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Abstract. The diffusive-viscous wave equation plays an important role in seismic exploration

and it can be used to explain the frequency-dependent reflections observed both in laboratory and

field data. The numerical solution to this type of wave equation is needed in practical applications
because it is difficult to obtain the analytical solution in complex media. Finite-difference method

(FDM) is the most common used in numerical modeling, yet the numerical dispersion relation and

stability condition remain to be solved for the diffusive-viscous wave equation in FDM. In this
paper, we perform an analysis for the numerical dispersion and Von Neumann stability criteria of

the diffusive-viscous wave equation for second order FD scheme. New results are compared with

the results of acoustic case. Analysis reveals that the numerical dispersion is inversely proportional
to the number of grid points per wavelength for both cases of diffusive-viscous waves and acoustic

waves, but the numerical dispersion of the diffusive-viscous waves is smaller than that of acoustic
waves with the same time and spatial steps due to its more restrictive stability condition, and it

requires a smaller time step for the diffusive-viscous wave equation than acoustic case.

Key words. Stability, dispersion analysis, finite-difference method, diffusive-viscous wave equa-

tion, acoustic waves

1. Introduction

The diffusive-viscous wave equation was proposed recently in the field of oil
and gas exploration. The low-frequency seismic anomalies related to hydrocarbon
reservoirs have lately attracted wide attention [25, 7, 17, 8]. Even though the re-
lationship between the frequency-dependent reflections and fluid saturation in a
reservoir can be quite complex, but there is a general connection between the char-
acter of porous medium saturation and seismic response. Goloshubin and Bakulin
observed phase shifts and energy redistribution between different frequencies when
comparing cases of water-saturated and gas-saturated rocks [14, 12]. Korneev et
al. observed that reflections from a fluid-saturated layer have increased amplitude
and delayed traveltime at low frequencies when compared with reflections from a
dry layer in both laboratory and field data [17]. Those observed results cannot be
explained using Biot theory [12, 3, 4, 5, 21, 10, 2], nor by the reflection properties of
an elastic layer [17], or the squirt flow and patchy saturation models [20]. Korneev
et.al. proposed a diffusive-viscous model to explain the frequency-dependent phe-
nomena in fluid-saturated porous reservoirs [17]. Therefore, the diffusive-viscous
theory is important in seismic exploration, for example, it can be used for detecting
and monitoring hydrocarbon reservoirs [15], and it is also essential to simulate the
propagation of the diffusive-viscous waves in practical applications.

Seismic numerical modeling is a valuable tool for seismic interpretation and an
essential part of seismic inversion algorithms. Another important application of
seismic modeling is the evaluation and design of seismic surveys [6]. There are
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many approaches to seismic modeling. The finite-difference method(FDM) is the
most straightforward numerical approach in seismic modeling, and it is also becom-
ing increasingly more important in the seismic industry and structural modeling
due to its relative accuracy and computational efficiency [22]. Some of the most
common FDMs used in seismic modeling are explicit, and thus conditionally stable.
Generally in seismology, explicit methods are preferred over implicit ones because
they need less computation at each time step and have the same order of accura-
cy. This has been noted for FDM [6, 11]. However, the size of the time step is
bounded by a stability criterion which is an important factor affecting the accura-
cy of the results. Additionally, a numerical dispersion (grid dispersion) related to
grid spacing has a detrimental effect on accuracy of FD scheme. It occurs because
the actual velocity of high-frequency waves in the grid is different from the true
velocity and it can occur even when the physical problem is not dispersive [9]. The
error introduced by numerical dispersion is dependent on the grid spacing and the
size of the time step. There are many studies in literature regarding the numerical
dispersion and stability analysis for acoustic wave propagation [1, 19]. However,
the numerical dispersion analysis and stability condition is rarely seen despite its
significance in seismic exploration for the diffusive-viscous wave propagation.

Our aims in this paper are to estimate the Von Neumann stability criteria and
derive the numerical dispersion relation for the finite-difference method for the
diffusive-viscous wave equation proposed by Korneev [17]. We will show that
there are some differences of stability condition and dispersion relation between
the diffusive-viscous wave equation and acoustic wave equation, and the dispersion
of diffusive-viscous waves is smaller than that of acoustic waves with the same time
and spatial steps because of its more restrictive stability condition, and it requires
a smaller time step for the diffusive-viscous wave equation than acoustic case.

2. The diffusive-viscous theory

In this section, we will first introduce the diffusive-viscous wave equation, then
give the propagating wavenumber and attenuation coefficient of the diffusive-viscous
waves prepared for the following section.

