tF (t) ≥ κ− ϵ

2β0
eβ0t

2

, ∀ t ≥ tϵ. (3.13)

From (2.3), (3.4) and (3.5), one has

ΦV (twn) =
t2

2
∥wn∥2V −Ψ(twn) (3.14)

≤ t2

2

(
1 + Vρρ

2δn
)
−Ψ(twn), ∀ t ≥ 0.

There are four possible cases as follows. From now on, in the sequel, all inequalities
hold for large n ∈ N.

Case (i). t ∈
[
0,
√

(2+α)π
2β0

]
. Then, it follows from (F3) and (3.14) that

ΦV (twn) ≤
t2

2

(
1 + Vρρ

2δn
)
−Ψ(twn)

≤ (2 + α)π

4β0

(
1 + Vρρ

2δn
)
.

Clearly, there exists n̄ ∈ N such that (3.10) holds.

Case (ii). t ∈
[√

(2+α)π
2β0

,
√

(2+α)π
β0

]
. Let Mn = 1√

2π

√
log n. Then twn(x) ≥ tϵ

for x ∈ Bρ/n and for large n ∈ N, it follows from (F3), (3.3) and (3.13), and we
have

Ψ(twn)
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≥ ΨBρ/n
(twn)

=
Aα

2

∫
Bρ/n

F (twn(x))

[∫
Bρ/n

1

|x− y|2−α
F (twn(y)) dy

]
dx

≥ Aα

2
[F (tMn)]

2

∫
Bρ/n

dx

∫
Bρ/n

dy

|x− y|2−α
(3.15)

≥ 2π2Aαρ
2+α

α(1 + α)(2 + α)n2+α
[F (tMn)]

2

≥ π2Aα(κ− ε)2ρ2+α

2α(1 + α)(2 + α)β2
0n

2+α(tMn)2
e2β0(tMn)

2

≥ π2Aα(κ− ε)2ρ2+α

α(1 + α)(2 + α)2β0n2+α log n
eπ

−1β0t
2 logn,

which together with (3.14) that

ΦV (twn)

≤ t2

2

(
1 + Vρρ

2δn
)
− π2Aα(κ− ε)2ρ2+α

α(1 + α)(2 + α)2β0n2+α log n
eπ

−1β0t
2 logn (3.16)

:= φ̂n(t).

Let t̂n > 0 such that φ̂′
n(t̂n) = 0. Then,

1 + Vρρ
2δn =

2Âα,ρβ0

πn2+α
eπ

−1β0 t̂
2
n logn, (3.17)

where Âα,ρ = π2Aα(κ− ϵ)2ρ2+α/[α(1 + α)(2 + α)2β0]. It follows from (3.17) that

lim
n→∞

t̂2n =
(2 + α)π

β0
. (3.18)

Let

D1 := log
(1 + ϵ)π

2Âα,ρβ0

. (3.19)

Then, (3.11) and (3.19) imply that

(2 + α)Vρρ
2

4
+D1 − 1 < 0. (3.20)

From (3.17), (3.18) and (3.19), one has

t̂2n =
(2 + α)π

β0

[
1 +

log
(
1 + Vρρ

2δn
)
π − log(2Âα,ρβ0)

(2 + α) log n

]

≤ (2 + α)π

β0

[
1 +

D1

(2 + α) log n

]
+O

(
1

log2 n

)
(3.21)

and

φ̂n(t) ≤ φ̂n(t̂n) =
1

2

(
1 + Vρρ

2δn
)(

t̂2n − π

β0 log n

)
, ∀ t ≥ 0. (3.22)
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In view of (3.18), (3.21) and (3.22), we get

φ̂n(t) ≤
1

2

(
1 + Vρρ

2δn
)(

t̂2n − π

β0 log n

)
≤ (2 + α)π

2β0

(
1 + Vρρ

2δn
) [

1 +
D1 − 1

(2 + α) log n
+O

(
1

log2 n

)]
(3.23)

≤ (2 + α)π

2β0
+

π

2β0 log n

[
(2 + α)Vρρ

2

4
+D1 − 1

]
+O

(
1

log2 n

)
.

Hence, combining (3.16) with (3.23), one has

ΦV (twn) ≤
(2 + α)π

2β0
+

π

2β0 log n

[
(2 + α)Vρρ

2

4
+D1 − 1

]
+O

(
1

log2 n

)
. (3.24)

Clearly, in this case, (3.20) and (3.24) show that there exists n̄ ∈ N such that (3.10)
holds.

