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Abstract In this paper, the zero-Hopf bifurcations are studied for a gener-

alized Lorenz system. Firstly, by using the averaging theory and normal form

theory, we provide su�cient conditions for the existence of small amplitude

periodic solutions that bifurcate from zero-Hopf equilibria under appropriate

parameter perturbations. Secondly, based on the Poincaré compactification,

the dynamic behavior of the generalized Lorenz system at infinity is described,

and the zero-Hopf bifurcation at infinity is investigated. Additionally, for the

above theoretical results, some related illustrations are given by means of the

numerical simulation.
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1. Introduction

Due to the great application of chaotic systems in the real world, more and more
scholars have focused on the complex dynamic properties of the chaotic models
and the generation mechanism of chaos. Many di↵erent types of chaotic models
have been found or constructed after Lorenz model was presented [16], for instance,
Chua’s circuit system [4], Chen system [3], Lü system [18], Yang-Chen system [26]
and other Lorenz-type systems [9,13]. Then a great number of results on theoretical
analysis have been obtained for the practical chaotic models above mentioned in
the past several decades.

Here it is worth mentioning the study on Hopf bifurcation for these chaotic
models. Its early results put emphasis on the existence and stability of only a single
Hopf bifurcation, see e.g., [7, 10]. And then the multiple Hopf bifurcations began
to be investigated for some models, for example, the Lü system [19], the Lorenz
system [23], and the Maxwell-Bloch system [11]. The readers can also refer to the
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recent literatures [5, 17, 21]. However, for many chaotic models as general high-
dimensional systems, the upper bounds on the cyclicity in the vicinity of a Hopf
singular point is a very challenging problem [24,28].

As for the zero-Hopf bifurcation, recently it is getting more and more attention
in the researches on chaotic models. One important reason is that the zero-Hopf
singular point of the high-dimensional system may reflect the emergence of chaotic
behavior [1]. The hallmark of zero-Hopf bifurcation is that the linear part of the
system has a zero eigenvalue and a pair of pure conjugates complex eigenvalues.
The common tool for investigating this problem is the averaging theory, and many
chaotic systems were considered, e.g., [14, 20]. Furthermore, the authors of [30]
applied the normal form theory to investigate Rössler system, and showed that the
method of normal forms is applicable for all types of zero-Hopf bifurcations, while
the averaging method is successful only for a certain type of zero-Hopf singular
points.

In addition, the study on the zero-Hopf bifurcation in some chaotic models can
extend to two aspects: one is its multiplicity and cyclicity, and the other is zero-
Hopf bifurcation problem at infinity. For the former, it is less fully studied though
multiple limit cycles have been discovered in the application of averaging theory
of second order, see e.g. [20]. For the latter, it has also been rarely considered
though many dynamic behaviors at infinity have begun to be intensively analyzed
[6, 12, 15,25].

In this paper, we will consider a generalized Lorenz system which the following
form

8
><

>:

ẋ = a(y � x),

ẏ = cx� y � xz + dyz + ey2 + fxy,

ż = xy � bz,

(1.1)

where a, b, c, d, e, f 2 R. When d = e = f = 0, system (1.1) becomes the Lorenz
system. It is di↵erent from the generalized Lorenz system early proposed in [2], but
system (1.1) also contains all the information of the Lorenz system. Here we will
study the zero-Hopf bifurcation at finite equilibria and infinity for this generalized
Lorenz system (1.1), and try to determine the zero-Hopf cyclicity only in the sense
of first order averaging.

The rest of the article is organized as follows. In Section 2, we study the zero-
Hopf bifurcations at the finite equilibria by using the averaging theory and normal
form theory successively for system (1.1). In Section 3, the dynamical behaviors at
infinity are discussed via the Poincaré compactification of the polynomial vector field
in R3. In particular, the zero-Hopf bifurcation at infinity is investigated by applying
the normal form theory. For the theoretical results obtained, the corresponding
numerical simulations are given respectively in the above process of analysis.

2. Zero-Hopf bifurcation for the equilibria

In this section, we will study zero-Hopf bifurcation at finite equilibrium points.
System (1.1) always has the equilibrium point O = (0, 0, 0) for any parameter
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value. If b(c� 1)(d� 1) 6= 0, there exist two symmetrical equilibria

E+ =
⇣

2b(1�c)
b(e+f)+ ,

2b(1�c)
b(e+f)+ ,

4b(1�c)2

(b(e+f)+)2

⌘
,

E� =
⇣

2b(1�c)
b(e+f)� ,

2b(1�c)
b(e+f)� ,

4b(1�c)2

(b(e+f)�)2

⌘
,

(2.1)

where we have let

d =
b2(e+ f)2 + 4b(c� 1)� 2

4b(c� 1)
,  � 0.