2.1. The diffusive-viscous wave equation. The diffusive-viscous theory is pro-
posed by Korneev [17, 13], which is used to explain the relationship between the
frequency dependence of reflections and the fluid saturation in a reservoir. The
diffusive-viscous wave equation in a 1-D medium is mathematically described as
follows:

(1)
∂2u

∂t2
+ γ

∂u

∂t
− η ∂3u

∂x2∂t
− υ2 ∂

2u

∂x2
= 0

for (x, t) ∈ (−∞,∞)× [0,∞), where u is the wave field; γ ≥ 0, η ≥ 0 are diffusive
and viscous attenuation parameters, respectively, which are the functions of the
porosity and the permeability of reservoir rocks and the viscosity and the density
of the fluid; υ is the wave propagation velocity in a non-dispersive medium. The
second term in (1) characterizes a diffusional dispersive force, whereas the third
term describes the viscosity. t is the time and x is the space variables. Equation
(1) is extended to two dimensional case (2-D) as [15]

(2)
∂2u

∂t2
+ γ

∂u

∂t
− η(

∂3u

∂x2∂t
+

∂3u

∂z2∂t
)− υ2(

∂2u

∂x2
+
∂2u

∂z2
) = 0

The definitions of the variables are the same as (1), and (x, z) ∈ (−∞,∞)×(−∞,∞)
are the Cartesian coordinates.
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2.2. The propagating wavenumber and attenuation coefficient of the
diffusive-viscous wave. To derive a harmonic plane wave solution of (2), we
take a form as given below

(3) u(x, z, t) = ei(ωt−k̃xx−k̃zz)

with angular frequency ω and the wave numbers k̃x, k̃z along x and z directions,
respectively. And note that k̃2

x+k̃2
z =k̃2, k̃ is the complex wavenumber, and it can

be in the form as

(4) k̃ = k + iα

where, k is the propagation wavenumber, and α is the attenuation coefficient of
diffusive-viscous waves, and i =

√
−1.

Substituting (3) into (2), we get

(5) −ω2 + γ(iω) + ηk̃2(iω) + υ2k̃2 = 0

From (5), we have

(6) k̃2 =
ω2 − iγω
υ2 + iηω

=
(υ2ω2 − γηω2)− i(ηω3 + γωυ2)

υ4 + η2ω2
= K̃R + iK̃I

where, K̃
R

= υ2ω2−γηω2

υ4+η2ω2 , K̃I = −ηω
3+γωυ2

υ4+η2ω2 are the real and imaginary parts of k̃2.

According to (4), we can also obtain

(7) k̃2 = k2 + i2kα− α2

Then, the propagation wavenumber k and attenuation coefficient α can be obtained
by combing (6) and (7) as

(8) k = ±

√√√√K̃R +
√

(K̃2
R + K̃2

I )

2
, α =

K̃I

2k
= ± K̃I

2

√
K̃R+
√

(K̃2
R+K̃2

I )

2

The sign of the attenuation coefficient α in (8) is determined by the attenuation
property of diffusive-viscous waves, and both k and α not only depend on parame-
ters of the medium, but also vary significantly with frequency. These two variables
will be used in the following section.

3. The Von Neumann stability criteria of diffusive-viscous wave equation

Finite-difference computations require determinations of spatial and temporal
sampling criteria. As pointed out by Kelly and Marfurt [16], spatial sampling is
generally chosen to avoid numerical dispersion in solutions. Then, the temporal
sampling is chosen to avoid numerical instability. The stability analysis for FD
solutions of partial differential equations is handled using a method originally de-
veloped by Von Neumann [24]. In this section, we will give the stability criteria for
FD solution of diffusive-viscous wave equation following this method, and compare
the results of this equation with acoustic case.

We denote the exact solution of (2) by U(x, z, t). If we assume the grid to be
uniform, let h > 0 be the spatial sampling step and let (xj , zm) = (jh,mh), j =
0, 1, 2, ..., Nx,m = 0, 1, 2, ..., Nz, be the nodal points and tn = n∆t, n = 1, 2, ..., Nt,
be the time points with time step of ∆t, andNx, Nz are the total numbers of samples
in x, z directions, respectively; Nt is the total number of temporal samples. The val-
ues of the solution at each (xj , zm, tn) are then given by U(xj , zm, tn) = Unj,m. And
we denote the derivatives of the solution with respect to x, z, at each (xj , zm, tn)
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by U
′

x(xj , zm, tn) = U
′

x
n
j,m, U

′

z(xj , zm, tn) = U
′

z
n
j,m, respectively, and similarly for

higher derivatives; for example, U
′′

xx(xj , zm, tn) = U
′′

xx
n
j,m, U

′′

zz(xj , zm, tn) = U
′′

zz
n
j,m,

etc. Then we use a central difference formula to discretize U
′′

xx(x, z, t), U
′′

zz(x, z, t),

U
′′

tt(x, z, t) by expanding U(x, z, t) in a Taylor series at j + 1, j − 1, m + 1,m − 1,
and n+ 1, n− 1,respectively, given by

