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Abstract In this paper, we investigate Lie symmetry group, optimal system,
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via Lie symmetry method. Then, conservation laws of modified hyperbolic
geometric flow are obtained by applying Ibragimov method.
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1. Introduction

Kong and Liu [7] first put forward the hyperbolic geometric flow

∂2gij
∂t2

+ 2Rij + F (g,
∂g

∂t
) = 0, (1.1)

in which gij is the surface metric, F is the smooth function of g,
∂g

∂t
and Rij

is Ricci curvature tensor. Liu [8] discussed the classical global solution to the
Cauchy problem of dissipative hyperbolic geometric flow, and discussed that the
solution blows up. On the Riemann place, Wang [10] studied the exact solutions,
the existence and uniqueness of global solution and the blow up of the solution for
the geometrical flows.

Gao and Zhang [2] discussed the group-invariant solutions of the evolution e-
quation of a hyperbolic curve flow by applying the classical Lie symmetry method.
They [3] also studied the group invariant solutions of the normal hyperbolic mean
curvature flow with dissipation via Lie symmetry method. Gao and Wang [4, 5]
studied two different hyperbolic geometry flow equation by Lie symmetry analysis
and nonlinear self-adjointness.

A new theorem of conservation laws for arbitrary differential equations is pro-
posed by Ibragimov [6]. Belevtsov and Lukashchuk [1] investigated symmetry group
classification by Lie symmetry analysis and constructed the conservation laws of
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the nonlinear fractional diffusion equation with the Riesz potential, which satisfied
nonlinear self-adjointness. Zhang, Simbanefayi and Khalique [11] studied the trav-
eling wave solutions and conservation laws of the (2+1)-dimensional Broer-Kaup-
Kupershmidt Equation.

Silva [9] studied the nonlinear self-adjointness and conservation laws for the
quasilinear 2D second-order evolution equation

utt = Auxy+Buxuy+Cuxx+Duyy+Euy+Fux+Pu2
x+Qu2

y+G+Hut+Iu
2
t , (1.2)

in whichA,B,C,D,E, F,G,H, I, P,Q andR are functions of x, y, t and u = u(x, y, t).
He discussed nonlinear self-adjointness and calculated conservation laws on Riem-
man surfaces for hyperbolic geometric flow equation.

Letting

A =
1

u
, B = − 1

u2
, G = λu, C = D = E = F = P = Q = H = I = 0 (1.3)

be in equation (1.2), we obtain

utt =
1

u
uxy −

1

u2
uxuy + λu, (1.4)

in which λ is an arbitrary constant. Equation (1.3) is known as the modified hy-
perbolic geometric flow, and it is also given by equation (1.1) with F = −αgij .

In this paper, we will study the exact solutions and the conservation laws of
equation (1.4). First, the Lie point symmetry group for the modified hyperbolic
geometric flow is obtained by applying the Lie symmetry method. Second, the
Optimal system and exact solutions are discussed. Finally, the conservation laws
and nonlocal conservation laws of equation (1.4) are given by applying the Ibragimov
method.

2. Lie symmetry group analysis of equation (1.4)

The Lie symmetry of equation (1.4) is generated by the infinitesimal generator

V = ρ(x, y, t, u)
∂

∂x
+ σ(x, y, t, u)

∂

∂y
+ µ(x, y, t, u)

∂

∂t
+ ω(x, y, t, u)

∂

∂u
. (2.1)

The second-order prolongation vector field is

pr(2)V = ρ
∂

∂x
+ σ

∂

∂y
+ µ

∂

∂t
+ ω

∂

∂u
+ ωx

∂

∂ux
+ ωy

∂

∂uy
+ ωt

∂

∂ut
+ ωxx

∂

∂uxx

+ ωxy
∂

∂uxy
+ ωxt

∂

∂uxt
+ ωyt

∂

∂uyt
+ ωyy

∂

∂uyy
+ ωtt

∂

∂utt
.