2.1. The case at the origin

Firstly, we apply the averaging theory [14,20] to investigate the zero-Hopf bifurca-
tion at the origin. It is easy to get the following characteristic polynomial at the
origin O,

p(�) = �3 + (1 + a+ b)�2 + (a+ b+ ab� ac)�+ ab(�1 + c). (2.2)

To guarantee that its eigenvalues are 0 and ±!i with ! > 0, which means the origin
is a zero-Hopf bifurcation point, we quickly get the conditions, which are given in
the following Lemma.

Lemma 2.1. The origin of system (1.1) is a zero-Hopf equilibrium if and only if

the following condition is satisfied:

a = �1, b = 0, c = 1 + !2. (2.3)

Next, we briefly introduce the averaging theory of first order. The following two
initial value problems are considered:

ẋ = "F1(t, x) + "2F2(t, x, "), x(0) = x0, (2.4)

and
ẏ = "f(y), y(0) = x0, (2.5)

where x, y and x0 are in some open ⌦ of Rn, t 2 [0,1), " 2 (0, "0], F1 and F2 are
periodic functions of period T in the variable t, and f(y) is the averaged function
of F1(t, y) with respect to t, namely,

f(y) =
1

T

Z T

0

F1(t, y)dt. (2.6)

And we give the two notations for the following Lemma, DxF means the Jacobian
matrix of F with respect to the components of x, and DxxF means the Hessian
matrix of F .

Lemma 2.2 ( [14,20]). Assume that: (i) the functions F1, DxF1, DxxF1 and DxF2

are continuous, bounded by a constant, independent of " in [0,1)⇥ ⌦⇥ (0, "0];
(ii) For t 2 [0, 1/"], it follows that x(t)� y(t) = O(") as " ! 0;
(iii) If p 6= 0 is an equilibrium point of system (2.5) and detDyf(p) 6= 0.
Then there exists a periodic solution �(t, ") of period T for system (2.4) which is

close to p and such that �(t, ") ! p as " ! 0.
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Remark 2.1. If there are m equilibrium points of system (2.5) satisfying all the
conditions in the above Lemma 2.2, then system (2.4) has m corresponding periodic
solutions, i.e., m limit cycles via zero-Hopf bifurcation. We call this the zero-Hopf
cyclicity in the sense of first order averaging, and will consciously find its upper
bounds without repeating this description in the following discussions.

Theorem 2.1. Let

(a, b, c) = (�1 + ↵",�", 1 + !2 + �"), (2.7)

where ↵,�, � 2 R and " is a su�ciently small positive parameter, for system (1.1)
a zero-Hopf bifurcation can occur around the origin. And under certain parameter

conditions, one stable limit cycle can bifurcate.

Proof. Substituting (2.7) into system (1.1), one gets the following system

8
><

>:

ẋ = y(↵"� 1)� x(↵"� 1),

ẏ = x(1 + !2 + �")� y � xz + dyz + ey2 + fxy,

ż = xy � �"z.

(2.8)

Via the rescaling of the variables (x, y, z)=("X, "Y, "Z), system (2.8) in the new
variables (X,Y, Z) becomes

8
><

>:

Ẋ = Y (↵"� 1)�X(↵"� 1),

Ẏ = (1 + !2 + �")X � Y � "XZ + "(dY Z + eY 2 + fXY ),

Ż = "XY � �"Z.

(2.9)

For the linear part at the origin O of system (2.9), when " = 0, by the means of the
linear substitution

(X,Y, Z) =

✓
2(u� !v)

!2 + 1
, 2u,w

◆
.

we can transform it into the following real Jordan normal form, i.e.
0

BBB@

0 �! 0

! 0 0

0 0 0

1

CCCA
. (2.10)

Under the new variable (u, v, w) and time rescaling t ! !t, system (2.9) becomes
the following form: 8

>>>>>>><

>>>>>>>:

u̇ = �v +
"fu

! (!2 + 1)
,

v̇ = u� "fv
!2 (!2 + 1)

,

ẇ = � "fw
! (!2 + 1)

,

(2.11)

where fu = �u � �!v + uw
�
d!2 + d� 1

�
+ 2u2

�
e!2 + e+ f

�
� 2fuv! + vw!,

fv = �uw
�
d!2 + d� 1

�
� 2u2

�
e!2 + e+ f

�
+ 2fuv! + u

�
↵!2

�
!2 + 1

�
� �
�
+

v!
�
↵!2 + ↵+ �

�
� vw!, and fw = �w

�
!2 + 1

�
� 4u2 + 4uv!.
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Furthermore, via the cylindrical coordinate substitution (u, v, w) !
(r cos ✓, r sin ✓, w), we obtain the following form:

