Journal of Nonlinear Modeling and Analysis http://jnma.ca; http://jnma.ijournal.cn
Volume 5, Number 2, June 2023, 272-287 DOI:10.12150/jnma.2023.272

Comnservation Laws and Exact Solutions to the
Modified Hyperbolic Geometric Flow*
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Abstract In this paper, we investigate Lie symmetry group, optimal system,
exact solutions and conservation laws of modified hyperbolic geometric flow
via Lie symmetry method. Then, conservation laws of modified hyperbolic
geometric flow are obtained by applying Ibragimov method.
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1. Introduction
Kong and Liu [7] first put forward the hyperbolic geometric flow

529@'
ot?

o
+2Rij+ﬁ(g,a—i) —0, (1.1)

0
in which g;; is the surface metric, # is the smooth function of g, a—? and R;;

is Ricci curvature tensor. Liu [8] discussed the classical global solution to the
Cauchy problem of dissipative hyperbolic geometric flow, and discussed that the
solution blows up. On the Riemann place, Wang [10] studied the exact solutions,
the existence and uniqueness of global solution and the blow up of the solution for
the geometrical flows.

Gao and Zhang [2] discussed the group-invariant solutions of the evolution e-
quation of a hyperbolic curve flow by applying the classical Lie symmetry method.
They [3] also studied the group invariant solutions of the normal hyperbolic mean
curvature flow with dissipation via Lie symmetry method. Gao and Wang [4, 5]
studied two different hyperbolic geometry flow equation by Lie symmetry analysis
and nonlinear self-adjointness.

A new theorem of conservation laws for arbitrary differential equations is pro-
posed by Ibragimov [6]. Belevtsov and Lukashchuk [1] investigated symmetry group
classification by Lie symmetry analysis and constructed the conservation laws of
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the nonlinear fractional diffusion equation with the Riesz potential, which satisfied
nonlinear self-adjointness. Zhang, Simbanefayi and Khalique [11] studied the trav-
eling wave solutions and conservation laws of the (2+1)-dimensional Broer-Kaup-
Kupershmidt Equation.

Silva [9] studied the nonlinear self-adjointness and conservation laws for the
quasilinear 2D second-order evolution equation

Uy = Auxy—i—Bumuy—l—Cum—&—Duyy—i—Euy—f—Fux+Pui+QuZ+G+Hut+Iu?7 (1.2)

inwhich A, B,C,D, E, F,G,H,I,P,Q and R are functions of z, y,t and u = u(z, y, t).
He discussed nonlinear self-adjointness and calculated conservation laws on Riem-
man surfaces for hyperbolic geometric flow equation.

Letting
1 1
A==, B=——,G=X i, C=D=E=F=P=Q=H=1=0 (13)
u u
be in equation (1.2), we obtain
1 1
Ut = - Uay — g Ually + Au, (1.4)

in which A is an arbitrary constant. Equation (1.3) is known as the modified hy-
perbolic geometric flow, and it is also given by equation (1.1) with .# = —ag;;.

In this paper, we will study the exact solutions and the conservation laws of
equation (1.4). First, the Lie point symmetry group for the modified hyperbolic
geometric flow is obtained by applying the Lie symmetry method. Second, the
Optimal system and exact solutions are discussed. Finally, the conservation laws
and nonlocal conservation laws of equation (1.4) are given by applying the Ibragimov
method.

2. Lie symmetry group analysis of equation (1.4)

The Lie symmetry of equation (1.4) is generated by the infinitesimal generator

0 0 0 0
V= p(xvyvta u)% + O'((E,yﬂf, u)@ + M(xayvtvu)a + UJ({E,y,t,'LL)%. (21)

The second-order prolongation vector field is

r@V = g—i—aé—l— g—l—wg+w”3 +wyi+wti+w“ 9
P =P T %y et T Y 0u T tuy Y ouy T oy EI
0 9] 0 9] 5,

Yy xt yt yy tt
tw gy tw Ozt tw Oy tw Oy tw Oug

Equation (1.4) remains invariant under an infinitesimal transformation, if and only
if V satisfies

pr®(V)(A)|a=o =0, (2.2)
1 1
in which A = wy — —ugy + —5 Ugly — Au, i.e.,
u U
1 2 Y Ug T tt
W(—5Uzy — —3Usly — A) +w uQ—i—wy?—w Y—+w" =0, (2.3)
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in which

