
Journal of Nonlinear Modeling and Analysis http://jnma.ca; http://jnma.ijournal.cn

Volume 5, Number 2, June 2023, 366–376 DOI:10.12150/jnma.2023.366

Existence and Uniqueness of the Solution for
Hilfer Neural Networks with Delays*
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Abstract This paper mainly concerns with a class of nonlinear Hilfer frac-
tional neutral recurrent neural networks with time varying delays. The exis-
tence and uniqueness of solutions in the space of weighted continuous functions
are established by Banach’s contraction principle. Finally, an example is pro-
vided to illustrate the application of the obtained results.
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1. Introduction

In the past three decades, fractional calculus has received an increasing attention
due to its various applications in engineering, mechanics, signal processing, material
sciences, etc [1–4]. The related theories about fractional differential equations have
been extensively studied by many researchers [5–8]. Additionally, Hilfer fractional
derivative, which includes Riemann-Liouville fractional derivative and Caputo frac-
tional derivative, was introduced in [1]. After that, a large number of fractional
differential equations with Hilfer fractional derivatives were studied [9–13].

On the other hand, neutral neural networks with time delay have aroused nat-
urally in a wide variety of fields like physics, chemistry, control, viscoelastic me-
chanics, porous media, electromagnetic and polymer rheology, etc. Therefore the
issue concerning the existence, uniqueness of solutions of neutral neural networks
has been widely discussed by many authors [14–19].

The successive approximation method [20, 21] and the fixed point theorems
[20–30] have long been viewed as the main classical methods of studying existence
and uniqueness problems in many areas of differential equations. Additionally,
compared with fractional differential equations with delays, many dynamical sys-
tems not only depend on present and past states but also involve derivatives with
delays, and neutral fractional differential equations with delays are often used to
describe such systems [23, 31, 32]. Few authors studied the existence and unique-
ness for a problem involving Hilfer fractional derivative. For example, C. Kou et
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al. studied the existence and uniqueness on fractional differential equation with
Riemann-Liouville fractional derivative [33]. D.F. Luo et.al proved the uniqueness
of the solution for the stochastic fractional delay system with Caputo fractional
derivative, see [31]. K.M. Furtati et al. studied the existence and uniqueness of
global solutions for a class of nonlinear fractional differential equations involving
Hilfer fractional derivative, see [34]. However, to the best of our knowledge, the
existence and uniqueness of nonlinear Hilfer fractional neutral recurrent neural net-
works have not been yet developed. In this paper, we will study the existence and
uniqueness of a class of nonlinear Hilfer fractional neutral recurrent neural networks
with time varying delays by using Banach’s fixed point theory.

In this paper, we consider a general class of neural networks with discrete and
distributed varying delays which is described by

Dα,β
0+

[
xi(t)−

n∑
j=1

qijxj(t− τ(t))
]
=

n∑
j=1

aijfj(xj(t)) +

n∑
j=1

bijgj(xj(t− τ(t)))

+

n∑
j=1

lij

∫ t

t−r(t)

hj(xj(s))ds, t ∈ [0,+∞)

(1.1)

or

Dα,β
0+

[
x(t)−Qx(t− τ(t))

]
= Af(x(t)) +Bg(x(t− τ(t))) +W

∫ t

t−r(t)

h(x(s))ds,

where Dα,β
0+ is the Hilfer fractional derivative with 0<α<1 and 0 ≤ β ≤ 1, for

i = 1, 2, 3, ..., n, x(t) = (x1(t), x2(t), ..., xn(t))
T ∈ Rn, (xi(t) ∈ C([ϑ,∞), R)), are

the status vector relating to the neurons; A = (aij)n×n, B = (bij)n×n and W =
(lij)n×n represent the connection weight matrix, delayed connection weight matrix
and distributed delayed connection weight matrix, respectively; fj , gj , hj are ac-
tivation functions, f(x(t)) = (f1(x1(t)), f2(x2(t)), ..., fn(xn(t)))