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

ṙ = "
r

!2(1 + !2)
(! cos ✓ � sin ✓)(�w cos ✓ + dw cos ✓ + � cos ✓

+ dw!2 cos ✓ � w! sin ✓ + �! sin ✓ + �! sin ✓ + �!3 sin ✓,

✓̇ = �1� "
cos ✓2

!2 + !4
(� � �!2 � �!4 + w(�1 + d+ d!2)

+ !(� + 2� + �!2 + w(�2 + d+ d!2)) tan ✓ � (w � �)!2 tan ✓2,

ẇ = "
�w↵(1 + !2)� r2 cos ✓(cos ✓ + ! sin ✓)

!(1 + !2)
.

(2.12)

By taking ✓ as the new independent variable, the di↵erential system (2.12) becomes

dr

d✓
= "

�r

!2(1 + !2)(1 + tan ✓2)
(! � tan ✓)(�w + dw + � + dw!2

� w! tan ✓ + �! tan ✓ + �! tan ✓ + �!3 tan ✓) +O("2)

= "F1(r, ✓, w) +O("2),

dw

d✓
= "

(�r2 + w↵ sec ✓2 + w↵!2 sec ✓ � r2! tan ✓)

!(1 + !2)(1 + tan ✓2)
+O("2)

= "F2(r, ✓, w) +O("2).

(2.13)

According to the averaging theory described in Lemma 2.2 for system (2.13),
using the notation introduced in Lemma 2.2, we have t = ✓, T = 2⇡, x = (r, w)T ,
and

F (r, ✓, w) =

0

@F1(r, ✓, w)

F2(r, ✓, w)

1

A , f(r, w) =

0

@ f1(r, w)

f2(r, w)

1

A ,

where

f1(r, w) =
1

2⇡

Z
2⇡

0

F1(r, ✓, w)d✓,

f2(r, w) =
1

2⇡

Z
2⇡

0

F2(r, ✓, w)d✓.

It is easy to know that system (2.13) satisfies all the conditions in Lemma 2.2.
Then, we obtain

f1(r, w) =
r(dw � ↵)

2!
,

f2(r, w) =
2r2 � w�(1 + !2)

!(1 + !2)
,

(2.14)

where ! =
p
c� 1. Clearly, when ↵�d > 0 and c > 1, the two equations f1(r, w) =

f2(r, w) = 0 have three common solutions (r, w) = (0, 0) and (±
q

↵�(1+!2)

2d , �
d ).

Since r represents the amplitude of periodic solutions, it should be positive. Then
we choose the unique positive solution (r⇤, w⇤), namely,

r⇤ =

r
↵�c

2d
, w⇤ =

�

d
,
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and know that the Jacobian at the point (r⇤, w⇤) is

@(f1, f2)

@(r, w)
|(r,w)=(r⇤,w⇤)=

0

@ 0 2
p
2
p
↵�p

c�1
p
cdp

↵�
p
cd

2
p
2
p
c�1

� ↵p
c�1

1

A . (2.15)

And more the determinant of Jacobian matrix (2.15) at (r⇤, w⇤) takes the following
value:

� ↵�

c� 1
6= 0.

By Lemma 2.2, we establish the existence of a 2⇡ periodic solution (r(✓, "), w(✓, "))
of system (2.13) for the su�ciently small ", such that (r(0, "), w(0, ")) ! (r⇤, w⇤)
when " ! 0. Hence, we obtain only one periodic solution of system (2.11)

u(✓, ") = "r⇤ cos ✓ +O("2), v(✓, ") = "r⇤ sin ✓ +O("2), w(✓, ") = "w⇤ +O("2),

namely, for " > 0 su�ciently small, system (2.8) has one periodic solution. Further-
more, we figure out two eigenvalues of the Jacobian at the point (r⇤, w⇤) in (2.15)
as follows:

�1,2 =
�� ±

p
�(4↵+ �)

2
p
c� 1

.

It is easy to know that if and only if � > 0, c > 1 and ��
4
 ↵ < 0, �1,2 are all

negative, namely the steady-state solution (r⇤, w⇤) is stable.
Therefore, there is a stable periodic solution around the origin when " = 0. The

proof is completed.
Here we give a numerical example of one stable limit cycle via zero-Hopf bi-

furcation around the origin of system (1.1) as shown in Figure1. In this example,
we have set d = e = f = 0, and a = �1 + ↵", b = �", c = 1 + !2 + �" with
↵ = �0.125,� = 1, � = �1, " = 0.01,! = 1.