Equation (1.4) remains invariant under an infinitesimal transformation, if and only
if V satisfies

pr(2)(V )(∆)|∆=0 = 0, (2.2)

in which ∆ = utt −
1

u
uxy +

1

u2
uxuy − λu, i.e.,

ω(
1

u2
uxy −

2

u3
uxuy − λ) + ωx

uy
u2

+ ωy
ux
u2
− ωxy 1

u
+ ωtt = 0, (2.3)
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in which



ωx = Dxω − (Dxρ)ux − (Dxσ)uy − (Dxµ)ut

= ωx + (ωu − ρx)ux − µuuxut − µxut − ρuu2
x − σxuy − σuuxuy,

ωy = Dyω − (Dyρ)ux − (Dyσ)uy − (Dyµ)ut

= ωy + (ωu − σy)uy − µuuyut − µyut − σuu2
y − ρyux − ρuuxuy,

ωxy = Dyω
x − (Dyρ)uxx − (Dyσ)uxy − (Dyµ)uxt

= ωxy + (ωuy − ρxy)ux + (ωxu − σxy)uy + (ωu − ρx − µuut − 2ρuux

− σy − 2σuuy)uxy + (ωuu − ρxu − µuuut − σuy)uxuy − (ρuy + ρuuuy)u2
x

− (σxu + σuuux)u2
y − (µy + µuuy)uxt − (ρy + ρuuy)uxx − (σx + σuux)uyy

− (µuux + µx)uty − µuyuxut − µxyut − µxuutuy,
ωtt = Dtω

t − (Dtρ)utx − (Dtσ)uty − (Dtµ)utt

= ωtt + (2ωtu − µtt)ut − ρttux − σttuy + (ωuu − 2µtu)u2
t − 2ρtuutux

− 2σtuutuy − µuuu3
t − ρuuu2

tux − σuuu2
tuy + (ωu − 2µt − 3µuut − ρuux

− σuuy)utt − 2(ρt + ρuut)utx − 2(σt + σuut)uty.

Substituting equation (1.4) into ωtt, we have

ωtt = Dtω
t − (Dtρ)utx − (Dtσ)uty − (Dtµ)utt

= ωtt + (2ωtu − µtt)ut − ρttux − σttuy + (ωuu − 2µtu)u2
t − 2ρtuutux

− 2σtuutuy − µuuu3
t − ρuuu2

tux − σuuu2
tuy − 2(ρt + ρuut)utx − 2(σt + σuut)uty

+ (ωu − 2µt − 3µuut − ρuux − σuuy)(
1

u
uxy −

1

u2
uxuy + λu),

(2.4)
in which the coefficients of utuxy, uxuxy, uyuxy in equation (2.3) and equation (2.4)
are as follows 

utuxy : − 2

u
µu = 0,

uyuxy :
1

u
ρu = 0,

uyuxy :
1

u
σu.

We obtain ρ = ρ(x, y, t), σ = σ(x, y, t), µ = µ(x, y, t). Therefore, we further have



ωx = ωx + (ωu − ρx)ux − µxut − σxuy,
ωy = ωy + (ωu − σy)uy − µyut − ρyux,
ωxy = ωxy + (ωuy − ρxy)ux + (ωxu − σxy)uy + (ωu − ρx − σy)uxy

+ ωuuuxuy − µyuxt − ρyuxx − σxuyy − µxuty − µxyut,
ωtt = ωtt + (2ωtu − µtt)ut − ρttux − σttuy + ωuuu

2
t − 2ρtutx − 2σtuty

+ (ωu − 2µt)(
1

u
uxy −

1

u2
uxuy + λu).
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Substituting the above equations into equation (2.3), we obtain

ω(
1

u2
uxy −

2

u3
uxuy − λ) +

uy
u2

[ωx + (ωu − ρx)ux − µxut − σxuy] +
ux
u2

[ωy + (ωu

− σy)uy − µyut − ρyux]− 1

u
[ωxy + (ωuy − ρxy)ux + (ωxu − σxy)uy + (ωu − ρx

− σy)uxy + ωuuuxuy − µyuxt − ρyuxx − σxuyy − µxuty − µxyut] + [ωtt + (2ωtu

− µtt)ut − ρttux − σttuy + ωuuu
2
t − 2ρtutx − 2σtuty + (ωu − 2µt)(

1

u
uxy −

1

u2
uxuy

+ λu)] = 0.
(2.5)

Comparing the coefficients of equation (2.5), the determining equations are given
by 