T ∈ Rn, g(x(t)) =
(g1(x1(t)), g2(x2(t)), ..., gn(xn(t)))

T ∈ Rn, h(x(t)) = (h1(x1(t)), h2(x2(t)), ...,
hn(xn(t)))

T ∈ Rn, and the mappings fj(·), gj(·), and hj(·) are globally Lipschitz
continuous with constants αj , βj and γj>0, which satisfy f(0) ≡ 0, g(0) ≡ 0, h(0) ≡
0, for j = 1, 2, ..., n. Here τ(t) and r(t) are nonnegative continuous functions that
express discrete time varying delay and distributed time varying delay, respectively.
Besides, the delays satisfy limt→∞ t − τ(t) → ∞ and limt→∞ t − r(t) → ∞. The
initial condition for the system (1) is given by

I
(1−α)(1−β)
0+

[
xi(0)−

n∑
j=1

qijxj(−τ(0))
]
= ϕi(0)−

n∑
j=1

qijϕj(−τ(0)), (1.2)

x(t) = ϕ(t), t ∈ [ϑ, 0], (1.3)

where I
(1−α)(1−β)
0+ is the Riemann-Liouville fractional integral operator. Denote ϑ =

inft≥0{t−τ(t), t−r(t)}, t 7→ ϕ(t) = (ϕ1(t), ϕ2(t), , ..., ϕn(t))
T ∈ C

(
[ϑ, 0], Lp

F0
(Ω;Rn)).

The purpose of this paper is to investigate the existence and uniqueness of the
solution to the neutral delayed neural networks (1.1) with initial conditions (1.2)-
(1.3) through fixed point method. The paper is organized as follows. Some necessary
concepts and related lemmas are reviewed in Section 2. In Section 3, we prove the
existence and uniqueness of the solution. Examples to illustrate our main results
are given in Section 4.
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2. Preliminaries and related lemmas

In this section, some definitions and lemmas are given which will be used throughout
this paper.

Definition 2.1. ( [1]) The right-sided Riemann-Liouville fractional integral of order
α>0, α ∈ R of a locally integrable function f is defined as(

Iαa+f
)
(x) =

1

Γ(α)

∫ x

a

(x− y)α−1f(y)dy,

for x>a, where Γ(·) is the Gamma function.

Definition 2.2. ( [1]) The right-sided fractional derivative of order 0<α<1 and
type 0 ≤ β ≤ 1 with respect to x is defined by

Dα,β
a+ f(x) =

(
I
β(1−α)
a+

d

dx

(
I
(1−β)(1−α)
a+ f

))
(x),

for functions f for which the expression on the right hand side exists, the special
cases are Riemann-Liouville fractional derivative for β = 0 and Caputo fractional
difference for β = 1.

Different choices of norms can be considered. The norms we choose should
be such that the space under consideration is complete and the equation yields a
contraction mapping with respect to the norm. For the system (1.1) with initial
conditions (1.2)-(1.3), we consider the weighted spaces of continuous functions

Cγ [0, b] =
{
f : (0, b] → R : xγf(x) ∈ C[a, b]

}
, 0 ≤ γ<1,

Cα,β
1−γ [0, b] =

{
f ∈ C1−γ [0, b], D

α,β
0+ f ∈ C1−γ [0, b]

}
,

and

Cγ
1−γ [0, b] =

{
f ∈ C1−γ [0, b], D

γ
0+f ∈ C1−γ [0, b]

}
,

with the norms

||f ||Cγ
= ||xγf(x)||C .

Lemma 2.1 ( [2]). Let 0 ≤ γ<1, 0<b<a, g ∈ Cγ [0, b], g ∈ C[b, a] and g be continu-
ous at b. Then g ∈ Cγ [0, a].

The following lemmas provide some mapping properties of Iα0+ . Proofs can be
found in [33].

