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Abstract This paper is concerned with the existence of positive solutions to
nonlinear q-fractional di↵erential equations yielding to the integral boundary
value conditions. Under su�cient conditions of the nonlinearity, by using some
iterative techniques, we get that this problem has two positive solutions and a
unique positive solution respectively. Our results improve some recent work.
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1. Introduction

The purpose of this paper is to obtain the existence of positive solutions to the
following integral boundary value problem of the q-fractional di↵erential equation
(BVP) 8

<

:
(D↵

q u)(t) + f(t, u(t), v(t)) = 0, t 2 (0, 1),

Di
qu(0) = 0, 0 6 i 6 n� 2, u(1) = �

R 1
0 u(s)dqs,

(1.1)

where ↵ 2 (n�1, n], n > 3 is an integer, f 2 C([0, 1]⇥ [0,+1)⇥(0,+1), (0,+1)),
� 2 (0, [↵]q), and D↵

q denotes the ↵ order fractional q-derivative operator of the
Riemann-Liouville type.

Fractional q-di↵erence equations have received considerable attention due to
their ability to accurately describe various phenomena such as mathematical models,
quantum calculus and engineering problems. More recently, various fractional q-
di↵erence systems have been reduced to the search of solutions by iterative methods
[2, 8, 10, 12] and by other fixed point theories [7, 14, 15]. For example, by using the
monotone iterative methods, the authors [8,12] dealt with the existence of positive
solutions to fractional q-di↵erence equations, and among these results, f must be a
monotonic function with respect to the only spatial variable. Especially, by iterative
algorithm, Mao, Zhao and Wang [10] gained the unique positive solution to the
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fractional q-di↵erence Schrödinger equation whose nonlinear term has two spatial
variables, and the initial value of iterative series is a constant multiple of a point in
the cone but not a fixed upper and lower solutions as [12]. Integral boundary value
problems of fractional di↵erence systems may respond to some special features such
as the blood flow, chemical engineering and other issues. Therefore, much interest
has been given to study the problems in this area (see [1, 2, 6, 8, 9, 17]). In fact, the
authors [2, 8] have supplied a general form with respect to this kind of fractional
q-di↵erence boundary value problems. Moreover, in [2], Cui, Kang and Chen have
given the corresponding expression to the Green’s function. By carefully analyzing
these works of [1, 8, 10, 12, 14, 16–18], the authors have found that those results
in [8, 10, 12,18] can be e↵ectively promoted.

During our discussion, an inverse symmetry subset in the cone plays a funda-
mental role, which skillfully converts the existence of a positive solution of BVP
(1.1) into the existence of a fixed point for the equivalent integral operator in this
set. Compared with the results studied recently, these results presented here have
improved in some aspects. First, here the fractional order ↵ > 2 and the nonlinear
term f is mixed monotone, thus it includes much more types of functions. Second,
we extend the ideas of [18] to establish richer conditions on f . In particular, when
comparing with the preceding proof in Theorem 3.1 of [18], one can see that what
we actually do reveals the characteristics of solutions for the similar conditions on
the nonlinearity term f .

The main conditions on f are as follows:
(H) For each fixed t 2 (0, 1), f(t, u, v) is increasing on u and decreasing on v

and

0 <

Z 1

0
(1� qs)(↵�1)f(s, s↵�1, s↵�1)dqs < +1.

(H1) There exist constants � 2 (0, 1), ⇢ 2 (0, 1] such that for all (t, u, v) 2
[0, 1]⇥ [0,+1)⇥ (0,+1),

f(t, ru, r�1v) > r[1 + ⇢(r�� � 1)]f(t, u, v), r 2(0, 1]. (1.2)

(H2) There exists a constant � 2 (0, 1) such that for all (t, u, v) 2 [0, 1] ⇥
[0,+1)⇥ (0,+1),

f(t, ru, r�1v) > r�f(t, u, v), r 2 (0, 1]. (1.3)