T

— (Dzp)uz — (Dzo)uy — (Dyp)us
= Wy + (Wy — Po)Uy — yUzly — [ply — puui — Oglly — OyUgly,
w’ = Dyw — (Dyp)ug — (Dyo)uy — (Dyp)u
+ (Wy — Oy) Uy — foUyUs — flyUs — ouuz — Pylly — Pulizly,
w™ = Dyw" = (Dyp)tze — (Dyo)tzy — (Dyp)ua
= Way + (Wuy — Pay)Us + (Wou — Oay)Uy + (Wu — Po — flullt — 2pully
— 0y — 20Uy ) Uy + (Wuu — Pou — Huullt — Tuy)Uzly — (Puy + puuuy)ui

- (U:cu + Uuuu:c)uz - (,Ufy + ,uuuy)uxt - (py + puuy)uacx - (Ux + Uuuz)uyy

- (Muua: + Mw)uty — HuyUg Ut — PpyUt — PpuUt Uy,
" = Dy’ — (Dip)ure — (Dyo)ury — (Dypp)up
= Wyt + (2wiw — fee) Ut — Pretla — Tpplly + (Wouu — Q,Utu)ut 20t Ut Uy

3 2 2
— 204 Uity — Lyully — PuulliUs — Ty Uty + (Wy — 200 — 3ty Up — Pully

— Oully ) Uy — 2(pr + putie) Uiy — 2(0¢ + Tyl ) Uy
Substituting equation (1.4) into w', we have

(JJtt = tht — (Dtp)utx — (DtO')’U,ty — (Dt,LL)'LLtt
= Wt + (2wru — ) Ut — Prelle — Orplly + (Wyu — 2/J/tu)u? — 2P Uy

3 2 2
— 204, Uty — Puul; — Puulils — TuaUily — 2(pt + putis)Utg — 2(0¢ + Oy Ut )Usy

1 1
+ (Wu — 20t — By Us — Pyuliy — Juuy)(aumy — ﬁuTuy + ),

(2.4)
in which the coefficients of u gy, UgUay, Uylqy in equation (2.3) and equation (2.4)
are as follows

Uty @ —— by = 0,
U

Uy Uy — Py =0

yUay = )

UyUgy - ao'u
We obtain p = p(z,y,t), 0 = o(x,y,t), u = u(x,y,t). Therefore, we further have

w” =w, + (wu - px)u:c — MUt — Ogly,
WY = wy + (Wu — 0y ) Uy — HyUs — Py,
W = Way + (Wuy — Pay)Ua + (Wau — Tay)ty + (Wu — Pz — Ty)Uay
+ wuuuzuy - Nyuzt - pyuxm - Umuyy - ,U/zuty - ,U/myuta
W = wi + (2wiy — fier) s — Pretiy — OlUy + wuuut 201Uy — 201Uy

1 1
+ (wu — 2u) (= uzy 2 — Uz Uy + AU).
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Substituting the above equations into equation (2.3), we obtain

1 2 U U
w(ﬁuw — lally — A) + u—g[ww + (Wy — Po)Uy — Hgts — Oxly] + ?z[wy + (wy

1
- Uy)uy — HyUt — pyux] - E[Wacy + (wuy - pwy)um + (wzu - Uzy)uy + (Wu — Pz

- O'y)uLy F WyuUgUy — HyUgt — Pyl — Oglyy — Halty — waut] + [th + (2wtu
1 1
- Ntt)ut — PttUs — OtUy + Wuuu? — 2Ptz — 204Uy + (wu - 2/1't)(aua:y - ?umuy
+ Au)] = 0.
(2.5)

Comparing the coefficients of equation (2.5), the determining equations are given
by
1

(Dus : LA 0,
1
2,
(3)u? : wyu = 0,
1
(4)U:cy : ﬁw + = (pa + Oy — 2u) =0,
1

u
(Tt + Sy = 0
Tx upy — Y
1
(8)uyy : 20 = 0, (2.6)
2 1 1
(9uzuy : —ﬁw + ﬁ(wu — Pz — Oy +2) — awuu =0,