Lemma 2.2 ( [2]). For x>0 we have

[
Iα0+t

β−1
]
(x) =

Γ(β)

Γ(β + α)
xβ+α−1, α ≥ 0, β>0.

Lemma 2.3 ( [2]). For α>0, the fractional integration operator Iα0+ maps C[0, b]
into C[0, b].
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Lemma 2.4 ( [2]). For α>0 and 0 ≤ γ<1, then the fractional integration operator
Iα0+ is bounded from Cγ [0, b] into Cγ [0, b].

Lemma 2.5 ( [34]). Let f ∈ L1(a, c). Then

lim
x→c+

∫ c

a

(x− t)α−1f(t)dt =

∫ c

a

(c− t)α−1f(t)dt = Γ(α)Iαa+f(c), α>0.

3. Main result

In this section, we establish the existence of a unique solution to the problem (1.1)-

(1.3) in the space Cα,β
1−γ [0, b] by reducing the problem to a Volterra integral equation

and then applying the Banach fixed point theorem. We start with some prepara-
tions.

Lemma 3.1 (Theorem 23, [34]). Let γ = α+β−αβ where 0<α<1 and 0 ≤ β ≤ 1.
Let f : (a, b] × R → R be a function such that f(·, y(·)) ∈ C1−γ [a, b] for any y ∈
C1−γ [a, b]. If y ∈ Cγ

1−γ [a, b], then y satisfies{
Dα,β

a+ y(x) = f(x, y), x>a, 0<α<1, 0 ≤ β ≤ 1,

I1−γ
a+ y(a+) = ya,

if and only if y satisfies

y(x) =
ya

Γ(α+ β − αβ)
(x− a)(α−1)(1−β) +

1

Γ(α)

∫ x

a

(x− t)α−1f(t, y(t))dt.

According to Lemma 3.1, one can easily express the equivalent Volterra integral
equation of the system (1.1)-(1.3) in the following form

x(t) =

[
ϕi(0)−

∑n
j=1 qijϕj(−τ(0))

]
Γ(α+ β − αβ)

t(α−1)(1−β) +

n∑
j=1

qijxj(t− τ(t))

+
1

Γ(α)

∫ t

0

(t− s)α−1
n∑

j=1

aijfj(xj(s))ds

+
1

Γ(α)

∫ t

0

(t− s)α−1
n∑

j=1

bijgj
(
xj(s− τ(s))

)
ds

+
1

Γ(α)

∫ t

0

(t− s)α−1
n∑

j=1

lij

∫ s

s−r(s)

hj(xj(u))duds. (3.1)

Theorem 3.1. Let 0 ≤ α ≤ 1, 0<β<1, and γ = α + β − αβ. Let f, g, h : (0, a] ×
R → R be functions such that f(x(·)), g(x(·)), h(x(·)) ∈ C

β(1−α)
1−γ [0, a] for any x ∈

C1−γ [0, a]. Besides, f(x(·)), g(x(·)), h(x(·)) are globally Lipschitz continuous with
constants αj , βj and γj>0, satisfying that f(0) ≡ 0, g(0) ≡ 0, h(0) ≡ 0, for j =
1, 2, ..., n, respectively. Then there exists a unique solution x(t) to the problem (1.1)-
(1.3) such that x(t)−

∑n
j=1 qijxj(t− τ(t)) in the space Cγ

1−γ [0, a].
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Proof. Define an operator Q by

Qx(t) =

[
ϕi(0)−

∑n
j=1 qijϕj(−τ(0))

]
Γ(α+ β − αβ)

t(α−1)(1−β) +

n∑
j=1

qijxj(t− τ(t))

+
1

Γ(α)

∫ t

0

(t− s)α−1
n∑

j=1

aijfj(xj(s))ds

+
1

Γ(α)

∫ t

0

(t− s)α−1
n∑

j=1

bijgj
(
xj(s− τ(s))

)
ds

+
1

Γ(α)