(H3) There exist constants �i, µi(i = 1, 2) satisfying 0 < �1 6 �2 < 1, 0 <
µ1 6 µ2 < 1 and �2 + µ2 < 1 such that for all (t, u, v) 2 [0, 1]⇥ [0,+1)⇥ (0,+1),

r�2f(t, u, v) 6 f(t, ru, v) 6 r�1f(t, u, v), r 2 (0, 1]; (1.4)

rµ2f(t, u, v) 6 f(t, u, r�1v) 6 rµ1f(t, u, v), r 2 (0, 1]. (1.5)

Remark 1.1. For r 2 (1,+1), the condition (H1) implies

f(t, ru, r�1v) 6 r[1 + ⇢(r� � 1)]�1f(t, u, v), (1.6)

and the condition (H2) implies

f(t, ru, r�1v) 6 r�f(t, u, v). (1.7)

.
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2. Auxiliary lemmas

Referring to [8] and our later proofs in [2], we first show the related Green’s function
and its main properties.

Lemma 2.1 ( [2], p.3, Lemma 2.4). Let ↵ 2 (2, 3], � 2 (0, [↵]q) and h 2 C[0, 1].
Then, the unique solution of

8
<

:
(D↵

q u)(t) + h(t) = 0, t 2 (0, 1),

Di
qu(0) = 0, 0 6 i 6 n� 2, u(1) = �

R 1
0 u(s)dqs

(2.1)

is given by

u(t) =

Z 1

0
G(t, qs)h(s)dqs, t 2 [0, 1],

where

G(t, qs)

=

8
>><

>>:

t↵�1(1� qs)(↵�1)([↵]q � �+ �sq↵)� ([↵]q � �)(t� qs)(↵�1)

([↵]q � �)�q(↵)
, 0 6 qs 6 t 6 1;

t↵�1(1� qs)(↵�1)([↵]q � �+ �sq↵)

([↵]q � �)�q(↵)
, 0 6 t 6 qs 6 1.

Lemma 2.2 ( [2], p.4, Lemma 2.5). The Green’s function G(t, qs) given above

satisfies

(i) G(t, qs) > 0, t, s 2 (0, 1);

(ii)
�sq↵(1�qs)(↵�1)

([↵]q��)�q(↵)
t↵�1 6 G(t, qs) 6 [↵]q(1�qs)(↵�1)

([↵]q��)�q(↵)
t↵�1; t, s 2 [0, 1];

(iii) G : [0, 1]⇥ [0, 1] ! [0,+1) is continuous.

As usual, we equip the space E=C[0, 1] with the norm kxk=supt2[0,1] |x(t)|, x 2
E. Let P = {x 2 E : x(t) > 0, t 2 [0, 1]}. For all x, y 2 P , the notation
x s y shows that there exist positive constants µ1 6 µ2 satisfying µ1x 6 y 6 µ2x.
Definitely, s is an equivalence relation. For the sake of convenience, note that
e(t) = t↵�1, t 2 [0, 1]. Now, we construct an inverse symmetry set Pe = {x 2 E :
9 cx 2 (0, 1) such that

cxe(t) 6 x(t) 6 (cx)
�1e(t), t 2 [0, 1]}.

It is true that Pe ⇢ P is not a cone since ✓ /2 Pe and (e, e) 2 Pe ⇥ Pe.
Define an operator A : E ⇥ E ! E by

A(u, v)(t) =

Z 1

0
G(t, qs)f(s, u(s), v(s))dqs. (2.2)

Lemma 2.3. Suppose that (H) and (H1) hold. Then, A : Pe⇥Pe ! Pe is completely

continuous and A is increasing on u and decreasing on v.