-0.1

0.0

0.1x

-0.1

0.0

0.1y

0.4

0.6

0.8

z

-0.05

0.00

0.05x

-0.05

0.00
0.05y

0.00

0.05

0.10

0.15

0.20

z

(a) (b)

Figure 1. Simulations of system (1.1) for a = �1.00125, b = 0.01, c = 1.99, d = e = f = 0 converging

to the stable limit cycle around the origin with the initial conditions: (a) (x0, y0, z0) = (0.092, 0, 0) and

(b) (x0, y0, z0) = (0.04, 0, 0).
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2.2. The case at the equilibrium points E±

Now, we consider the equilibrium points E±. For the convenience of calculation, we
let e+f = 1, i.e., e = 1�f . Calculating the characteristic polynomial at E+ or E�
to guarantee that its eigenvalues are 0 and ±!i with ! > 0, we get one necessary
condition:

 = 0, i.e., d =
b+ 4(c� 1)

4(c� 1)
.

At this time, from (2.1) the two equilibrium points E± merge into one point E =

(2(1�c), 2(1�c), 4(1�c)2

b ). And the other necessary conditions are also determined:

a = b2+bc�b+!2

2(c�1)
:= a0,

f =
b3+3b2(c�1)+b(6c2�10c+!2

+4)�8(c�1)
3

4b(c�1)2
:= f0.

(2.16)

Thus the equilibrium point E is a zero-Hopf bifurcation point. Under these con-
ditions (2.16), via the translation x = (x, y, z) 7! x + E, and through one non-
degenerate linear transformation x0 = Tu0 where the transposed vector u0 = (u, v, w)0

and the transformation matrix

T =

0

BBB@

� (b+c�1)(!2
+b(b+c�1))

2(c�1)((b+c�1)2+!2)
� �2!3�2b(b+c�1)!

4(c�1)((b+c�1)2+!2)

b
4�4c

� 2b(b+c�1)
2
+2(b�c+1)!2

4(c�1)((b+c�1)2+!2)
��2!3�2(b+c�1)(b+2c�2)!

4(c�1)((b+c�1)2+!2)

b
4�4c

2 0 1

1

CCCA
,

we can obtain the system with the linear part of real Jordan normal form as follows:

8
>>><

>>>:

u̇ = �! v + Pu(u2, v2, w2, uv, uw, vw),

v̇ = ! u+ Pv(u2, v2, w2, uv, uw, vw),

ẇ = Pw(u2, v2, w2, uv, uw, vw),

(2.17)

where Pu, Pv and Pu are quadratic polynomials in u, v, w.

Remark 2.2. With the same process in the last subscetion, applying the averaging
theory to investigate the zero-Hopf bifurcation around the origin of system (2.17),
we discover that there exists no positive solution of r for the corresponding equations
f1(r, w) = f2(r, w) = 0. In other words, using the averaging theory of first order we
cannot find a periodic solution bifurcating from the zero-Hopf equilibrium point E.
Similar to the case in [30], it also reveals that the time-averaging method of first
order fails for some type of zero-Hopf bifurcation.

Now, we shall use the normal form theory to investigate the zero-Hopf bifur-
cation at the equilibrium E of system (1.1). For this purpose, we first give the
following Lemma.

Lemma 2.3. By perturbing slightly the critical values a = a0, f = f0 and  = 0,
for system (1.1) with e+f = 1, the characteristic polynomial at the equilibrium E±
or E can have one real eigenvalue � and a pair of complex conjugates µ±!i where
! > 0 and 0 < (|�|, |µ|) ⌧ 1.
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Proof. Without losing generality, taking E� as an example, we calculate its char-
acteristic polynomial P (�), then set P (�) = (���)((��µ)2+!2). Comparing the
corresponding coe�cients of the polynomials yields

8
>>><

>>>:

a = a0 +
k1�

2b(c�1)(b2+b(c�1)+!2)
+ µ

1�c + o(|�|, |µ|),

f = f0 +
k2�

4b2(c�1)2(b2+b(c�1)+!2)
� µ

2(c�1)2
+ o(|�|, |µ|),

 = �!2

b2+b(c�1)+!2 + o(|�|, |µ|),

(2.18)

where k1 = (b2+!2)(b2+b(c�1)�!2), k2 = b5+3b4(c�1)+b3(2c2�4c�!2+2)�
2b!2(c2 � c + !2) � 8(c � 1)3!2, and 0 < (|�|, |µ|) ⌧ 1. Therefore, the conclusion
of this Lemma is obtained.