∫ t

0

(t− s)α−1
n∑

j=1

lij

∫ s

s−r(s)

hj(xj(u))duds, t ≥ 0. (3.2)

First we prove the existence of a unique solution x(t) in the space C1−γ [0, a].
Our proof is based on partitioning the interval (0, a] into subintervals on which
the operator Q is a contraction, and based on the Banach’s fixed point theorem.
Note that C1−γ [b1, b2], 0 ≤ b1<b2 ≤ a is a complete metric space with the metric d
defined by

d(x1, x2) = ||x1 − x2||C1−γ [b1,b2] := max
t∈[b1,b2]

∣∣t1−γ [x1(t)− x2(t)]
∣∣.

Choose t1 ∈ (0, a] such that

ω1 =

(
n∑

j=1

|qij | max
t∈[0,t1]

∣∣∣∣∣1+ τ(t)

t− τ(t)

∣∣∣∣∣
1−γ

+

[
n∑

j=1

|aij |+
n∑

j=1

|bij | max
t∈[0,t1]

∣∣∣∣∣1+ τ(t)

t− τ(t)

∣∣∣∣∣
1−γ

+

n∑
j=1

|lij |
γ

(
1− max

t∈[0,t1]

∣∣∣∣∣1− r(t)

t

∣∣∣∣∣
γ)]

Γ(γ)

Γ(γ + α)
tα1

)
<1. (3.3)

Clearly, by Lemma 2.4, we obtain that Qx(t) ∈ C1−γ [0, t1]. Therefore Q : C1−γ [0, t1]
→ C1−γ [0, t1]. Next we prove that Q is a contraction mapping. For any φ,ψ ∈
C1−γ [0, t1], from Lemma 2.2, we have∣∣∣∣(Qφ)i(t)− (Qψ)i(t)

∣∣∣∣
C1−γ [0,t1]

≤
n∑

j=1

|qij | max
t∈[0,t1]

∣∣∣∣∣ t1−γ

(t− τ(t))1−γ
(t− τ(t))1−γ

(
φj(t− τ(t))− ψj(t− τ(t))

)∣∣∣∣∣
+ max

t∈[0,t1]

∣∣∣∣∣t1−γ 1

Γ(α)

n∑
j=1

aij

∫ t

0

(t− s)α−1

s1−γ
s1−γ

(
fj(φj(s))− fj(ψj(s))

)
ds

∣∣∣∣∣
+ max

t∈[0,t1]

∣∣∣∣∣t1−γ 1

Γ(α)

n∑
j=1

bij

∫ t

0

(t− s)α−1

(s− τ(s))1−γ
(s− τ(s))1−γ

[
gj
(
φj(s− τ(s))

)
− gj

(
ψj(s− τ(s))

)]
ds

∣∣∣∣∣
+ max

t∈[0,t1]

∣∣∣∣∣t1−γ 1

Γ(α)

n∑
j=1

lij

∫ t

0

(t− s)α−1

∫ s

s−r(s)

[
hj
(
φj(u)

)
− hj

(
ψj(u)

)]
duds

∣∣∣∣∣
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≤
n∑

j=1

|qij | max
t∈[0,t1]

∣∣∣∣∣ t1−γ

(t− τ(t))1−γ

∣∣∣∣∣∣∣∣∣φj(t− τ(t))− ψj(t− τ(t))
∣∣∣∣
C1−γ [0,t1]

+

n∑
j=1

|aij |
Γ(γ)

Γ(γ + α)
tα1
∣∣∣∣φj(t)− ψj(t)

∣∣∣∣
C1−γ [0,t1]

+

n∑
j=1

|bij | max
t∈[0,t1]

∣∣∣∣∣1 + τ(t)

t− τ(t)

∣∣∣∣∣
1−γ

Γ(γ)

Γ(γ + α)
tα1
∣∣∣∣φj(t)− ψj(t)

∣∣∣∣
C1−γ [0,t1]