Proof. For each (u, v) 2 Pe ⇥ Pe, by the definition of Pe, there exist constants
cu, cv 2 (0, 1) such that
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cue(t) 6 u(t) 6 (cu)�1e(t), cve(t) 6 v(t) 6 (cv)�1e(t), t 2 [0, 1].
Here, we suppose that cu 6 cv, then cue(t) 6 v(t) 6 (cu)�1e(t), t 2 [0, 1]. By the
condition (H), (1.2) and Lemma 2.2, we see that

A(u, v)(t) =

Z 1

0
G(t, qs)f(s, u(s), v(s))dqs

> �q↵e(t)
([↵]q��)�q(↵)

Z 1

0
s(1� qs)(↵�1)f(s, cue(s), cu

�1e(s))dqs

> �q↵cu[1+⇢(cu
���1)]e(t)

([↵]q��)�q(↵)

Z 1

0
s(1� qs)(↵�1)f(s, e(s), e(s))dqs

> cAe(t),

and by (1.6), we have

A(u, v)(t) 6 [↵]qe(t)
([↵]q��)�q(↵)

Z 1

0
(1� qs)(↵�1)f(s, cu

�1e(s), cue(s))dqs

6 [↵]qcu
�1[1+⇢(cu

���1)]
�1

e(t)
([↵]q��)�q(↵)

Z 1

0
(1� qs)(↵�1)f(s, e(s), e(s))dqs

6 c�1
A e(t).

Using the condition (H) again, we may choose the constant cA satisfying

0 < cA < min

⇢
1,

�q↵cu[1 + ⇢(cu�� � 1)]

([↵]q � �)�q(↵)

Z 1

0
s(1� qs)(↵�1)f(s, e(s), e(s))dqs

�

and

c�1
A > max

(
1,

[↵]qcu�1[1 + ⇢(cu�� � 1)]
�1

([↵]q � �)�q(↵)

Z 1

0
(1� qs)(↵�1)f(s, e(s), e(s))dqs

)
.

Thus, cA 2 (0, 1) and

cAe(t) 6 A(u, v)(t) 6 c�1
A e(t), t 2 [0, 1].

Hence, A : Pe⇥Pe ! Pe is well defined. Notice the continuity of G(t, qs) and f , by
usual arguments, it is easy to infer that A : Pe ⇥Pe ! Pe is completely continuous.
Moreover, following (H) and Lemma 2.2, A is increasing on u and decreasing on v.

Working as in Lemma 2.3, we can get the following lemma.

Lemma 2.4. Suppose that (H) and (H2) hold. Then, A : Pe ⇥ Pe ! Pe is contin-

uous, and A is increasing on u and decreasing on v.

In this case, we may choose the constant cA satisfying

0 < cA < min

⇢
1,

�q↵cu�

([↵]q � �)�q(↵)

Z 1

0
s(1� qs)(↵�1)f(s, e(s), e(s))dqs

�

and

c�1
A > max

⇢
1,

[↵]qcu��

([↵]q � �)�q(↵)

Z 1

0
(1� qs)(↵�1)f(s, e(s), e(s))dqs

�
.
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An operator B : Pe ⇥ Pe ! Pe is said to be mixed monotone, if B(x, y) is
increasing on x and decreasing on y. If B(x⇤, x⇤) = x⇤, then element x⇤ 2 Pe is
called a fixed point of B, and if B(x⇤, y⇤) = x⇤ and B(y⇤, x⇤) = y⇤, then element
(x⇤, y⇤) 2 Pe⇥Pe is called a coupled fixed point of B. Obviously, if A(x⇤, x⇤) = x⇤,
then x⇤ is a positive solution of BVP (1.1), and if (x⇤, y⇤) 2 Pe ⇥ Pe is a coupled
fixed point of A, then x⇤, y⇤ are two positive solutions of BVP (1.1).

3. Main results

In this section, by applying some iterative techniques, we present three main results
of this paper and two related examples.

Theorem 3.1. Under the assumptions (H) and (H1), BVP (1.1) has two positive

solutions in Pe.

Proof. For every point x0 2 Pe, by Lemma 2.3, we have A(x0, x0) 2 Pe. There-
fore, there exists a constant cx0 2 (0, 1) small enough such that

cx0e(t) 6 x0(t) 6 c�1
x0

e(t), t 2 [0, 1]

and

cx0e(t) 6 A(x0, x0)(t) 6 c�1
x0

e(t), t 2 [0, 1],

which show that

c2x0
x0(t) 6 A(x0, x0)(t) 6 c�2

x0
x0(t), t 2 [0, 1].