Case (iii). t ∈
[√

(2+α)π
β0

,
√

(2+α)π
β0

(1 + ϵ)

]
. Then, twn(x) ≥ tϵ for x ∈ Bρ/n

and for large n ∈ N, it follows (3.15), and then one has

Ψ(twn)

≥ π2Aα(κ− ε)2ρ2+α

2α(1 + α)(2 + α)β2
0n

2+α(tMn)2
e2β0(tMn)

2

(3.25)

≥ π2Aα(κ− ε)2ρ2+α

(1 + ϵ)α(1 + α)(2 + α)2β0n2+α log n
eπ

−1β0t
2 logn.

Using (F3), (3.14) and (3.25), we have

ΦV (twn)

≤ t2

2

(
1 + Vρρ

2δn
)
− Ãα,ρ

n2+α log n
eπ

−1β0t
2 logn (3.26)

:= φ̃n(t),

where

Ãα,ρ =
π2Aα(κ− ϵ)2ρ2+α

(1 + ϵ)α(1 + α)(2 + α)2β0
.

Let t̃n > 0 such that φ̃′
n(t̃n) = 0. Then,

1 + Vρρ
2δn =

2Ãα,ρβ0

πn2+α
eπ

−1β0 t̃
2
n logn, (3.27)

which yields

lim
n→∞

t̃2n =
(2 + α)π

β0
. (3.28)

Let
D2 := log

π

2Ãα,ρβ0

. (3.29)
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Then, (3.11) and (3.29) imply that

(2 + α)Vρρ
2

4
+D2 − 1 < 0. (3.30)

It follows from (3.27), (3.28) and (3.29) that

t̃2n =
(2 + α)π

β0

[
1 +

log
(
1 + Vρρ

2δn
)
π − log(2Ãα,ρβ0)

(2 + α) log n

]
(3.31)

≤ (2 + α)π

β0

[
1 +

D2

(2 + α) log n

]
+O

(
1

log2 n

)
and

φ̃n(t) ≤ φ̃n(t̃n) =
1

2

(
1 + Vρρ

2δn
)(

t̃2n − π

β0 log n

)
, ∀ t ≥ 0. (3.32)

From (3.28), (3.31) and (3.32), we have

φ̃n(t)

≤ 1

2

(
1 + Vρρ

2δn
)(

t̃2n − π

β0 log n

)
≤ (2 + α)π

2β0

(
1 + Vρρ

2δn
) [

1 +
D2 − 1

(2 + α) log n
+O

(
1

log2 n

)]
≤ (2 + α)π

2β0
+

π

2β0 log n

[
(2 + α)Vρρ

2

4
+D2 − 1

]
+O

(
1

log2 n

)
,

which together with (3.26) that

ΦV (twn) ≤
(2 + α)π

2β0
+

π

2β0 log n

[
(2 + α)Vρρ

2

4
+D2 − 1

]
+O

(
1

log2 n

)
. (3.33)

Clearly, in this case, (3.30) and (3.33) imply that there exists n̄ ∈ N such that (3.10)
holds.

Case (iv). t ∈
(√

(2+α)π
β0

(1 + ϵ),+∞
)
. Then, twn(x) ≥ tϵ for x ∈ Bρ/n and

for large n ∈ N, it follows from (F3), (3.3) and (3.15) that

ΦV (twn) ≤
t2

2

(
1 + Vρρ

2δn
)
−Ψ(twn)

≤ t2

2

(
1 +

Vρρ
2

4 log n

)
− π3Aα(κ− ϵ)2ρ2+α

α(1 + α)(2 + α)β2
0t

2n2+α log n
eπ

−1β0t
2 logn

≤ (1 + ϵ)(2 + α)π

2β0

(
1 +

Vρρ
2

4 log n

)
− π2Aα(κ− ϵ)2ρ2+α

(1 + ϵ)α(1 + α)(2 + α)2β0 log n
e(1+ϵ)(2+α) logn,
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which implies that there exists n̄ ∈ N such that (3.10) holds. In the above derivation
process, we use the fact that the function

t2

2

(
1 +

Vρρ
2

4 log n

)
− π3Aα(κ− ϵ)2ρ2+α

α(1 + α)(2 + α)β2
0t

2n2+α log n
eπ

−1β0t
2 logn

is decreasing on t ∈
(√

(2+α)π
β0

(1 + ϵ),+∞
)
, since its stagnation points tend to√

(2+α)π
β0

, as n → ∞.