1
(10)uzuy : —ahy = 0,

1
(11)uyuy : ~ghe = 0,

1 1
(12)uy : Wy E(Ww — Pay) — prt = 0,
1 1

(13)uy, : 2% E(ww — Ogy) — 01 =0,

1
(14)uy : o Py + 2wiy — pge = 0,

1
(15)1: —dw —  Way + wit + Mwy — 20)u = 0.
From equation (2.6), we know

p= ,0(33), 0= U(y)7 H=c, W= _(pﬁf +Uy)u (27)

Let

p=cor+cy, 0=c3y+cs, pp=c1, w=—(c2+ c3)u.
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Therefore, (2.1) becomes

0 0 0 0
V= (c2x+04)% +(03y+c5)a—y —1—015 - (62+C3)u%. (2.8)

in which ¢1, ca, ¢3, ¢4, c5 are arbitrary constants. From (2.8), we have five sub-
algebras

vl%,

V=g

V= o, (2.9)
V“:xaax 7u82u’

Vs :yaa fua%-

3. Optimal system and exact solutions

3.1. Optimal system

Theorem 3.1. Generators in (2.9) generate an optimal system M :

{Vla ‘/2? V37 V47 ‘/E)a ‘/l:l:‘/év Vl:l:‘/?)) ‘/Qi‘/?)a ‘/ZL:I:VEH ‘/Zl:l:‘/Q7 V4:|:‘/37
Vst Vi, Vs £ V3, Vit Vot Vs, Vit Vs £ V3, Vit Vot Vs, V5 Vi £ Va})

Proof. From (2.9) and the formula [V;, V;] = V;V; — V;V;, we obtain the table of
Lie brackets.

Vi, Vj] 14 Vs V3 Vy Vs
Vi 0 0 0 Vi 0
Va 0 0 0 0 Vs
Vs 0 0 0 0 0
Vi -V 0 0 0 0
Vs 0 Vs 0 0 0

Table 1. The table of Lie brackets

Assume any vector
V=UuVi+0LVo+13Vs+1,Vy+15Vs. (3.1)
Next, we will establish the linear transformation
1= (I, 1o, 13,14, 15). (3.2)

Let
H; = cfil;0,, i=1,2,3,4,5, (3.3)
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in which cfj is from formula [V;, V}] = cijk. By (3.3) and Table 1, we can obtain

F17 FQ» F37 F47 F5‘

Fy =140y,
Fy =150,
Fy =0,
Fy= -0,
Fy = —10),.

For Fi, Fy, F3, Fy, Fg,, the Lie equations in terms of parameter by, bs, b3, by, bs
and initial conditions I|p,—¢g =, ¢ = 1,2,3,4,5 are as follows.

32;214’ 3;21=0, jéjzo, (ﬁj:o, jéj:o,
;lé;zo, 3ll322=l5, ;léz:o, 3;42:07 ;2220,
%:0’ Zl%:_l?’ %:07 372=0, Z—ZZZ:O.

The solution of equation (3.4) constitute the transformation
Tyili=l+bils, b=l I3 =13, Iy =1y, I5 =I5,
To:ly =1y, b=l +bols, I3 =13, Iy =1y, I5 = I,
T3 : Zl :ll, ZQ :lg, l~3 :lg, Z4 :l4, l~5 :l5,
Tyl =lhe ™, lo=1lo, Iy =13, ls =la, I5 =1,

T5 : Z1 = ll, ZQ = lge_bs, Zg = l3, i4 = l4, l~5 = l5.

To find an optimal system, we need to simplify vector (3.2) by applying T — T5.
Case 1. When Iy # 0, let b; = —% (Ty) and make I; = 0. Therefore, (3.2) can
be reduced to (0,l2,13,14,15).
(1.1) When 5 # 0, let by = 7%(7_'2) and make Iy = 0. Therefore, (3.2) can be
reduced to (0,0,!l3,14,15). Then, V is equivalent to

Vat Vs, Vit Vs £Vs.