(9)

U
′′

xx(xj , zm, tn) ≈
Unj+1,m − 2Unj,m + Unj−1,m

h2
,

U
′′

zz(xj , zm, tn) ≈
Unj,m+1 − 2Unj,m + Unj,m−1

h2
,

U
′′

tt(xj , zm, tn) ≈
Un+1
j,m − 2Unj,m + Un−1

j,m

(∆t)2

And we use a backward difference formula to discretize U
′
(x, z, t), by expanding

U(x, z, t) in a Taylor series at n− 1, given by

(10) U
′

t (xj , zm, tn) ≈
Unj,m − U

n−1
j,m

∆t

We now define a numerical approximation unj,m to the exact solution Unj,m. Using
the discretization (9) and (10), the approximate solution unj,m associated with the
equation (2) in rectangular coordinates satisfies

(11)

un+1
j,m = [2− 4a− γ(∆t)− 4b]unj,m

− [1− γ(∆t)− 4a]un−1
j,m − a(un−1

j+1,m + un−1
j−1,m + un−1

j,m+1 + un−1
j,m−1)

+ (a+ b)(unj+1,m + unj−1,m + unj,m+1 + unj,m−1)

where, a = η∆t
h2 , b = υ2(∆t)2

h2 .
The actual error of the wavefield at (xj , zm, tn) is defined as

(12) εnj,m = Unj,m − unj,m
Substituting (12) into the FD scheme (11), we obtain

(13)

Un+1
j,m − {[2− 4a− γ(∆t)− 4b]Unj,m − [1− γ(∆t)− 4a]Un−1

j,m

− a(Un−1
j+1,m + Un−1

j−1,m + Un−1
j,m+1 + Un−1

j,m−1)

+ (a+ b)(Unj+1,m + Unj−1,m + Unj,m+1 + Unj,m−1)}
= εn+1

j,m − {[2− 4a− γ(∆t)− 4b]εnj,m − [1− γ(∆t)− 4a]εn−1
j,m

− a(εn−1
j+1,m + εn−1

j−1,m + εn−1
j,m+1 + εn−1

j,m−1)

+ (a+ b)(εnj+1,m + εnj−1,m + εnj,m+1 + εnj,m−1)}

Note that the expression of (13) on the left side is the truncation error, and the
expression of (13) on the right side is the propagation equation for actual error. We
say that a method is numerically stable if the actual error εnj,m is bounded as n→∞.
For simplicity, we will only consider the propagation of the error and assume the
truncation error is zero. For example, in the FD scheme, this assumption implies
the error propagates according to

(14)

εn+1
j,m − {[2− 4a− γ(∆t)− 4b]εnj,m − [1− γ(∆t)− 4a]εn−1

j,m

− a(εn−1
j+1,m + εn−1

j−1,m + εn−1
j,m+1 + εn−1

j,m−1)

+ (a+ b)(εnj+1,m + εnj−1,m + εnj,m+1 + εnj,m−1)} = 0
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In order to analyze the stability of (14), we will decompose the error in terms of
Fourier modes or waves with certain wavelengths. This approach is known as the
Von Neumann method of investigating stability [23].

An error of wave type can be written as

(15)
εnj,m = εnei(k̃xxj+k̃zzm)

= εnei(jhk̃x+mhk̃z)

where εn is the amplitude of the wave at time n.
We substitute (15) into (14), obtaining

(16)
εn+1 = εn{2− γ(∆t)− 4(a+ b)[sin2(

k̃xh

2
) + sin2(

k̃zh

2
)]}

− εn−1{1− γ(∆t)− 4a[sin2(
k̃xh

2
) + sin2(

k̃zh

2
)]}

Equation (16) has been analyzed for stability providing a sufficient condition for
stability by considering the ratio of the error Fourier amplitudes as a function of

time steps [23]. That is, we consider this ratio as R = εn+1

εn = εn

εn−1 to be the ratio of
successive iterations. Therefore, we can insure stability by requiring that |R| ≤ 1.