(1)u2
x : − 1

u2
ρy = 0,

(2)u2
y : − 1

u2
σx = 0,

(3)u2
t : ωuu = 0,

(4)uxy :
1

u2
ω +

1

u
(ρx + σy − 2µt) = 0,

(5)utx :
1

u
µy − 2ρt = 0,

(6)uty :
1

u
µx − 2σt = 0,

(7)uxx :
1

u
ρy = 0,

(8)uyy :
1

u
σx = 0,

(9)uxuy : − 2

u3
ω +

1

u2
(ωu − ρx − σy + 2µt)−

1

u
ωuu = 0,

(10)uxut : − 1

u2
µy = 0,

(11)uyut : − 1

u2
µx = 0,

(12)ux :
1

u2
ωy −

1

u
(ωuy − ρxy)− ρtt = 0,

(13)uy :
1

u2
ωx −

1

u
(ωxu − σxy)− σtt = 0,

(14)ut :
1

u
µxy + 2ωtu − µtt = 0,

(15)1 : −λω − 1

u
ωxy + ωtt + λ(ωu − 2µt)u = 0.

(2.6)

From equation (2.6), we know

ρ = ρ(x), σ = σ(y), µ = c1, ω = −(ρx + σy)u. (2.7)

Let

ρ = c2x+ c4, σ = c3y + c5, µ = c1, ω = −(c2 + c3)u.
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Therefore, (2.1) becomes

V = (c2x+ c4)
∂

∂x
+ (c3y + c5)

∂

∂y
+ c1

∂

∂t
− (c2 + c3)u

∂

∂u
. (2.8)

in which c1, c2, c3, c4, c5 are arbitrary constants. From (2.8), we have five sub-
algebras 

V1 =
∂

∂x
,

V2 =
∂

∂y
,

V3 =
∂

∂t
,

V4 = x
∂

∂x
− u ∂

∂u
,

V5 = y
∂

∂y
− u ∂

∂u
.

(2.9)

3. Optimal system and exact solutions

3.1. Optimal system

Theorem 3.1. Generators in (2.9) generate an optimal system M :

{V1, V2, V3, V4, V5, V1 ± V2, V1 ± V3, V2 ± V3, V4 ± V5, V4 ± V2, V4 ± V3,

V5 ± V1, V5 ± V3, V1 ± V2 ± V3, V4 ± V5 ± V3, V4 ± V2 ± V3, V5 ± V1 ± V3}.

Proof. From (2.9) and the formula [Vi, Vj ] = ViVj − VjVi, we obtain the table of
Lie brackets.

[Vi, Vj ] V1 V2 V3 V4 V5

V1 0 0 0 V1 0

V2 0 0 0 0 V2

V3 0 0 0 0 0

V4 −V1 0 0 0 0

V5 0 −V2 0 0 0

Table 1. The table of Lie brackets

Assume any vector

V = l1V1 + l2V2 + l3V3 + l4V4 + l5V5. (3.1)

Next, we will establish the linear transformation

l̃ = (l1, l2, l3, l4, l5). (3.2)

Let
Hi = ckij lj∂lk , i = 1, 2, 3, 4, 5, (3.3)
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in which ckij is from formula [Vi, Vj ] = ckijVk. By (3.3) and Table 1, we can obtain
F1, F2, F3, F4, F5. 

F1 = l4∂l1 ,

F2 = l5∂l2 ,

F3 = 0,

F4 = −l1∂l1 ,
F5 = −l2∂l2 .

For F1, F2, F3, F4, F5, the Lie equations in terms of parameter b1, b2, b3, b4, b5
and initial conditions l̃|bi=0 = l, i = 1, 2, 3, 4, 5 are as follows.

dl̃1
db1

= l4,
dl̃2
db1

= 0,
dl̃3
db1

= 0,
dl̃4
db1

= 0,
dl̃5
db1

= 0,

dl̃1
db2

= 0,
dl̃2
db2

= l5,
dl̃3
db2

= 0,
dl̃4
db2

= 0,
dl̃5
db2

= 0,

dl̃1
db3

= 0,
dl̃2
db3

= 0,
dl̃3
db3

= 0,
dl̃4
db3

= 0,
dl̃5
db3

= 0,

dl̃1
db4

= −l1,
dl̃2
db4

= 0,
dl̃3
db4

= 0,
dl̃4
db4

= 0,
dl̃5
db4

= 0,

dl̃1
db5

= 0,
dl̃2
db5

= −l2,
dl̃3
db5

= 0,
dl̃4
db5

= 0,
dl̃5
db5

= 0.