(1.2) When I5 = 0, (3.2) can be reduced to (0,l3,13,14,0). Then, V is equivalent
to
Vi, Vot Vo, Vi £ V3, Vi £ Vo £ V3.
Case 2. When Iy =0, (3.2) can be reduced to (I1,12,13,0,15).
I .
(2.1) When I5 # 0, let by = —l—z and make l; = 0. Therefore, (3.2) can be

5
reduced to (I1,0,l5,0,l5), and then V is equivalent to
Vs, Vo £V, Vs £ V5, Vs £ V1 £V
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(2.2) When I5 = 0, (3.2) can be reduced to (I1,12,13,0,0). Then, V is equivalent
to
Vi, Vo, V3, Vit Vo, Vit Vs, Vot Vs, Vi Vo Vs

Therefore, we obtain the optimal system

{Vi, Vo, Vg, Vi, V5, Vi £ Vo, Vi £ V3, Vo £ V3, Vit Vs, Vit Vo, Vit Vi,
Vet Vi, Vot Vs, Vit Vot Vs, Vit Vet Vs, Vit Vot Vs, Vs+V) £Vs}

O

3.2. Invariant solutions

(1) 5 5
Vi=x— —u—

ox ou’
The corresponding characteristic equation is

de. dy dt  du
x 0 0 —u
the invariances are
y? t7 h = xu?

and the group invariant solution is as follows

f(y,t)

x

Then, equation (1.4) can be reduced to
fu—Af=0. (3.5)

From equation (3.5), we have
1
w=~(am)e™ +ealy)e ),

in which ¢;(y), c2(y) are arbitrary functions of y.

2) 5 5

The corresponding characteristic equation is
do_dy _dt_ du
0 vy 0 —u

the invariances are
aj? t7 h = uy’
and the group invariant solution is as follows

_ fat)
Y
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Then, equation (1.4) can be reduced to
7 \f = 0. (3.6)
From equation (3.6), we have

1
u= 5(03(33)@‘5’5 + 04(x)e_ﬁt),

in which cs(z), c4(z) are arbitrary functions of x.

®3) 5 s

The corresponding characteristic equation is

dr _dy _di _du

1 1 0 0’

the invariances are
t, z=x—vy, h=u,

and the group invariant solution is as follows
u= f(t,2).

Then, equation (1.4) can be reduced to

1

fu+ o= f2 =M =0 (3.7)
(4)
V=V+V;= (,% + %
The corresponding characteristic equation is
de _dy _di _ du

1 0 1 0’
the invariances are
Yy, z=x—t, h=u,

and the group invariant solution is as follows

u= f(y,2).

Then, equation (1.4) can be reduced to

1 1
fzz*?fzy+ﬁfzfy7>\f:0~ (38)
(5)
VVetVym o g

8y+a'
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The corresponding characteristic equation is

dfx_dy_dt_du

0o 1 1 0’
the invariances are
r, z=y—t, h=u,
and the group invariant solution is as follows
u=g(z,z2).

Then, equation (1.4) can be reduced to
1 1
92z — ggxz + ?gacgz —Ag=0. (3.9)

(6)

The corresponding characteristic equation is
do_dy _dt _ du
xr y 0  —2u’

the invariances are

x
t, z ==, h =z,
)
and the group invariant solution is as follows
_ [
==

Then, equation (1.4) can be reduced to

1 A

1
2,
e — - f=0. 3.10
2ftt+ ff f2f y2 ff mzf ( )
“ 0 0 0
V=WVi+Vo=o—+——u—.
=T Y ey T You
The corresponding characteristic equation is
de_dy _dt_du
r 1 0 —u
the invariances are
t, z=xze Y, h=ueY,
and the group invariant solution is as follows
u=-eYf(t z2).
Then, equation (1.4) can be reduced to
1 1
TY(fr+ St ze Y fon — Lo =o. (3.11)

f f f2
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(8) 5 5
V=Vs+ V1 =— — —u—.
st W Ox +y8y ”au
The corresponding characteristic equation is
do_dy _dt_du
1y 0 —u
the invariances are
t, z=ye ", h=uy,
and the group invariant solution is as follows
_I0)
Y
Then, equation (1.4) can be reduced to
1 Y o Y _owpo 1 A
—fu+Ze T — e P4 e f.— = =0. (3.12)
y f f? f y
© 0 0 0
V=V4+Vs=— — —u—.
YT Yy T o
The corresponding characteristic equation is
dr _dy dt du
0o vy 1 —u
the invariances are
x, z=ye ', h=uy,
and the group invariant solution is as follows
u= f(@:2) .
Y
Then, equation (1.4) can be reduced to
—t —2t L L 1
e fatye " fon— e fot e fuf. = Af- =0, (3.13)
f f y
(10)
0 0 0
V=Vi+V+V3=—+—+4+ —.
1+ Va+ Vs 31‘+6y+8t

The corresponding characteristic equation is

dr _dy _di _dv

1 1 1 0’

the invariances are
gzy_ta 77237—757 h:U,
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and the group invariant solution is as follows

u= f(&n).