We consider the stability in terms of R by dividing equation (16) by εn−1 to
obtain

(17)
R2 −R{2− γ(∆t)− 4(a+ b)[sin2(

k̃xh

2
) + sin2(

k̃zh

2
)]}

+ {1− γ(∆t)− 4a[sin2(
k̃xh

2
) + sin2(

k̃zh

2
)]} = 0

Denoting by

(18)
A = 2− γ(∆t)− 4(a+ b)[sin2(

k̃xh

2
) + sin2(

k̃zh

2
)],

B = 1− γ(∆t)− 4a[sin2(
k̃xh

2
) + sin2(

k̃zh

2
)]

Then, (17) can be rewritten as

(19) R2 −AR+B = 0

such that

(20) R =
A±

√
(A2 − 4B)

2
And the stability condition for FD scheme is turning to solve the problem as

(21) |
A±

√
(A2 − 4B)

2
| ≤ 1

After some complex mathematical operations, A and B in (21) have to satisfy

(22)

−2 ≤ A ≤ 2,

0 ≤ B ≤ A2

4
,

B ≥ −1−A,
B ≥ −1 +A

For the sake of clarity, Figure 1 shows the variation of B with respect to A , the
pink lined area 1 and area 2 illustrate the intersection area of A and B satisfying
the inequalities (22).
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Figure 1. Variation of B with respect to A under the condition
of the inequalities (22)

From inequality (22) and Figure 1, we can clearly see that the range of values of
A and B is

(23)
−2 ≤ A ≤ 2,

0 ≤ B ≤ 1

Returning (18), we also find that

(24)
2− γ(∆t)− 8(a+ b) ≤ A ≤ 2− γ(∆t),

1− γ(∆t)− 8a ≤ B ≤ 1− γ(∆t)

Inequalities (23) and (24) show that

(25)

γ ≥ 0,∆t ≥ 0,

∆t ≤
√

6

4

h

υ
,

∆t ≤ h2

γh2 + 8η

The inequalities (25) imply that the time step ∆t must satisfy (26) in order
to ensure the stability of second order FD scheme for the diffusive-viscous wave
equation (2).

(26) 0 ≤ ∆t ≤ min(

√
6

4

h

υ
,

h2

γh2 + 8η
)

Where, ”min” represents the minimum value of quantities.
The diffusive-viscous wave equation is reduced to acoustic wave equation when

γ = η = 0. In this case, the Von Neumann stability of acoustic wave equation can
be obtained from (21) with A = 2− 4b[sin2(kxh2 ) + sin2(kzh2 ) and B = 1 [19]. That
is

(27) ∆t ≤ 1√
2

h

υ

From (26) and (27), we can clearly find that the stability criteria of diffusive-
viscous wave equation for second order FD scheme is not only determined by the
spatial step and velocity of the medium, but also depends on the diffusive and
viscous attenuation parameter γ and η. However, it is only determined by the
spatial step and velocity of the medium for acoustic case. Additionally, it requires
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a smaller time step for diffusive-viscous wave equation than acoustic case with the
same parameters of the media and spatial steps.

4. Numerical dispersion of diffusive-viscous wave equation

In this section, we will first derive the numerical dispersion relation for the
diffusive-viscous wave equation, and then we will perform the dispersion analysis
numerically for the FD scheme (11) with comparison of acoustic case.

4.1. Derivations of numerical dispersion relation. The dispersive nature of
the waveforms can be examined by considering phase velocity as a function of
frequency or, equivalently, as a function of G (the number of grid points per wave-
length). The absence of dispersion would, of course, be characterized by phase ve-
locity that does not vary with frequency [1]. Expression for phase velocity based on
plane wave propagation of diffusive-viscous waves for the second-order FD scheme
is derived in the following.

To derive the dispersion relation, the harmonic plane wave in the form of (3) is
used again, and we substitute (3) into (11) and obtain

(28)

eiω(n+1)∆te−i(jhk̃ cos θ+mhk̃ sin θ)

= [2− 4a− γ(∆t)− 4b]eiωn∆te−i(jhk̃ cos θ+mhk̃ sin θ)

− [1− γ(∆t)− 4a]eiω(n−1)∆te−i(jhk̃ cos θ+mhk̃ sin θ)

− a{eiω(n−1)∆t[e−i[(j+1)hk̃ cos θ+mhk̃ sin θ] + e−i[(j−1)hk̃ cos θ+mhk̃ sin θ]

+ e−i[jhk̃ cos θ+(m+1)hk̃ sin θ] + e−i[jhk̃ cos θ+(m−1)hk̃ sin θ]]}

+ (a+ b){eiωn∆t[e−i[(j+1)hk̃ cos θ+mhk̃ sin θ] + e−i[(j−1)hk̃ cos θ+mhk̃ sin θ]