Furthermore, we have the following Theorem.

Theorem 2.2. For system (1.1), the zero-Hopf bifurcation can occur around the

equilibrium E at the critical values: a = a0, f = f0 and  = 0. And by setting

appropriate parameter values under the perturbing conditions (2.18), one stable limit

cycle can bifurcate.

Proof. By perturbing the critical value a = a0, f = f0 and  = 0 with the same
forms as (2.18), and making the translation x = (x, y, z) 7! x + E and the non-
degenerate linear transformation x0 = T̃u0 where T̃ is the perturbing form of T with
respect to � and µ. According to Lemma 2.3, from system (1.1) we can obtain

8
>>><

>>>:

u̇ = µu� ! v + Pu(u2, v2, w2, uv, uw, vw),

v̇ = ! u+ µv + Pv(u2, v2, w2, uv, uw, vw),

ẇ = �w + Pw(u2, v2, w2, uv, uw, vw),

(2.19)

where µ and � are the perturbation parameters (this is also called unfolding). Note
that Pu, Pv and Pu are given in system (2.17), and higher-order terms involving µ,�
are ignored. Now, applying the Maple program in [22, 27], for system (2.19) with
the unfolding added, we obtain the following normal form expressed in cylindrical
coordinates [29] (for convenience, the notation w is still used in the normal form),

8
>>><

>>>:

ẇ = �w + b20r2,

ṙ = µr + r11rw + r30r3,

✓̇ = ! + a01w + a20ar2,

(2.20)

where all aij , bij and rij are functions in b, c,!, which can also be found in the
website: https://github.com/lujingping/Liuhongpu.git. The first two equations in
the normal form (2.20) can be used for the bifurcation analysis, while the third
equation can be used to determine the frequency of periodic solutions.

Next, we will search for the steady-state solutions by setting ẇ = ṙ = 0 in (2.20),
and all the steady-state solutions are obtained as follows:

(w0, r0) = (0, 0), (w⇤, r⇤) =

 
b20µ

r30�� b20r11
, ±
r

�µ

b20r11 � r30�

!
.
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Note that just the positive solution r⇤
+

=
q

�µ
b20r11�r30�

represents a periodic orbit

in the original three-dimensional space, and the periodic orbit is only one here.
The stability of the two steady-state solutions can be determined by the Jacobian

of the first two equations of (2.20). Since the Jacobian evaluated at (w0, r0) = (0, 0)
results in two eigenvalues � and µ, we can determine the solution, i.e., the origin of
(2.20) is stable (unstable) if µ < 0,� < 0 (µ > 0 or � > 0). Furthermore, evaluating
the Jacobian matrix at (w, r) = (w⇤, r⇤

+
) yields its determinant and trace

Det = �2µ�, Tr =
�(b20r11 � �r30 + 2µr30)

b20r11 � �r30
.

Then its two eigenvalues are all negative if and only if Det > 0,Tr < 0, namely the
stability conditions of the periodic orbit, which can be satisfied by selecting appro-
priate parameter values. Therefore, the proof of the theorem has been completed.

Here we give a numerical example of one stable limit cycle via zero-Hopf bifurca-
tion around the equilibrium E of system (1.1), as shown in Figure 2. In this example,
we have set e = 1� f and c = 3

2
, b = �1,! = 1, then  = 2

3
�, a = 3

2
� 2µ+ 2

3
� and

f = 4�2µ+ 7

3
� from (2.18). Furthermore, we choose small perturbation parameter

value � = �0.05 and µ = 0.01 without losing generality.

-1.03448
-1.03448

-1.03448
-1.03447

-1.03447

x

-1.03448

-1.03447
-1.03446

y

-1.07016

-1.07015

-1.07014

-1.07013

z

-1.04
-1.02

-1.00
-0.98

x

-1.04
-1.02

-1.00
-0.98y

-1.05

-1.00

z

(a) (b)

Figure 2. Simulations of system (1.1) for a = 1.4467, b = 4, c = 1.5, d = 2.99986, e = �2.863, f =

3.863, converging to the stable limit cycle around the equilibrium E with the initial conditions: (a)

(x0, y0, z0) = (�0.97,�0.97,�0.94) and (b) (x0, y0, z0) = (�1.05,�1.05,�1.05).