(3.4)

The solution of equation (3.4) constitute the transformation

T1 : l̃1 = l1 + b1l4, l̃2 = l2, l̃3 = l3, l̃4 = l4, l̃5 = l5,

T2 : l̃1 = l1, l̃2 = l2 + b2l5, l̃3 = l3, l̃4 = l4, l̃5 = l5,

T3 : l̃1 = l1, l̃2 = l2, l̃3 = l3, l̃4 = l4, l̃5 = l5,

T4 : l̃1 = l1e
−b4 , l̃2 = l2, l̃3 = l3, l̃4 = l4, l̃5 = l5,

T5 : l̃1 = l1, l̃2 = l2e
−b5 , l̃3 = l3, l̃4 = l4, l̃5 = l5.

To find an optimal system, we need to simplify vector (3.2) by applying T1 − T5.

Case 1. When l4 6= 0, let b1 = − l1
l4

(T1) and make l̃1 = 0. Therefore, (3.2) can

be reduced to (0, l2, l3, l4, l5).

(1.1) When l5 6= 0, let b2 = − l2
l5

(T2) and make l̃2 = 0. Therefore, (3.2) can be

reduced to (0, 0, l3, l4, l5). Then, V is equivalent to

V4 ± V5, V4 ± V5 ± V3.

(1.2) When l5 = 0, (3.2) can be reduced to (0, l2, l3, l4, 0). Then, V is equivalent
to

V4, V4 ± V2, V4 ± V3, V4 ± V2 ± V3.

Case 2. When l4 = 0, (3.2) can be reduced to (l1, l2, l3, 0, l5).

(2.1) When l5 6= 0, let b2 = − l2
l5

and make l̃2 = 0. Therefore, (3.2) can be

reduced to (l1, 0, l3, 0, l5), and then V is equivalent to

V5, V5 ± V1, V5 ± V3, V5 ± V1 ± V3.
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(2.2) When l5 = 0, (3.2) can be reduced to (l1, l2, l3, 0, 0). Then, V is equivalent
to

V1, V2, V3, V1 ± V2, V1 ± V3, V2 ± V3, V1 ± V2 ± V3.

Therefore, we obtain the optimal system

{V1, V2, V3, V4, V5, V1 ± V2, V1 ± V3, V2 ± V3, V4 ± V5, V4 ± V2, V4 ± V3,

V5 ± V1, V5 ± V3, V1 ± V2 ± V3, V4 ± V5 ± V3, V4 ± V2 ± V3, V5 ± V1 ± V3}.

3.2. Invariant solutions

(1)

V4 = x
∂

∂x
− u ∂

∂u
.

The corresponding characteristic equation is

dx

x
=
dy

0
=
dt

0
=

du

−u
,

the invariances are
y, t, h = xu,

and the group invariant solution is as follows

u =
f(y, t)

x
.

Then, equation (1.4) can be reduced to

ftt − λf = 0. (3.5)

From equation (3.5), we have

u =
1

x

(
c1(y)e

√
λt + c2(y)e−

√
λt),

in which c1(y), c2(y) are arbitrary functions of y.
(2)

V5 = y
∂

∂y
− u ∂

∂u
.

The corresponding characteristic equation is

dx

0
=
dy

y
=
dt

0
=

du

−u
,

the invariances are
x, t, h = uy,

and the group invariant solution is as follows

u =
f(x, t)

y
.
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Then, equation (1.4) can be reduced to

f ′′tt − λf = 0. (3.6)

From equation (3.6), we have

u =
1

y

(
c3(x)e

√
λt + c4(x)e−

√
λt),

in which c3(x), c4(x) are arbitrary functions of x.
(3)

V = V1 + V2 =
∂

∂x
+

∂

∂y
.

The corresponding characteristic equation is

dx

1
=
dy

1
=
dt

0
=
du

0
,

the invariances are

t, z = x− y, h = u,

and the group invariant solution is as follows

u = f(t, z).

Then, equation (1.4) can be reduced to

ftt +
1

f
fzz −

1

f2
f2
z − λf = 0. (3.7)

(4)

V = V1 + V3 =
∂

∂x
+
∂

∂t
.

The corresponding characteristic equation is

dx

1
=
dy

0
=
dt

1
=
du

0
,

the invariances are

y, z = x− t, h = u,

and the group invariant solution is as follows

u = f(y, z).

Then, equation (1.4) can be reduced to

fzz −
1

f
fzy +

1

f2
fzfy − λf = 0. (3.8)

(5)

V = V2 + V3 =
∂

∂y
+
∂

∂t
.
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The corresponding characteristic equation is

dx

0
=
dy

1
=
dt

1
=
du

0
,

the invariances are
x, z = y − t, h = u,

and the group invariant solution is as follows

u = g(x, z).