Now, we deduce the following corollary from (3.9) and Lemma 3.1.

Corollary 3.1. Assume that (V0), (F1), (F2), (F3) and (F5) hold. Then,

cV <
(2 + α)π

2β0
.

Lemma 3.2. Assume that (V0), (F1), (F2), (F5) and (F6) hold. Then,

lim
ε→0

cε = cV0
,

where cV0 is the minimax value defined in (3.9) with V (x) ≡ V0.

Proof. By virtue of Lemma 3.1 and [30, Theorem 1.3], it is not complicated to
verify that there exists w ∈ E being the nontrivial solution of equation (1.5) with
V (x) ≡ V0. In fact, by a standard argument, we can easily check that w is a ground
state solution of equation (1.5), and then w ∈ NV0

. In what follows, for any given
δ > 0, wδ ∈ C∞

0 (R2) being fixed and verifying

wδ ∈ NV0 , wδ → w in E and ΦV0(wδ) < cV0 + δ. (3.34)

Without loss of generality, let us suppose 0 ∈ M , where M is given in (2.8).
Consequently, we choose a smooth cut-off function ι ∈ C∞

0

(
R2, [0, 1]

)
to be such

that ι = 1 on B1 and ι = 0 on R2\B2. Further, we choose vn(x) = ι (εnx)wδ(x),
where εn → 0 as n → +∞. Then, we obtain

vn → wδ in E,

which implies ∥vn∥V0
→ ∥wδ∥V0

. From Lemma 2.4, there exists tn > 0 such that
tnvn ∈ Nεn . We claim that {tn} is bounded. Otherwise, we assume |tn| → +∞.
Combining with (F5), (3.7), (3.13) and Fatou’s Lemma, one has

∥vn∥2εn = t−2
n ⟨Ψ′ (tnvn) , tnvn⟩+ o(1)

= lim inf
n→∞

∫
R2

∫
R2

Iα(x− y)F (tnvn(y)f(tnvn(x))t
−1
n vn(x) dxdy (3.35)

≥
∫
R2

∫
R2

lim inf
n→∞

Iα(x− y)F (tnvn(y)f(tnvn(x))t
−1
n vn(x) dxdy

= +∞,

which shows that {tn} is bounded. Thus, up to a subsequence, we may assume
{tn} → t̂0 ≥ 0. Note that there exists a constant κ0 > 0 independent of ε such that
cεn > κ0 > 0, which yields t̂0 > 0. Using this and (3.34), we have

⟨Ψ′(w), w⟩ = lim
δ→0

⟨Ψ′(wδ), wδ⟩
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= lim
δ→0

∫
R2

(
|∇wδ|2 + V0 |wδ|2

)
dx

= lim
δ→0

lim
n→∞

∫
R2

(
|∇vn|2 + V (εnx) |vn|2

)
dx

= lim
δ→0

lim
n→∞

t−2
n

∫
R2

(
|∇(tnvn)|2 + V (εnx) |tnvn|2

)
dx

= lim
δ→0

lim
n→∞

t−2
n ⟨Ψ′(tnvn), tnvn⟩

= lim
δ→0

t−2
0 ⟨Ψ′(t0wδ), t0wδ⟩

= t−2
0 ⟨Ψ′(t0w), t0w⟩ .

Together with the monotonicity assumption (F6), we derive t̂0 = 1. Hence, by
(2.19), (3.34) and Lemma 2.5, we can deduce

cεn ≤ Φεn(tnvn)

=
t2n
2

∫
R2

(
|∇vn|2 + V (εnx) |vn|2

)
dx−Ψ(tnvn)

=
t2n
2

∫
R2

(
|∇vn|2 + V0 |vn|2

)
dx−Ψ(tnvn) +

t2n
2

∫
R2

[V (εnx)− V0] |vn|2 dx

= ΦV0
(tnvn) +

t2n
2

∫
R2

[V (εnx)− V0] |vn|2 dx

= ΦV0(wδ) + on(1)

≤ cV0 + δ.

As δ is arbitrary, we have
lim sup
n→∞

cεn ≤ cV0
.