3. Zero-Hopf bifurcation at infinity

In this section, we will use the Poincaré compactification technique to analyze
the dynamic behavior of system (1.1) at infinity. This technique can extend a
polynomial vector field � in Rn to a unique analytic vector field on the unit
sphere Sn. The extension is called the Poincaré compactification, which was de-
scribed in [15], and one can also see [12, 25] for details. Let the Poincaré ball
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S3 = {z = (z1, z2, z3, z4) 2 R4, ||z|| = 1} be the unit sphere, S+ = {z 2 S3, z4 > 0}
and S� = {z 2 S3, z4 < 0} be the northern and southern hemispheres, and de-
note the tangent hyperplanes at the points (±1, 0, 0, 0), (0,±1, 0, 0), (0, 0,±1, 0),
(0, 0, 0,±1) respectively by the charts Ui, Vi where Ui = {z 2 S3, zi > 0} and
Vi = {z 2 S3, zi < 0} for i = 1, 2, 3, 4. To analyze the dynamic behavior at in-
finity on x, y, and z, we will investigate the local charts Ui and Vi via the central
projections and the di↵eomorphisms Fi : Ui ! R3 and Gi : Vi ! R3, i = 1, 2, 3.
Furthermore, the ow in the local chart Vi is the same as that in the local chart Ui

reversing the time. Hence, we need only consider the local chart Ui, i = 1, 2, 3.

3.1. In the local chart U1

Under the transformation of the variables (x, y, z) = (z�1

3
, z1z

�1

3
, z2z

�1

3
), and t =

z3⌧ , system (1.1) becomes

8
>>>>><

>>>>>:

dz1
d⌧

= fz1 � z2 + cz3 + (a� 1)z1z3 + dz1z2 + ez2
1
� az2

1
z3,

dz2
d⌧

= z1 + (a� b)z2z3 � az1z2z3,

dz3
d⌧

= �az1z
2

3
+ az2

3
.

(3.1)

It is easy to find that it has one variant manifold z3 = 0, and when z3 = 0, namely
on the variant manifold, system (3.1) can be reduced to

8
><

>:

dz1
d⌧

= fz1 � z2 + dz1z2 + ez2
1
,

dz2
d⌧

= z1.
(3.2)

Then (0, 0) is the only equilibrium point of the system (3.2), and the two eigenvalues
of the linear part at the origin are 1

2
(f ±

p
f2 � 4). We know that when |f | � 2,

the origin is a stable or unstable node; when 0 < |f | < 2, the origin is a stable or
unstable focus; while f = 0, the origin is a center-focus or Hopf bifurcation point.
Further, we have the following conclusions.

Proposition 3.1. (i) When f = 0, the origin of system (3.2) has the first order

fine focus quantity V3 = ⇡de.
(ii) When f = d = 0 or f = e = 0, the origin is a center, and system (3.2) has

the corresponding first integrals respectively as follows:

H(z1, z2) =
1

2
Exp[2ez2](z

2

1
� z2

2
),

H(z1, z2) = dz1 + ln |1� dz1|�
1

2
d2z2

2
.

(3.3)

(iii) For system (3.2), namely system (3.1) restricted to the variant manifold

z3 = 0, there exists one limit cycle at most via Hopf bifurcation.

For Proposition 3.1 (iii), we obtain one stable limit cycle at the origin of system
(3.2) by numerical simulation, as shown in Figure 3 (a). At the same time, we also
give the corresponding phase portrait in the Poincaré disc for system (3.2), as shown
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Figure 3. (a) One stable limit cycle of system (3.1) restricted to the invariant algebraic surface: z3 = 0;

(b) Phase portrait of the di↵erential system (3.2) in the Poincaré disc, where d = 1, e = �1, f = 0.05.

in Figure 3 (b). Thus, we can comprehend the phase portrait of system (1.1) near
the sphere at infinity in the local charts U1 under the corresponding conditions.

We can know the origin (0, 0, 0) is the only equilibrium point of system (3.1) on
the plane z3 = 0. That is to say, there exists the only equilibrium point related
to infinity in the chart U1, and the Jacobian at the origin of (3.1) has one zero
eigenvalue and two non-zero eigenvalues: 1

2
(f ±

p
f2 � 4), which implies that when

f = 0, the origin (0, 0, 0) is a zero-Hopf bifurcation point. Thus we can analyze
the corresponding zero-Hopf bifurcation at infinity of system (1.1) for a su�ciently
small z3 > 0, and the following conclusion is obtained.

Theorem 3.1. For system (3.1), when 0 < f ⌧ 1 and ed < 0, the zero-Hopf

bifurcation can occur around the origin. Correspondingly for system (1.1), there

exists the zero-Hopf bifurcation at infinity (x, y, z) = (+1, 0, 0), then one stable

bifurcating limit cycle at infinity (x, y, z) = (+1, 0, 0).