Then, equation (1.4) can be reduced to

gzz −
1

g
gxz +

1

g2
gxgz − λg = 0. (3.9)

(6)

V = V4 + V5 = x
∂

∂x
+ y

∂

∂y
− 2u

∂

∂u
.

The corresponding characteristic equation is

dx

x
=
dy

y
=
dt

0
=

du

−2u
,

the invariances are
t, z =

x

y
, h = x2u,

and the group invariant solution is as follows

u =
f(z, t)

x2
.

Then, equation (1.4) can be reduced to

1

x2
ftt +

x

y3

1

f
fzz −

x

y3

1

f2
f2
z +

1

y2

1

f
fz −

λ

x2
f = 0. (3.10)

(7)

V = V4 + V2 = x
∂

∂x
+

∂

∂y
− u ∂

∂u
.

The corresponding characteristic equation is

dx

x
=
dy

1
=
dt

0
=

du

−u
,

the invariances are
t, z = xe−y, h = uey,

and the group invariant solution is as follows

u = e−yf(t, z).

Then, equation (1.4) can be reduced to

e−y
(
ftt +

1

f
fz + xe−y

1

f
fzz − xe−y

1

f2
f2
z − λf) = 0. (3.11)
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(8)

V = V5 + V1 =
∂

∂x
+ y

∂

∂y
− u ∂

∂u
.

The corresponding characteristic equation is

dx

1
=
dy

y
=
dt

0
=

du

−u
,

the invariances are

t, z = ye−x, h = uy,

and the group invariant solution is as follows

u =
f(z, t)

y
.

Then, equation (1.4) can be reduced to

1

y
ftt +

y

f
e−2xfzz −

y

f2
e−2xf2

z +
1

f
e−xfz −

λ

y
f = 0. (3.12)

(9)

V = V5 + V3 =
∂

∂t
+ y

∂

∂y
− u ∂

∂u
.

The corresponding characteristic equation is

dx

0
=
dy

y
=
dt

1
=

du

−u
,

the invariances are

x, z = ye−t, h = uy,

and the group invariant solution is as follows

u =
f(x, z)

y
.

Then, equation (1.4) can be reduced to

e−tfz + ye−2tfzz −
1

f
e−tfz +

1

f2
e−tfxfz − λf

1

y
= 0. (3.13)

(10)

V = V1 + V2 + V3 =
∂

∂x
+

∂

∂y
+
∂

∂t
.

The corresponding characteristic equation is

dx

1
=
dy

1
=
dt

1
=
du

0
,

the invariances are

ξ = y − t, η = x− t, h = u,
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and the group invariant solution is as follows

u = f(ξ, η).

Then, equation (1.4) can be reduced to

fξξ + 2fξη + fηη −
1

f
fξη +

1

f2
fξfη − λf = 0. (3.14)

(11)

V = V4 + V5 + V3 = x
∂

∂x
+ y

∂

∂y
+
∂

∂t
− 2u

∂

∂u
.

The corresponding characteristic equation is

dx

x
=
dy

y
=
dt

1
=

du

−2u
,

the invariances are
z =

y

x
, h = ue2t,

and the group invariant solution is as follows

u = f(z)e−2t.

Then, equation (1.4) can be reduced to

y

x3

1

f
f ′′ +

1

x2

1

f
f ′ − y

x3

1

f2
f ′2 + (4− λ)e−2tf = 0. (3.15)

(12)

V = V4 + V2 + V3 = x
∂

∂x
+

∂

∂y
+
∂

∂t
− u ∂

∂u
.

The corresponding characteristic equation is

dx

x
=
dy

1
=
dt

1
=

du

−u
,

the invariances are
z = y − t, h = xu,

and the group invariant solution is as follows

u =
f(z)

x
.

Then, equation (1.4) can be reduced to

f ′′ − λf = 0. (3.16)

From equation (3.16), we have

u =
1

x

(
c5e
√
λ(y−t) + c6e

−
√
λ(y−t)),

in which c5, c6 are arbitrary constants.
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(13)

V = V5 + V1 + V3 =
∂

∂x
+ y

∂

∂y
+
∂

∂t
− u ∂

∂u
.