This shows that
lim sup

ε→0
cε ≤ cV0

. (3.36)

On the other hand, it follows from (V0) that

cε ≥ cV0
, ∀ ε > 0,

which implies
lim inf
ε→0

cε ≥ cV0
. (3.37)

From (3.36) and (3.37), we get the conclusion

lim
ε→0

cε = cV0 .

Using Corollary 3.1 and Lemma 3.2, we can get the following lemma immediately.

Lemma 3.3. Assume that (V0), (F1), (F2), (F3), (F5) and (F6) hold. Then, there
exists ε0 > 0 such that

cε <
(2 + α)π

2β0
, ∀ ε ∈ [0, ε0) . (3.38)

Moreover, since cV0 ≤ cV∞ , we also have

lim
ε→0

cε ≤ cV∞ .



264 L. Zhang, F. Liao, X. Tang & D. Qin

4. The proofs of main results

In this section, we give the proofs of Theorems 1.1 and 1.2.
Proof of Theorem 1.1. Applying Lemmas 2.2 and 2.6 with ε = 1, we deduce

that there exists a sequence {un} ⊂ E satisfying (3.8) and ∥un∥2V ≤ C4/2 for the
constant C4 > 0, it follows from (F3), (1.3) and (2.18) that for n large

2µ̄Ψ(un) ≤ ⟨Ψ′(un), un⟩ ≤ C4. (4.1)

Set

δ := lim sup
n→∞

sup
y∈R2

∫
B1(y)

|un|2 dx.

We claim δ > 0. The proof is essentially contained in [30, proof of (4.92)]. We give
the details here for the convenience of readers. If δ = 0, then by Lions’ concentration
compactness principle [35, Lemma 1.21], un → 0 in Ls(R2) for 2 < s < ∞.

For any given ϵ > 0, we choose Mϵ > max {M0C4/ϵ, t0}, and then it follows
from (F3), (F4) and (4.1) that

Ψ{|un|≥Mϵ}(un) ≤ M0

∫
{|un|≥Mϵ}

[Iα ∗ F (un)] |f(un)| dx

≤ M0

Mϵ

〈
Ψ′

{|un|≥Mϵ}(un), un

〉
(4.2)

≤ M0

Mϵ
⟨Ψ′(un), un⟩

< ϵ.

Define ϵ̄ = ϵµ̄1/2/
[
C1/2
0 γ

(2+α)/2
2 C

(3+α)/2
4

]
. Using (F2), (F3), (2.5), (4.1), Proposi-

tions 2.1 and 2.2, we can choose Nϵ ∈ (0, 1) such that

Ψ{|un|≤Nϵ}(un) ≤
1

µ̄

〈
Ψ′

{|un|≤Nϵ}(un), un

〉
≤ ϵ̄

∫
{|un|≤Nϵ}

[Iα ∗ F (un)] |un|(2+α)/2 dx (4.3)

≤ ϵ̄(2Ψ(un))
1/2

{∫
{|un|≤Nϵ}

[
Iα ∗ |un|(2+α)/2

]
|un|(2+α)/2 dx

}1/2

≤ ϵ̄

(
C0C4

µ̄

)1/2

∥un∥(2+α)/2
2

≤ ϵ̄

(
C0C4

µ̄

)1/2

τ
(2+α)/2
2 ∥un∥(2+α)/2

V

≤ ϵ,

By (F1), (F3), (4.1), Propositions 2.1 and 2.2, we have

Ψ{Nϵ≤|un|≤Mϵ}(un) ≤
1

µ̄

〈
Ψ′

{Nϵ≤|un|≤Mϵ}(un), un

〉
≤ C5

∫
{Nϵ≤|un|≤Mϵ}

[Iα ∗ F (un)] |un|3 dx
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≤ C5 (2Ψ(un))
1/2

{∫
{Nϵ≤|un|≤Mϵ}

[
Iα ∗ |un|3

]
|un|3 dx

}1/2

(4.4)

≤ C5

(
C0C4

µ̄

) 1
2

∥un∥312/(2+α)

≤ on(1).