Let

 =

✓
⇢c2x0

1� c2x0
+ ⇢cx0

2

◆ 1
�

, (3.1)

where ⇢, � are given in condition (H1). Then  2 (0, 1), and by direct computation,
we have

[1 + ⇢(�� � 1)]�1x0(t) 6 A(x0, x0)(t) 6 [1 + ⇢(�� � 1)]x0(t), t 2 [0, 1]. (3.2)

Take
u0 = x0, v0 = �1x0,

and define two sequences by

un = A(un�1, vn�1), vn = A(vn�1, un�1), n 2 N. (3.3)

From (1.2) and (3.2), we have

u1 =

Z 1

0
G(t, qs)f(s,x0(s),

�1x0(s))dqs

> [1 + ⇢(�� � 1)]

Z 1

0
G(t, qs)f(s, x0(s), x0(s))dqs

> u0,
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and from (1.6) and (3.2), we get

v1 =

Z 1

0
G(t, qs)f

�
s,�1x0(s),x0(s)

�
dqs

6 �1[1 + ⇢(�� � 1)]�1

Z 1

0
G(t, qs)f(s, x0(s), x0(s))dqs

6 v0.

Noticing that u0 6 v0 and A is mixed monotone, we can deduce that

u0 6 u1 6 · · · 6 un 6 · · · 6 vn · · · 6 v1 6 v0. (3.4)

By Lemma 2.3, using the compactness of A, one can see that {un}, {vn} are both
sequence compact sets. Hence, there exist u⇤, v⇤ 2 Pe such that limn!1 un = u⇤,
limn!1 vn = v⇤ and u⇤ 6 v⇤. Since A is continuous, by (3.3),

A(u⇤, v⇤) = u⇤, A(v⇤, u⇤) = v⇤.

Thus, A has a coupled fixed point in Pe, and then the BVP (1.1) has at least two
positive solutions in Pe. Definitely, these two solutions may be identical. The proof
is completed.

Remark 3.1. An analogy condition as (H1) is adopted by Zhang et al., [18] to
prove the existence and uniqueness of the positive solution. In fact, as to the result
(3.12) in [18], it is impossible to get such a similar result as

un >
⇣
2⇢

1
1��

⌘(1��)n

vn, n 2 N,

which directly prevents us from gaining the uniqueness here and there. Though we
give a precise and relatively weak existence result now, it is true that our results
present a good extension of the problems, which have the corresponding conditions
on the nonlinearity term f .

Remark 3.2. In general, the coupled fixed point (u⇤, v⇤) is associated to the choice
of . Specifically, u⇤ is increasing on , while v⇤ is decreasing on .

Remark 3.3. If there exists a point x⇤ 2 Pe such that A(x⇤, x⇤) = x⇤, then for
any coupled fixed point (u⇤, v⇤) 2 Pe ⇥ Pe, we have u⇤ = v⇤ = x⇤.

In fact, let

r̄ = sup{ 0 < r < 1 | rx⇤ 6 u⇤ 6 r�1x⇤, rx⇤ 6 v⇤ 6 r�1x⇤}.

Then r̄ 2 (0, 1] and

r̄x⇤ 6 u⇤ 6 r̄�1x⇤, r̄x⇤ 6 v⇤ 6 r̄�1x⇤.

By (1.2) and (1.6), we have

u⇤ = A(u⇤, v⇤) > A(r̄x⇤, r̄�1x⇤)

> r̄[1 + ⇢(r̄�� � 1)]T (x⇤, x⇤)

= r̄[1 + ⇢(r̄�� � 1)]x⇤,
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v⇤ = A(v⇤, u⇤) 6 A(r̄�1x⇤, r̄x⇤)

6 r̄�1[1 + ⇢(r̄�� � 1)]�1T (x⇤, x⇤)

= r̄�1[1 + ⇢(r̄�� � 1)]�1x⇤.