The corresponding characteristic equation is

dx

1
=
dy

y
=
dt

1
=

du

−u
,

the invariances are
z = x− t, h = uy,

and the group invariant solution is as follows

u =
f(z)

y
.

Then, equation (1.4) can be reduced to

f ′′ − λf = 0. (3.17)

From equation (3.16), we have

u =
1

y

(
c7e
√
λ(x−t) + c8e

−
√
λ(x−t)),

in which c7, c8 are arbitrary constants.

4. Conservation laws

Equation (1.4) can be written as

F = utt −
1

u
uxy +

1

u2
uxuy − λu = 0. (4.1)

First, we analyze equation (4.1) by applying the Ibragimov method. According
to equation (1.3) and Theorem 3.1 in [9], we can calculate the adjoint variable φ as
follows

φ = 2(α(x) + β(y)) cosh(
√
λt). (4.2)

Formal Lagrangian function is given by

L = φF = 2
(
α(x) + β(y))

(
utt −

1

u
uxy +

1

u2
uxuy − λu) cosh(

√
λt).

The adjoint equation of equation (4.1) is as follows

F ∗ =
δL

δu
= 0,

in which
δ

δu
is the Euler-Lagrange operator as follows

δ

δu
=

∂

∂u
−Dt

∂

∂ut
−Dx

∂

∂ux
−Dy

∂

∂uy
+DxDy

∂

∂uxy
+D2

t

∂

∂utt
+D2

x

∂

∂uxx
+D2

y

∂

∂uyy
−...,
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in which Di is the total derivative operator of x, y, t as follows

Dt =
∂

∂t
+ ut

∂

∂u
+ vt

∂

∂v
+ utt

∂

∂ut
+ vtt

∂

∂vt
+ utx

∂

∂ux
+ vtx

∂

∂vx
+ uty

∂

∂uy
+ ...,

Dx =
∂

∂x
+ ut

∂

∂u
+ vt

∂

∂v
+ utx

∂

∂ut
+ vtx

∂

∂vt
+ uxx

∂

∂ux
+ vxx

∂

∂vx
+ uxy

∂

∂uy
+ ...,

Dy =
∂

∂y
+ uy

∂

∂u
+ vy

∂

∂v
+ uty

∂

∂ut
+ vty

∂

∂vt
+ uxy

∂

∂ux
+ vxy

∂

∂vx
+ uyy

∂

∂uy
+ ....

Definition 4.1. For the differential equation (4.1), if there exists a function

φ = φ(x, y, t, u) 6= 0, (4.3)

and such that it satisfies

F ∗|φ=φ(x,y,t,u) = λF, (4.4)

in which λ = λ(x, y, t, u, ...) is undetermined. Then, equation (4.1) is said to be
nonlinearly self-adjoint.

Definition 4.2. A vector field C(x, y, t, u, ux, uy, ut, ...) has three components, i.e.,

C = C(C1, C2, C3).

If each solution u = u(x, y, t) of equation (4.1) satisfies the equation

Di(C
i) = DtC

1 +DxC
2 +DyC

3, (4.5)

then the vector field C(x, y, t, u, ut, ux, uy, ...) is said to be a conserved vector, and
(4.5) is said to be a conservation law of equation (4.1).

Next, we calculate the conservation laws according to Theorem 2.1 in [9].

C1 = 2
(
α(x)+β(y))

(√
λ
(
(c2+c3)u+c1ut + (c2x+c4)ux + (c3y + c5)uy

)
sinh(

√
λt)

−
(
(c2 + c3)ut + c1utt + (c2x+ c4)uxt + (c3y + c5)uty

)
cosh(

√
λt)
)
,

C2 = −2 cosh(
√
λt)
((

(α(x) + β(y))(
1

u2
uy +

1

uy
) +

1

u
βy
)(

(c2 + c3)u+ c1ut

+ (c2x+ c4)ux + (c3y + c5)uy
)
− 1

u

(
α(x) + β(y)

)(
(c2 + c3)uy + c1uty

+ (c2x+ c4)uxy + c3uy + (c3y + c5)uyy
))
,

C3 = −2 cosh(
√
λt)
((

(α(x) + β(y))(
1

u2
ux +

1

ux
) +

1

u
αx
)(

(c2 + c3)u+ c1ut

+ (c2x+ c4)ux + (c3y + c5)uy
)
− 1

u

(
α(x) + β(y)

)(
(c2 + c3)ux + c1utx

+ (c2x+ c4)uxx + c2ux + (c3y + c5)uxy
))
.
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Corollary 4.1. Assuming (2.8) is an infinitesimal generator of Lie symmetry for
equation (1.4), and α = α(x), β = β(y) are both non-vanishing harmonic functions,
then the corresponding nonlocal conserved vectors are as follows.