Following from (4.2), (4.3) and (4.4), one has

Ψ(un) = on(1). (4.5)

Then, we can deduce from (2.3), (3.8) and (4.5) that there exists ν ∈ (0, 1/2) small
enough such that for n large

0 < 2κ0 < ∥un∥2V = 2cV + on(1) ≤
(2 + α)π

β0
(1− ν). (4.6)

Let us choose q ∈ (1, 2) such that

(1− ν2)q < 1. (4.7)

By (F1), there exists C6 > 0 such that

|f(t)| ≤ C6

[
eβ0(1+ν)t2 − 1

]
, ∀ |t| ≥ 1. (4.8)

In view of (4.6), (4.7), (4.8) and Proposition 1.1 ii), we have∫
{|un|≥1}

|f(un)|
4q

2+α dx ≤ C6

∫
{|un|≥1}

[
eβ0(1+ν)u2

n − 1
] 4q

2+α

dx (4.9)

≤ C6

∫
R2

[
exp

(
4β0(1 + ν)q∥un∥2V

2 + α

(
un

∥un∥V

)2
)

− 1

]
dx

≤ C7.

Let q′ = q/(q − 1). Then, from (4.9), Propositions 2.1 and 2.2, we get〈
Ψ′

{|un|≥1}(un), un

〉
≤ (2Ψ(un))

1
2

[∫
{|un|≥1}

[
Iα ∗ (f(un)unχ{|un|≥1})

]
f(un)unχ{|un|≥1}dx

] 1
2

≤
√
C4C0

[∫
{|un|≥1}

|f(un)|4/(2+α)|un|4/(2+α)

] 2+α
4

(4.10)

≤
√
C4C0

[∫
{|un|≥1}

|f(un)|4q/(2+α)

] 2+α
4q
[∫

{|un|≥1}
|un|4q

′/(2+α)

] 2+α
4q′

≤ C8∥un∥4q′/(2+α)

= on(1).

By (4.3), (4.4) and (4.10) that

⟨Ψ′(un), un⟩ = on(1),
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which together with (3.8) implies

∥un∥2V = on(1),

which contradicts with (4.6). Thus, δ > 0.
Going if necessary to a subsequence, we may assume that there exists {yn} ⊂ Z2

such that
∫
B1+

√
2(yn)

|un|2dx > δ
2 . Let us define ũn(x) = un(x + yn). Then, there

exists ũ ∈ E such that un(·+yn) ⇀ ũ ̸= 0 in E. By (V1), we have ∥ũn∥V = ∥un∥V ,

∥Φ′
V (ũn)∥ (1 + ∥ũn∥V ) → 0 and ΦV (ũn) → cV . (4.11)

By [30, Lemma 4.8], for any φ ∈ C∞
0 (R2), we have

lim
n→∞

⟨Ψ′
V (ũn), φ⟩ = ⟨Ψ′

V (ũ), φ⟩ . (4.12)

Thus,
on(1) = ⟨Φ′

V (ũn), φ⟩ = ⟨Φ′
V (ũ), φ⟩ ,

which shows that ũ is a solution of equation (1.5). Using the information and (F3),
(2.3) and Fatou’s Lemma, one has

cV = lim
n→∞

[
ΦV (ũn)−

1

2
⟨Φ′

V (ũn), ũn⟩
]

= lim inf
n→∞

[
1

2
⟨Ψ′

V (ũn), ũn⟩ −ΨV (ũn)

]
≥ 1

2
⟨Ψ′

V (ũ), ũ⟩ −ΨV (ũ)

= ΦV (ũ)−
1

2
⟨Φ′

V (ũ), ũ⟩

≥ cV ,

which yields ΦV (ũ) = cV . Thus, ũ is a ground state solution of equation (1.5).
Proof of Theorem 1.2. Applying Theorem 1.1 to ΦV∞ , we can deduce that

ΦV∞ has a critical point u∞ ∈ NV∞ . That is,

u∞ ∈ NV∞ , Φ′
V∞

(u∞) = 0, ΦV∞ (u∞) = cV∞ . (4.13)

Since ΦV∞ is autonomous and V0 < V∞, there exist x̃ ∈ R2 and r̃ > 0 such that

V∞ − V (x) > 0 and |u∞(x)| > 0 for a.e. |x− x̃| ≤ r̃. (4.14)

From Lemma 2.4, there exists t∞ > 0 such that t∞u∞ ∈ Nε. Then, following from
(V2), (1.3), (2.3), (4.13) and Corollary 2.1, one has

cV∞ = ΦV∞ (u∞) ≥ ΦV∞ (t∞u∞)

= Φε (t∞u∞) +
t2∞
2

∫
R2

[V∞ − V (εx)] |u∞|2 dx

≥ cε +
t2∞
2

∫
R2

[V∞ − V (εx)] |u∞|2 dx

> cε.