Then, equation (1.4) can be reduced to

fee +2fen + fon — = fen + %fafn CAf =0,

f

(11)
o 0 0

(9
V=Vy+Ves+Vs=0—4+y—+ — —2u—.

Ox 8 ot ou

The corresponding characteristic equation is

dx @ dt  du

z Y 1 =2

the invariances are y
z=2, h=ue?,

8

and the group invariant solution is as follows

u= f(z)e .
Then, equation (1.4) can be reduced to

1 11
BTl - e =
(12
0 9 (9

0

The corresponding characteristic equation is

de. dy dt du
x 1 1 —u
the invariances are
z=y—t, h=uzxu,

and the group invariant solution is as follows

1)
s
Then, equation (1.4) can be reduced to
" =Af=0.

From equation (3.16), we have

1
u= ;(056\5@_0 + cGe_ﬁ(y_t)),

in which c5, cg are arbitrary constants.

(3.14)

(3.15)

(3.16)
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(13)
0 0 0 0
V=Vi4+Vi+Vs=— —+ — —u—.
5+ Vi+ V3 8x+y8y+8t uau
The corresponding characteristic equation is
do_dy _dt_du

)

1 Y 1 —U

the invariances are
z=x—t, h=uy,

and the group invariant solution is as follows

1)
Y
Then, equation (1.4) can be reduced to
" \f=0. (3.17)

From equation (3.16), we have

1
U= - (076\5(:”7” + 0867\5@%))

3

in which ¢7, cg are arbitrary constants.

4. Conservation laws

Equation (1.4) can be written as

1 1

First, we analyze equation (4.1) by applying the Ibragimov method. According
to equation (1.3) and Theorem 3.1 in [9], we can calculate the adjoint variable ¢ as
follows

6 = 2(a(x) + Bly)) cosh(VA). (4.2)

Formal Lagrangian function is given by
1 1
L=¢F =2(a(z) + B(y)) (uw — o Uay + o Uatly — M) cosh(V/AL).

The adjoint equation of equation (4.1) is as follows

oL
* = — = 0
ou ’
. .0,
in which Su is the Euler-Lagrange operator as follows
u
) 0 0 0 0 0 5 0 0 0

+D;Dy 5 —+D
Yy

~ =2 _Dj——-Dy—-D

— D? D? —
Su  Ou Ouy Oug Y Ouy, + + ’

t Dy T gy Y Ouyy,
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in which D; is the total derivative operator of x,y,t as follows

D=2 2 v 0l - b e e o+
t ot Uy ou Ut 90 Ut Dy Uit e Uty 75— Ouy Utz EON Uty 3uy ey
D a—i—u +v 8+u +v i—&—u i—i—v i—f—u i—i—
T a ta t a te o a uy tx avt T 6’&1 TT 81]1; xy auy [
9 0 9 0 0 0 0 0

Definition 4.1. For the differential equation (4.1), if there exists a function
¢ = ¢(z,y,t,u) #0, (4.3)

and such that it satisfies
Fr g,y t) = AF, (4.4)

in which A = A(z,y,t,u,...) is undetermined. Then, equation (4.1) is said to be
nonlinearly self-adjoint.

Definition 4.2. A vector field C(z,y,t, u, us, Uy, us, ...) has three components, i.e.,
C =C(C,C? C?).
If each solution u = u(z,y,t) of equation (4.1) satisfies the equation
D;(C%) = D,C* + D,C? + D,C?, (4.5)

then the vector field C(z, y,t, u, us, Uy, Uy, ...) is said to be a conserved vector, and
(4.5) is said to be a conservation law of equation (4.1).

Next, we calculate the conservation laws according to Theorem 2.1 in [9)].