(a) For V1 =
∂

∂x
, we can obtain the components of the conserved vector C =

(C1, C2, C3):

C1 = 2
(
α(x) + β(y)

)(√
λux sinh(

√
λt)− uxt cosh(

√
λt)
)
,

C2 = −2 cosh(
√
λt)
((

(α(x)+β(y))(
1

u2
uy+

1

uy
)+

1

u
βy
)
ux−

1

u

(
α(x)+β(y)

)
uxy

)
,

C3 = −2 cosh(
√
λt)
((

(α(x)+β(y))(
1

u2
ux+

1

ux
)+

1

u
αx
)
ux−

1

u

(
α(x)+β(y)

)
uxx

)
.

(b) For V2 =
∂

∂y
, we can obtain the components of the conserved vector C =

(C1, C2, C3):

C1 = 2
(
α(x) + β(y)

)(√
λuy sinh(

√
λt)− uty cosh(

√
λt)
)
,

C2 = −2 cosh(
√
λt)
((

(α(x)+β(y))(
1

u2
uy+

1

uy
)+

1

u
βy
)
uy−

1

u

(
α(x)+β(y)

)
uyy

)
,

C3 = −2 cosh(
√
λt)
((

(α(x)+β(y))(
1

u2
ux+

1

ux
)+

1

u
αx
)
uy−

1

u

(
α(x)+β(y)

)
uxy

)
.

(c) For V3 =
∂

∂t
, we can obtain the components of the conserved vector C =

(C1, C2, C3):

C1 = 2
(
α(x) + β(y)

)(√
λut sinh(

√
λt)− utt cosh(

√
λt)
)
,

C2 = −2 cosh(
√
λt)
((

(α(x)+β(y))(
1

u2
uy+

1

uy
)+

1

u
βy
)
ut−

1

u

(
α(x)+β(y)

)
uty

)
,

C3 = −2 cosh(
√
λt)
((

(α(x)+β(y))(
1

u2
ux+

1

ux
)+

1

u
αx
)
ut−

1

u

(
α(x)+β(y)

)
utx

)
.

(d) For V4 = x
∂

∂x
−u ∂

∂u
, we can obtain the components of the conserved vector

C = (C1, C2, C3):

C1 = 2
(
α(x) + β(y)

)(√
λ(u+ xux) sinh(

√
λt)− (ut + xuxt) cosh(

√
λt)
)
,

C2 = −2 cosh(
√
λt)
((

(α(x) + β(y))(
1

u2
uy +

1

uy
) +

1

u
βy
)
(u+ xux)− 1

u

(
α(x)

+ β(y)
)
(uy + xuxy)

)
,

C3 = −2 cosh(
√
λt)
((

(α(x) + β(y))(
1

u2
ux +

1

ux
) +

1

u
αx
)
(u+ xux)− 1

u

(
α(x)

+ β(y)
)
(2ux + xuxx)

)
.

(e) For V5 = y
∂

∂y
− u ∂

∂u
, we can obtain the components of the conserved vector
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C = (C1, C2, C3):

C1 = 2
(
α(x) + β(y)

)(√
λ(u+ yuy) sinh(

√
λt)− (ut + yuty) cosh(

√
λt)
)
,

C2 = −2 cosh(
√
λt)
((

(α(x) + β(y))(
1

u2
uy +

1

uy
) +

1

u
βy
)
(u+ yuy)− 1

u

(
α(x)

+ β(y)
)
(2uy + yuyy)

)
,

C3 = −2 cosh(
√
λt)
((

(α(x) + β(y))(
1

u2
ux +

1

ux
) +

1

u
αx
)
(u+ yuy)− 1

u

(
α(x)

+ β(y)
)
(ux + yuxy)

)
.

5. Conclusions

This paper is divided into four parts. First, the background of writing this paper is
introduced. Second, based on the Lie symmetry method, the Lie point symmetry
group for the modified hyperbolic geometric flow is obtained. Third, the Optimal
system and exact solutions are discussed. Finally, on the basis of the Ibragimov
method, the conservation laws and nonlocal conservation laws of the modified hy-
perbolic geometric flow are given.
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