Thus,
r̄[1 + ⇢(r̄�� � 1)]x⇤ 6 u⇤ 6 v⇤ 6 r̄�1[1 + ⇢(r̄�� � 1)]�1x⇤. (3.5)

If r̄ 6= 1, then (3.5) is contradictory with the definition of r̄, since r̄ < r̄[1+⇢(r̄���1)].
Hence, we get u⇤ = v⇤ = x⇤.

Theorem 3.2. Under the assumptions (H0) and (H2), BVP (1.1) has a unique

positive solution u⇤ 2 Pe. Further, for any initial point ū 2 Pe, there exists a

sequence {ūn}, which uniformly converges to u⇤
with the convergence rate

||ūn � u⇤|| = o
⇣
1� ⌧2�

n
⌘
,

where ⌧ is associated with the initial value ū.

Proof. According to Lemma 2.4 that A(e, e) 2 Pe, there exists a constant cAe 2
(0, 1) such that

cAee(t) 6 A(e, e)(t) 6 (cAe)
�1e(t), t 2 [0, 1]. (3.6)

Take a fixed number ⌧ satisfying

0 < ⌧ < (cAe)
1

1�� < 1, (3.7)

where � is defined in (H2). Here, we choose

u0 = ⌧e(t), v0 = ⌧�1e(t), t 2 [0, 1].

Define two iterative sequences un, vn as

un = A(un�1, vn�1), vn = A(vn�1, un�1), n 2 N. (3.8)

Hence, by (1.3), (3.6) and (3.7), we get

u1 > ⌧�
Z 1

0
G(t, qs)f(s, e(s), e(s))dqs

> ⌧�cAee(t)

> u0,

and by (1.7), (3.6) and (3.7), we also get

v1 6 ⌧��

Z 1

0
G(t, qs)f(s, e(s), e(s))dqs

6 ⌧��(cAe)�1e(t)

6 v0.

Since u0 6 v0 and A is a mixed monotone operator, we deduce that

u0 6 u1 6 · · · 6 un 6 · · · 6 vn · · · 6 v1 6 v0. (3.9)
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On the other hand, analogous to (1.3), we may get

u1 = A(⌧2⌧�1e(t), ⌧�2⌧e(t)) > ⌧2�A(⌧�1e(t), ⌧e(t)) = ⌧2�v1.

By induction, for each natural number n, we deduce that

un > ⌧2�
n

vn.

Thus, by (3.9), for any positive integers n and p, we obtain

0 6 un+p � un 6 vn � un 6 (1� ⌧2�
n

)vn 6 (1� ⌧2�
n

)v0. (3.10)

Clearly, (3.10) implies that {un}, {vn} are two Cauchy sequences. Hence, there
exists u⇤ 2 Pe such that limn!+1 un = limn!+1 vn = u⇤. Applying the continuity
of A, let n ! +1 in un = A(un�1, vn�1), then we obtain u⇤ = A(u⇤, u⇤). Therefore,
A has a fixed point in Pe, and then BVP (1.1) has a positive solution.

Now, we turn to the uniqueness problem. Suppose that there exists another
point v⇤ 2 Pe and v⇤ = A(v⇤, v⇤). It is obvious that there exists cv 2 (0, 1) such
that

cve(t) 6 v⇤(t) 6 cv�1e(t), t 2 [0, 1].
Let ⌧ be defined in (3.7) which is su�ciently small such that ⌧ < cv. Therefore,
⌧�1 > cv�1. Then,

u0 6 v⇤ 6 v0.
Notice that v⇤ = A(v⇤, v⇤) and A is mixed monotone. Thus the following relation
holds

un 6 v⇤ 6 vn, n 2 N.
Let n ! +1, and we get v⇤ = u⇤. That is, the uniqueness is verified. Hence, BVP
(1.1) has a unique positive solution in Pe. Moreover, one deduces immediately that
the existence of u⇤ has nothing to do with the size of ⌧ 2 (0, 1).