+

n∑
j=1

|lij |
γ

(
1− max

t∈[0,t1]

∣∣∣∣∣1− r(t)

t

∣∣∣∣∣
γ)

Γ(γ)

Γ(γ + α)
tα1
∣∣∣∣φj(t)− ψj(t)

∣∣∣∣
C1−γ [0,t1]

≤

(
n∑

j=1

|qij | max
t∈[0,t1]

∣∣∣∣∣1+ τ(t)

t− τ(t)

∣∣∣∣∣
1−γ

+

[
n∑

j=1

|aij |+
n∑

j=1

|bij | max
t∈[0,t1]

∣∣∣∣∣1+ τ(t)

t− τ(t)

∣∣∣∣∣
1−γ

+
n∑

j=1

|lij |
γ

(
1− max

t∈[0,t1]

∣∣∣∣∣1− r(t)

t

∣∣∣∣∣
γ)]

Γ(γ)

Γ(γ + α)
tα1

)∣∣∣∣φj(t)− ψj(t)
∣∣∣∣
C1−γ [0,t1]

.

Therefore,∣∣∣∣(Qφ)i(t)− (Qψ)i(t)
∣∣∣∣
C1−γ [0,t1]

≤ ω1

∣∣∣∣φj(t)− ψj(t)
∣∣∣∣
C1−γ [0,t1]

.

By the contraction mapping principle, we obtain that Q has a unique fixed point
x∗0(t) ∈ C1−γ [0, t1].

If t1 ̸= a, then we consider the interval [t1, a]. On this interval we consider
solution x(t) ∈ C[t1, a] to the equation

x(t) = Qx(t) :=

[
ϕi(0)−

∑n
j=1 qijϕj(−τ(0))

]
Γ(α+ β − αβ)

t(α−1)(1−β) +

n∑
j=1

qijxj(t− τ(t))

+
1

Γ(α)

∫ t1

0

(t− s)α−1
n∑

j=1

aijfj(x
∗
0(s))ds

+
1

Γ(α)

∫ t

t1

(t− s)α−1
n∑

j=1

aijfj(xj(s))ds

+
1

Γ(α)

∫ t1

0

(t− s)α−1
n∑

j=1

bijgj
(
x∗0(s− τ(s))

)
ds

+
1

Γ(α)

∫ t

t1

(t− s)α−1
n∑

j=1

bijgj
(
xj(s− τ(s))

)
ds

+
1

Γ(α)

∫ t1

0

(t− s)α−1
n∑

j=1

lij

∫ s

s−r(s)

hj(x
∗
0(u))duds

+
1

Γ(α)

∫ t

t1

(t− s)α−1
n∑

j=1

lij

∫ s

s−r(s)

hj(xj(u))duds. (3.4)
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Now we select t2 ∈ [t1, a] such that

ω2 =

n∑
j=1

|qij |+
(t2 − t1)

α

αΓ(α)

( n∑
j=1

|aijαj |+
n∑

j=1

|bijβj |+ r

n∑
j=1

|lijγj |
)
<1. (3.5)

Since xi(t) ∈ C[t1, t2], and f(x(t)), g(x(t)), h(x(t)) ∈ C[t1, t2] for any x(t) ∈ C[t1, t2],
Lemma 2.3 implies that the right-hand side of (3.4) is in C[t1, t2]. Therefore
Q : C[t1, t2] → C[t1, t2]. For any φ,ψ ∈ C[t1, t2], we have∣∣∣∣(Qφ)i(t)− (Qψ)i(t)

∣∣∣∣
C[t1,t2]

≤
∣∣∣∣∣∣ n∑

j=1

qij
(
φj(t− τ(t))− ψj(t− τ(t))

)∣∣∣∣∣∣
C[t1,t2]

+
∣∣∣∣∣∣ 1

Γ(α)

n∑
j=1

aij

∫ t

t1

(t− s)α−1
(
fj(φj(s))− fj(ψj(s))