(4.15)
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In virtue of Lemmas 2.2, 2.5, 2.6 and 3.3, we get that there exists a bounded
sequence {un} ⊂ Eε satisfying (2.18) and ∥un∥2ε ≤ C9/2 for some constant C9 > 0
and

κ0 ≤ cε <
(2 + α)π

2β0
, ∀ ε ∈ (0, ε0) . (4.16)

It follows from (F3), (1.3) and (2.18) that

2µ̄Ψ(un) ≤ ⟨Ψ′(un), un⟩ ≤ C9. (4.17)

Passing to a subsequence if necessary, we may assume un ⇀ ūε in Eε, un → ūε in
Ls
loc(R2) for s ∈ [2,∞) and un → ūε a.e. on R2. For any n ∈ N, from Lemma 2.4,

there exists tn > 0 such that tnun ∈ NV∞ . Hence,

ΦV∞ (tnun) ≥ cV∞ and
〈
Φ′

V∞
(tnun) , tnun

〉
= 0. (4.18)

Letting us define

δ := lim sup
n→∞

sup
y∈R2

∫
B1(y)

|un|2 dx

by using an argument which is in the proof of Theorem 1.1, we deduce δ > 0. Going
if necessary to a subsequence, there exists {yn} ⊂ R2 such that

∫
B1+

√
2(yn)

|un|2dx >

δ
2 . Defining ũn(x) = un(x+ yn), and then we have∫

B1+
√

2(0)

|ũn|2dx >
δ

2
. (4.19)

By the equivalence of the norm ∥ · ∥ε and the standard Sobolev norm, then we have
{∥ũn∥ε} is bounded and

ũn ⇀ ũε, in Eε,

ũn → ũε, in Ls
loc(R2) for s ∈ [2,∞),

ũn → ũε, a.e. on R2.

Clearly, following from (4.19) that ũε ̸= 0. By (F3) and (4.18), one has

0 = t−2
n

〈
Φ′

V∞
(tnun) , tnun

〉
= t−2

n

〈
Φ′

V∞
(tnũn) , tnũn

〉
=

∫
R2

(
|∇ũn|2 + V∞ |ũn|2

)
dx− t−2

n ⟨Ψ′(tnũn), tnũn⟩ (4.20)

≤
∫
R2

(
|∇ũn|2 + V∞ |ũn|2

)
dx− 2µ̄t−2

n Ψ(tnũn).

Thereby, combining with (F1), (4.20) and the boundedness of {∥ũn∥}, we derive
that {tn} is bounded. Thus, up to a subsequence, we may assume 0 ≤ tn ≤ t̃0.

Now, we prove ūε ̸= 0. Arguing by the contradiction, suppose ūε ≡ 0, and then
un ⇀ 0 in Eε, un → 0 in Ls

loc

(
R2
)
for s ∈ [1,∞) and un → 0, a.e. on R2. From

(2.18), (4.14), (4.15), (4.16) (4.18) and Lemma 2.3, we have

cε + on(1) (4.21)

= Φε (un)
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≥ Φε (tnun) +
1− t2n

2

〈
Φ′

ε (un) , un

〉
= Φε (tnun) + on(1)

= ΦV∞ (tnun) +
t2n
2

∫
R2

[V (εx)− V∞] |un|2 dx+ on(1)

≥ cV∞ +
t2n
2

∫
|x|≤R/ε

[V (εx)− V∞] |un|2 dx

+
t2n
2

∫
|x|>R/ε

[V (εx)− V∞] |un|2 dx+ on(1)

≥ cV∞ − (V∞ − V0) t̃
2
0

2

∫
|x|≤R/ε

|un|2 dx− t̃20
2

sup
|x|>R/ε

[V∞ − V (εx)] ∥un∥22 + on(1)

≥ cε +
t2∞
2

∫
R2

[V∞ − V (εx)] |u∞|2 dx− t̃20
2

sup
|x|>R/ε

[V∞ − V (εx)] ∥un∥22 + on(1)

≥ cε +
t2∞
4

∫
R2

[V∞ − V (εx)] |u∞|2 dx+ oR(1) + on(1)

> cε.