C' =2(a(z)+8(y)) (\/X((CQ+C3)U+01’U¢ + (com+ca)uq + (c3y + ¢5)uy) sinh(V/t)

_ ((02 + es)up + crug + (o + ca)uqgs + (csy + c;,)uty) cosh(\[\t)),

C? = —2cosh(V/Xt) (((a(x) + ﬂ(y))(%uy + ui) + %ﬁy) ((c2 + e3)u + cruy

+ (cox + ca)uy + (c3y + 05)uy) — %(a(m) + ,B(y)) ((02 + c3)uy + Crugy
+ (ch + c4)u7;y + c3uy + (C3y + C5)Uyy)),
C3 = —QCOSh(\/Xt)((( (z) + By ))( 1 S e + 7) + %Oém) ((c2 + c3)u+ cruy

+ (co + ca)ug + (c3y + c5)uy) — %(a(m) + B(y)) ((c2 + e3)ua + cruss

+ (coz + ca)ugy + Couy + (c3y + Cs)uzy))
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Corollary 4.1. Assuming (2.8) is an infinitesimal generator of Lie symmetry for
equation (1.4), and o = a(z), f = B(y) are both non-vanishing harmonic functions,
then the corresponding nonlocal conserved vectors are as follows.

(a) For Vi = 72 we can obtain the components of the conserved vector C' =
(Ch,C%C%):
C' =2(a(z) + B(y)) (\f)\um sinh (V) — gy COSh(\FAt)),
1 1 1
0? = —QCosh(fAt)(((a(m)+5(y))(u2uy+%)+iﬁy)ux—u(a(x)+ﬂ(y))uxy)7

0% = ~2cosh (VA1) (@) B gtta-t )+ a0 — (o) + () e ).

u? Uy U

(b) For Vo = g’ we can obtain the components of the conserved vector C =
(Cl7 02’ CS)

Ct = 2(04(3:) + ﬂ(y)) (\f/\uy sinh(\ﬁ)\t) — Ugy cosh(\ﬁt))7

€2 = ~2eosh(V0)(((0)+ B 10+ )+ o)ty = (00) 60 ).

€% = ~2cosh(VAE) (o) + B 1+ )+ )ty 3 (a(e) B0y )

(c) For V3 = %, we can obtain the components of the conserved vector C' =
(cr,c?,C3):

C' =2(a(z) + By)) (\F)\ut sinh (V) — gy cosh(\r)\t)),

€% = ~2.c0sn(v/3) (@) + BW)) -yt + )5y e (o) +B(9)) ey ).

Y

o3 —2cosh(\/Xt)(((a(m)—i—ﬁ(y))(%um—i—ui)—i—%az)ut—%(a(x)—f—ﬁ(y))um).

T

(d) ForV, = za— - ua—, we can obtain the components of the conserved vector
x U

C = (C',C2,C8):

C' =2(a(z) + By)) (\F)\(u + zug ) sinh (VL) — (uy 4 Tugy) cosh(ﬁt)),
1 1

€ = —2eosh (VA1) (((a(w) + B gy + )+ 4 By) (ot ) = L o)
+ B(y)) (uy + 21ay) ),

¢* = ~2cosh(VA1) (((ax) + ,B(y))(%ux + uiz) + %ozx)(u +aug) — %(a(m)
+ B(y)) (2us + xuu))

(e) For Vs = ya—y — u%, we can obtain the components of the conserved vector
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C = (C',C2,C3):
Ct =2(a(z) + By)) (VA(u + yuy) sinh(ft) (s + yugy) cosh(VAL)),
€2 = ~2cosh(VA0) (((0e) + BN gty + ) + 3 80) (-t v) = (o)
+B(0) 2y + ) ),
€2 = ~2c0sh (VA1) () + B9)) (510 + )+ eus) (- y,) = 1 ala)
- B(1)) (1 + Yty )
5. Conclusions

This paper is divided into four parts. First, the background of writing this paper is
introduced. Second, based on the Lie symmetry method, the Lie point symmetry
group for the modified hyperbolic geometric flow is obtained. Third, the Optimal
system and exact solutions are discussed. Finally, on the basis of the Ibragimov
method, the conservation laws and nonlocal conservation laws of the modified hy-
perbolic geometric flow are given.
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