)
ds
∣∣∣∣∣∣
C[t1,t2]

+
∣∣∣∣∣∣ 1

Γ(α)

n∑
j=1

bij

∫ t

t1

(t− s)α−1
[
gj
(
φj(s− τ(s))

)
− gj

(
ψj(s− τ(s))

)]
ds
∣∣∣∣∣∣
C[t1,t2]

+
∣∣∣∣∣∣ 1

Γ(α)

n∑
j=1

lij

∫ t

t1

(t− s)α−1

∫ s

s−r(s)

[
hj
(
φj(u)

)
− hj

(
ψj(u)

)]
duds

∣∣∣∣∣∣
C[t1,t2]

≤
n∑

j=1

|qij |max
{

max
t∈[t1−τ,t1]

∣∣φj(t)− ψj(t)
∣∣, max

t∈[t1,t2]

∣∣φj(t)− ψj(t)
∣∣}

+
1

Γ(α)

n∑
j=1

|aijαj |
∣∣∣∣∣∣ max

s∈[t1,t]

(
φj(s)− ψj(s)

) ∫ t

t1

(t− s)α−1ds
∣∣∣∣∣∣
C[t1,t2]

+
1

Γ(α)

n∑
j=1

|bijβj |
∣∣∣∣∣∣ max

s∈[t1,t]

(
φj(s− τ(s))−ψj(s− τ(s))

) ∫ t

t1

(t− s)α−1ds
∣∣∣∣∣∣
C[t1,t2]

+
r

Γ(α)

n∑
j=1

|lijγj |
∣∣∣∣∣∣ max

u∈[s−r(s),s]

(
φj(u)− ψj(u)

) ∫ t

t1

(t− s)α−1ds
∣∣∣∣∣∣
C[t1,t2]

≤
n∑

j=1

|qij |
∣∣∣∣φj(t)− ψj(t)

∣∣∣∣
C[t1,t2]

+
(t2 − t1)

α

αΓ(α)

n∑
j=1

|aijαj |
∣∣∣∣φj(t)− ψj(t)

∣∣∣∣
C[t1,t2]

+
(t2 − t1)

α

αΓ(α)

n∑
j=1

|bijβj |
∣∣∣∣φj(t)− ψj(t)

∣∣∣∣
C[t1,t2]

+
r(t2 − t1)

α

αΓ(α)

n∑
j=1

|lijγj |
∣∣∣∣φj(t)− ψj(t)

∣∣∣∣
C[t1,t2]

=

(
n∑

j=1

|qij |+
(t2 − t1)

α

αΓ(α)

( n∑
j=1

|aijαj |+
n∑

j=1

|bijβj |+ r

n∑
j=1

|lijγj |
))

∣∣∣∣φj(t)− ψj(t)
∣∣∣∣
C[t1,t2]

.

Since 0<ω2<1, Q is a contraction. By the contraction mapping principle, we
obtain that Q has a unique fixed point x∗1(t) ∈ C[t1, t2] to (3.2). Moreover, it follows
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from Lemma 2.5 that x∗0(t1) = x∗1(t1). Therefore, if

x∗(t) =

x∗0(t), 0<t ≤ t1,

x∗1(t), t1<t ≤ t2,

then by Lemma 2.1, x∗(t) ∈ C1−γ [0, t2]. So x∗(t) is the unique solution of (3.2) in
C1−γ [0, t2] on the interval [0, t2].

If t2 ̸= a, we repeat the process as necessary, such as N − 2 times, to obtain the
unique solution x∗k(t) ∈ C[tk, tk+1], k = 2, 3, · · · , N, where 0 = t0<t1< · · ·<tN = a,
such that

ωk+1 =

n∑
j=1

|qij |+
(tk+1 − tk)

α

αΓ(α)

( n∑
j=1

|aijαj |+
n∑

j=1

|bijβj |+ r

n∑
j=1

|lijγj |
)
<1.