This contradiction shows ūε ̸= 0. From (4.17) and [30, Lemma 4.8], one has

lim
n→∞

⟨Ψ′
ε(un), φ⟩ = ⟨Ψ′

ε(ūε), φ⟩ , ∀ φ ∈ C∞
0 (R2),

which yields
on(1) = ⟨Φ′

ε(un), φ⟩ = ⟨Φ′
ε(ūε), φ⟩ .

Hence, ūε is a solution of equation (1.2). Using this and (F3), (1.3), (2.18) and
Fatou’s Lemma, we have

cε = lim
n→∞

[
Φε(un)−

1

2
⟨Φ′

ε(un), un⟩
]

= lim inf
n→∞

[
1

2
⟨Ψ′

ε(un), un⟩ −Ψε(un)

]
≥ 1

2
⟨Ψ′

ε(ūε), ūε⟩ −Ψε(ūε)

= Φε(ūε)−
1

2
⟨Φ′

ε(ūε), ūε⟩

≥ cε,

which implies Φε(ūε) = cε. Therefore, for ε ∈ (0, ε0), ūε is a ground state solution
of equation (1.2).
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[13] J. do Ó, E. Medeiros and U. Severo, On a quasilinear nonhomogeneous elliptic
equation with critical growth in RN , Journal of Differential Equations, 2009,
246(4), 1363–1386.

[14] G. Figueiredo and M. Furtado, Positive solutions for a quasilinear Schrödinger
equation with critical growth, Journal of Dynamics and Differential Equations,
2012, 24(1), 13–28.

[15] F. Gao, M. Yang and J. Zhou, Existence of multiple semiclassical solutions
for a critical Choquard equation with indefinite potential, Nonlinear Analysis,
2020, 195, Article ID 111817, 20 pages.

[16] Q. Gao, W. Chen, D. Qin and Q. Wu, Strongly indefinite Choquard equation
in R2 with critical exponential growth, Mathematical Methods in the Applied
Sciences, 2022, 45(12), 7744–7759.



270 L. Zhang, F. Liao, X. Tang & D. Qin

[17] J. Giacomoni, D. Goel and K. Sreenadh, Singular doubly nonlocal elliptic prob-
lems with Choquard type critical growth nonlinearities, Journal of Geometric
Analysis, 2021, 31(5), 4492–4530.

[18] X. Han, S. Zhou and R. An, Existence and Multiplicity of Positive Solutions for
Fractional Differential Equation with Parameter, Journal of Nonlinear Model-
ing and Analysis, 2020, 2(1), 15–24.

[19] N. Lam and G. Lu, Existence and multiplicity of solutions to equations of N -
Laplacian type with critical exponential growth in RN , Journal of Functional
Analysis, 2012, 262(3), 1132–1165.

[20] E. Lieb, Existence and uniqueness of the minimizing solution of Choquard’s
nonlinear equation, Studies in Applied Mathematics, 1976/77, 57(2), 93–105.

[21] E. Lieb and M. Loss, Analysis, American Mathematical Society, Providence,
1997.

[22] P. Liu, L. Wang and A. Chen, Existence of Positive solutions for a Nonlinear
Second Order Periodic Boundary Value Problem, Journal of Nonlinear Model-
ing and Analysis, 2020, 2(4), 513–524.

[23] L. Mattner, Strict definiteness of integrals via complete monotonicity of deriva-
tives, Transactions of the American Mathematical Society, 1997, 349(8), 3321–
3342.

[24] I. Moroz, R. Penrose and P. Tod, Spherically-symmetric solutions of the
Schrödinger-Newton equations, Classical and Quantum Gravity, 1998, 15(9),
2733–2742.

[25] V. Moroz and S. Van, A guide to the Choquard equation, Journal of Fixed Point
Theory and Applications, 2017, 19(1), 773–813.

[26] J. Moser, A sharp form of an inequality by N. Trudinger, Indiana University
Mathematics Journal, 1970/71, 20, 1077–1092.

[27] S. Pekar, Untersuchung über Die Elektronentheorie Der Kristalle, Akademie
Verlag, Berlin, 1954.

[28] D. Qin, L. Lai, X. Tang and Q. Wu, Existence and asymptotic behavior of
ground states for Choquard-Pekar equations with Hardy potential and critical
reaction, Journal of Geometric Analysis, 2022, 32(5), 158–201.
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