Proof. By perturbing the critical value f = 0, we let f = µ, 0 < |µ| ⌧ 1. At
the same time, for the convenience of calculating the norm form, we introduce one
auxiliary linear perturbation of the third equation for (3.1) as follows:

dz3
d⌧

= ��z3 � az1z
2

3
+ az2

3
, (3.4)

where 0  � ⌧ 1. Then we make the nondegenerate linear transformation

(z1, z2, z3) = (�2v � c�

�2 + 1
v, 2u+

c

�2 + 1
w,w).

From system (3.1), we obtain
8
>>><

>>>:

ẇ = ��w � aw2(v � 1),

u̇ = v � w(a(v � 1)u+ b(cw + u)),

v̇ = �u+ µv + v(ev + w(a+ cd� av � 1) + du),

(3.5)

where µ and � are the perturbation parameters. Similarly, the higher-order terms
involving µ,� are ignored, and by applying the Maple program in [22,27], for system
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(3.5) we obtain the following normal form with the unfolding added (the notation
w is still used in the normal form),

8
>>><

>>>:

ẇ = ��w + aw2,

ṙ = 1

2
µr + 1

2
(2a� b+ cd� 1)rw + 1

2
der3,

✓̇ = 1� 1

8
µ2 � 1

6
(d2 + 4e2)r2.

(3.6)

Next, we search for the steady-state solutions by setting ẇ = ṙ = 0 in (3.6). Since
there can be neither the linear term nor the linear perturbation in the third equation
of original system (3.5), namely � always vanishes as an auxiliary parameter, and
only yields w = 0. Hence, all the steady-state solutions are given as follows:

(w, r) = (0, 0), (0,±
r
� µ

de
).

Noting that the positive solution r =
p
� µ

de represents a periodic orbit in the
original three dimensional space, and the periodic orbit is only one here.

By calculating the Jacobian of the first two equations of (3.6), evaluated at
(w, r) = (0, 0) with � = 0, and resulting in two eigenvalues 0 and µ

2
, we can

determine the solution (w, r) = (0, 0), i.e., the origin of (3.6) is stable (unstable) if
µ < 0 (µ > 0). Furthermore, evaluating the Jacobian at (w, r) = (0,

p
� µ

de ) yields
its two eigenvalues 0 and �µ. This indicates that the stability conditions of the
periodic orbit w = 0, r =

p
� µ

de are given as follows:

µ > 0, ed < 0. (3.7)

Therefore, the proof of the theorem has been completed.
Noting that in the vicinity of this zero-Hopf bifurcation point, i.e., the origin

of system (3.5), the periodic orbit obtained has been restricted on the invariant
manifold w = 0, thus it is actually a limit cycle via Hopf bifurcation. This is also
consistent with the conclusion of Proposition 3.1 (iii).

3.2. In the local chart U2

Under the transformation of the variables (x, y, z) = (z1z
�1

3
, z�1

3
, z2z

�1

3
), and t =

z3⌧ , the system (1.1) becomes

8
>>>>><

>>>>>:

dz1
d⌧

= az3 � ez1 + (1� a)z1z3 � dz1z2 � fz2
1
� cz2

1
z3 + z2

1
z2,

dz2
d⌧

= z1 � ez2 � bz2z3 � cz1z2z3 + z2z3 + z1z
2

2
� dz2

2
,

dz3
d⌧

= �z3(e+ fz1 � z3 + cz1z3 � z1z2).

(3.8)

Obviously, z3 = 0 is its invariant algebraic surface, and on the variant manifold, the
system (3.8) can be reduced into

8
><

>:

dz1
d⌧

= �z1(e+ fz1 + dz2 � z1z2),

dz2
d⌧

= z1 � z2(e+ fz1 + dz2 � z1z2).
(3.9)
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If ed = 0, then (0, 0) is the only equilibrium point of system (3.9), while ed 6= 0,
system (3.9) has another equilibrium point (0,� e

d ). Furthermore, when e 6= 0, the
origin is a node with two eigenvalues: {�e,�e}, and the equilibrium point (0,� e

d )
is a semi-hyperbolic singular point with two eigenvalues: {0, e}. When e = 0, the
origin is a nilpotent node around which there does not exist one small amplitude
limit cycle, one can see [8] for more details. In addition, system (3.9) always has
one first integral

H(z1, z2, ⌧) =
z2Exp[�⌧ ]

z1
. (3.10)

Especially, when e = f = 0, system (3.9) has one first integral as follows:

H(z1, z2) = � 1

dz1
+

z2
2

2z2
1

� Log[
z1

d� z1
]. (3.11)

Its phase portraits are as shown in Figure 4 (a), and under these conditions, we
have the corresponding phase portrait in the Poincaré disc of (3.9), as shown in
Figure 4 (b).