As a result we have the unique solution x∗(t) ∈ C1−γ [0, a] of (3.2) given by

x∗(t) = x∗k(t), t ∈ (tk, tk+1], k = 0, 1, · · · , N − 1.

It remains to show that such a unique solution x∗(t) ∈ C1−γ [0, a] is actually in
Cγ

1−γ [0, a]. Applying Dγ
0+ to both sides yields of (3.1)

Dγ

0+

[
x∗(t)−

n∑
j=1

qijx
∗
j (t− τ(t))

]

= Dγ

0+

[
Iα0+

(
n∑

j=1

aijfj(xj(t)) +

n∑
j=1

bijgj
(
xj(t− τ(t))

)
+

n∑
j=1

lij

∫ t

t−r(t)

hj(xj(s))ds

)]

= D
β(1−α)

0+

[
n∑

j=1

aijfj(xj(t)) +

n∑
j=1

bijgj
(
xj(t− τ(t))

)
+

n∑
j=1

lij

∫ t

t−r(t)

hj(xj(s))ds

]
.

By hypothesis, the right hand side is in C1−γ [0, a] and thus x∗(t)−
∑n

j=1 qijx
∗
j (t−

τ(t)) ∈ Cγ
1−γ [0, a].

Therefore, by Lemma 3.1, x∗(t) is the unique solution of (1.1)-(1.3) such that
x∗(t)−

∑n
j=1 qijx

∗
j (t− τ(t)) in the space Cγ

1−γ [0, a].

4. Example

Example 4.1. Consider the following two-dimensional Hilfer fractional neutral
neural network

Dα,β
0+

[
x(t)−Qx(t− τ(t))

]
= Af(x(t)) +Bg(x(t− τ(t))) +W

∫ t

t−r(t)

h(x(s))ds,

(4.1)

where α = 0.8, β = 0.25,

Q =

−0.1 0

0.1 0.1

 , A =

0.2 0.4

0.3 0.2

 , B =

−0.1 0.2

0.1 0.2

 ,W =

1 2

2 1

 ,
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f(x) = g(x) = h(x) = 0.2 tanh(x). τ(t), r(t) are continuous functions such that
|τ(t)| ≤ 1 and |r(t)| ≤ 1.

In this example, Letting αj = 0.2, βj = 0.25, γj = 0.1, j = 1, 2, k = 2, a = 1, t1 =
0.1, t2 = 0.2, t3 = a = 1, we get

ω1 =

(
2∑

j=1

|qij | max
t∈[0,t1]

∣∣∣∣∣1+ τ(t)

t− τ(t)

∣∣∣∣∣
1−γ

+

[
2∑

j=1

|aij |+
2∑

j=1

|bij | max
t∈[0,t1]

∣∣∣∣∣1+ τ(t)

t− τ(t)

∣∣∣∣∣
1−γ

+

2∑
j=1

|lij |
γ

(
1− max

t∈[0,t1]

∣∣∣∣∣1− r(t)

t

∣∣∣∣∣
γ)]

Γ(γ)

Γ(γ + α)
tα1

)
≤ 0.671<1,

ω2 =

n∑
j=1

|qij |+
(t2 − t1)

α

αΓ(α)

( n∑
j=1

|aijαj |+
n∑

j=1

|bijβj |+ r

n∑
j=1

|lijγj |
)
≤ 0.604<1.

Letting k = 2, we have

ω3 =

2∑
j=1

|qij |+
(tk+1 − tk)

α

αΓ(α)

( 2∑
j=1

|aijαj |+
2∑

j=1

|bijβj |+ r

2∑
j=1

|lijγj |
)
≤ 0.897<1.

Applying Theorem 3.1, the initial value problem (4.1) has a unique solution x(t)
such that x(t)−

∑n
j=1 qijxj(t− τ(t)) in the space Cγ

1−γ [0, a].
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