Lastly, for any initial point ū 2 Pe, which is the same as the discussion above,
we may choose ⌧ 2 (0, 1) small enough such that ⌧e(t) 6 ū(t) 6 ⌧�1e(t), t 2 [0, 1].
Let ūn = A(ūn�1, ūn�1), n 2 N. Then,

un 6 ūn 6 vn, (3.11)

where un, vn are defined in (3.8). Finally from (3.11), it is easy to know that the
sequence {ūn} uniformly converges to the positive solution u⇤. Furthermore, by
(3.10), one may get the error estimation

||ūn � u⇤|| 6 |1� ⌧2�
n

| · kv0k,

and the convergence rate

||ūn � u⇤|| = o
⇣
1� ⌧2�

n
⌘
,

where ⌧ is related to the initial point ū. The proof is completed.

Remark 3.4. Actually, if ⇢ = 1 is taken, then one may check immediately that
the condition (H2) is a special case of (H1).

Theorem 3.3. If (H3) holds and

0 <

Z 1

0
(1� qs)(↵�1)f(s, s↵�1, s↵�1)dqs < +1,

then BVP (1.1) has a unique positive solution in Pe.
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Proof. Case 1. Suppose that 0 6 u1 6 u2. If u1 = u2 = 0, it is clear that
f(t, u1, v) = f(t, u2, v); if u2 6= 0 and u1 = ru2, then r 2 (0, 1]. By (1.4), we have

f(t, u1, v) = f(t, ru2, v) 6 r�1f(t, u2, v),

which shows that the function f(t, u, v) is increasing on u in [0,+1).
Case 2. Suppose that 0 < v1 6 v2. If v1 = rv2, then r 2 (0, 1]. By (1.5), we

have
f(t, u, v2) = f(t, u, r�1v1) 6 rµ1f(t, u, v1),

which shows that f(t, u, v) is decreasing on v in (0,+1).
Meanwhile, for all (t, u, v) 2 [0, 1]⇥ [0,+1)⇥ (0,+1), we see that

f(t, ru, r�1v) > r�2f(t, u, r�1v) > r�2+µ2f(t, u, v), r 2 (0, 1].

Then, Theorem 3.2 implies that Theorem 3.3 holds. The proof is completed.
Next, we present two simple examples. Consider the following integral boundary

value problem
8
<

:

⇣
D

5
2
1
2
u
⌘
(t) + f(t, u(t), v(t)) = 0, t 2 (0, 1),

u(0) = D 1
2
u(0) = 0, u(1) = �

R 1
0 u(s)dqs,

(3.12)

where � 2 (0, 2�
p
2
4 ).

Example 3.1. Let f(t, u, v) = tu
1
2 + v�

1
2 , (t, u, v) 2 [0, 1] ⇥ [0,+1) ⇥ (0,+1).

It is easy to see that f satisfies all the hypotheses of Theorem 3.1, for ⇢ = � = 1
2 .

Meantime, f satisfies all the hypotheses of Theorem 3.2, for � = 1
2 . Hence, BVP

(3.12) has a unique positive solution.

Example 3.2. Let f(t, u, v) = u
1
3 v�

1
2 , (t, u, v) 2 [0, 1]⇥ [0,+1)⇥ (0,+1). Then

f satisfies all the hypotheses of Theorem 3.2, for � = 5
6 . Meantime, f satisfies all

the hypotheses of Theorem 3.3, for �i =
1
3 , µi =

1
2 , i = 1, 2. Hence, BVP(3.12) has

a unique positive solution.

Remark 3.5. Especially, either f(t, u, u)= tu
1
2+u� 1

2 or f(t, u, u) = u
1
3u� 1

2 , (t, u) 2
[0, 1]⇥ (0,+1). Here, v vanishes, and f is not monotonic with respect to u. This
reveals that our results generalize the conclusions obtained in [8, 10, 12,18].
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