0.5 1.0 1.5
z1

-1.0

-0.5

0.5

1.0

z2

(a) (b)

Figure 4. (a) Phase portraits for the first integrals in (3.11); (b) Phase portrait of the di↵erential

system (3.9) in the Poincaré disc, where e = f = 0, d = 2.

Furthermore, for system (3.8) related to the local chart U2, we figure out that
the Jacobian at the origin has three eigenvalues: {�e,�e,�e}. Then the origin is
a node or high order singularity, and yields that the origin cannot be a zero-Hopf
bifurcation point. And for another equilibrium point (0,� e

d , 0) of system (3.8) with
ed 6= 0, its Jacobian has three eigenvalues: {0, 0, e}, hence it cannot be a zero-Hopf
bifurcation point, either.

From these, we give the following proposition.

Proposition 3.2. In the local chart U2 of system (1.1), i.e., for system (3.8), there
does not exist zero-Hopf bifurcation at all the equilibria related to infinity.
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3.3. In the local chart U3

Finally, we analyze infinity concerning z, i.e., z = 1. Under the transformation of
the variables (x, y, z) = (z1z

�1

3
, z2z

�1

3
, z�1

3
), and t = z3⌧ , system (1.1) becomes

8
>>>>><

>>>>>:

dz1
d⌧

= (b� a)z1z3 + az2z3 � z2
1
z2,

dz2
d⌧

= dz2 � z1 + (b� 1)z2z3 + cz1z3 + ez2
2
+ fz1z2 � z1z

2

2
,

dz3
d⌧

= z3(bz3 � z1z2).

(3.12)

One quickly knows that z3 = 0 is its invariant algebraic surface, and on the variant
manifold, system (3.12) can be reduced into

8
><

>:

dz1
d⌧

= �z2
1
z2,

dz2
d⌧

= �z1 + z2(d+ ez2 + fz1 � z1z2).
(3.13)

If ed = 0, then (0, 0) is the only equilibrium point of system (3.13), while ed 6= 0,
system (3.13) has another equilibrium point (0,�d

e ). Furthermore, in the local chart
U3, we know that the Jacobian at the origin of system (3.12) has three eigenvalues:
{0, 0, d}, which implies that the origin cannot be a zero-Hopf bifurcation point. And
for another equilibrium point (0,�d

e , 0) of system (3.12) with ed 6= 0, its Jacobian
has three eigenvalues: {0, 0,�d}, hence it cannot be a zero-Hopf bifurcation point,
either.

From these, we have the following proposition.

Proposition 3.3. In the local chart U3 of system (1.1), i.e., for system (3.12),
there does not exist zero-Hopf bifurcation at all the equilibria related to infinity.

4. Conclusions

In this paper, we have studied the zero-Hopf bifurcation of a class of generalized
Lorenz systems. Applying the averaging theory of first order, we have obtained
only one limit cycle around the origin. When the averaging theory of first order
fails, the normal form theory is put to use in investigating the zero-Hopf bifurcation
at the other equilibria. Then only one limit cycle can be found. Further, through
Poincaré compactification, we have discussed the zero-Hopf bifurcation at infinity,
and also have obtained such a limit cycle. The similar results at infinity have not
been seen in the existing references.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No.
12161023)(Q. Wang), (No. 12061016)(W. Huang), and Nature Science Foundation
of Guangxi (No.2020GXNSFAA159138)(Q. Wang).



Zero-Hopf Bifurcation for a Class of Generalized Lorenz System 635

References

[1] M.R. Candido and J. Llibre, Zero-Hopf bifurcations in 3-dimensional di↵er-
ential systems with no equilibria, Mathematics and Computers in Simulation,
2018, 151, 54–76.

[2] S. Celikovsky, G. Chen, On a generalized Lorenz canonical form of chaotic
systems, Int. J. Bifurcation and Chaos, 2002, 8, 1789–1812.

[3] G. Chen and T. Ueta, Yet another chaotic attractor, Int. J. Bifurcation and
Chaos, 1999, 9, 1465–1466.

[4] L. Chua, M. Komuro and T. Matsumoto, The double scroll family, IEEE Trans.
Circuits Syst., 1986, 33, 1072–1097.
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