+ e−i[jhk̃ cos θ+(m+1)hk̃ sin θ] + e−i[jhk̃ cos θ+(m−1)hk̃ sin θ]]}

where θ is the angle between the direction of propagation and the x-axis.
After some complex algebra operations, (28) finally becomes

(29)
−4 sin2 ω∆t

2
= (e−iω∆t − 1)[γ(∆t) + 4a(sin2 k̃h cos θ

2
+ sin2 k̃h sin θ

2
)]

− 4b(sin2 k̃h cos θ

2
+ sin2 k̃h sin θ

2
)

Denoting by p = υ(∆t)
h and G = λ

h which is the number of grid points per wave-
length, then

(30)
kh

2
=

2π

λ

h

2
=
π

G

And the normalized phase velocity
Cp
υ is given as

(31)
Cp
υ

=
ω

k

1

υ
=
ω

k

∆t

ph
=
ωλ

2π

∆t

ph
=
ω∆t

2

G

πp

Where, λ is the wavelength, and Cp = ω
k is the phase velocity of the diffusive-viscous

wave equation.

Thus, the normalized phase velocity
Cp
υ varies with G, p and ω, but the angle

frequency ω is controlled by formula (29), which implies that we cannot obtain the
explicit expression of relationship between ω and θ. From the function point of
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view in formula (29), the angle frequency ω is the function of θ, determined by the
following implicit function W (ω, θ) as

(32)
W (ω, θ) = (e−iω∆t − 1)[γ(∆t) + 4a(sin2 k̃h cos θ

2
+ sin2 k̃h sin θ

2
)]

− 4b(sin2 k̃h cos θ

2
+ sin2 k̃h sin θ

2
) + 4 sin2 ω∆t

2

Substituting the expression of complex wavenumber of (4) and formula (30) into
(32), one gets

(33)

W (ω, θ) = (e−iω∆t − 1){γ(∆t) + 4a[sin2(
πh cos θ

G
+
iαh cos θ

2
)

+ sin2(
πh sin θ

G
+
iαh sin θ

2
)]} − 4b[sin2(

πh cos θ

G
+
iαh cos θ

2
)

+ sin2(
πh sin θ

G
+
iαh sin θ

2
)] + 4 sin2 ω∆t

2

where, α is the attenuation coefficient of diffusive-viscous waves, defined in (8).
According to the implicit function theorem [18], there exists a function ω = f(θ)

satisfying W [f(θ), θ] = 0. However, it is impossible to obtain the exact expression of
the function ω = f(θ) from (29), here we resort to gain the approximate relationship
between ω and θ using the least square method as

(34) min |W (ω, θ) |2θ=fixed value ⇒ ω ≈ f(θ)

The minimization problem (34) means that we find the values of ω when the
function W (ω, θ) reach a minimum at fixed values of θ. So, we can obtain a series
of values of ω when θ takes a certain range of values. From (29), (31)-(34), we can

see that the normalized phase velocity
Cp
υ varies with θ and G, p. Therefore, from

the function point of view in formula (31), it can be rewritten as

(35) Ycp(G, θ, p) ≈ f(θ)
∆t

2

G

πp

In formula (35) we have denoted
Cp
υ by Ycp(G, θ, p).

In the case of acoustic waves, the numerical dispersion relation can be easily
obtained from (29) with γ = η = 0. That is

(36) sin2 ω∆t

2
= b(sin2 kch cos θ

2
+ sin2 kch sin θ

2
)

In this case, kc = ω
υ , α = 0. Then, the normalized phase velocity for acoustic wave

equation can be obtained from (30) and (36) as

(37)
Ccp
υ

=
G

pπ
arcsin

√
b[sin2(π cos θ

G ) + sin2(π sin θ
G )]

Where, Ccp is the phase velocity of acoustic wave.
From (29) and (36), we can clearly see that the dispersion relation of diffusive-

viscous wave equation is much more complex than that of acoustic case, and it
significantly depends on the diffusive and viscous attenuation parameters γ and
η, which are determined by the properties of the media. And we can not ob-
tain the explicit expression of phase velocity of diffusive-viscous wave equation but
the explicit expression of phase velocity of acoustic wave equation can be easily ob-
tained. Thus, there are some differences of numerical dispersion properties between
diffusive-viscous waves and acoustic waves for second order FDM.
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4.2. Numerical dispersion analysis. In this section, we will present the nu-
merical dispersion curves of the diffusive-viscous waves for second order FDM by
comparing those of acoustic case using the method that we presented in the pre-
vious section. And we will investigate the effects that the stability parameter p,
the angle θ, the number of grid points per wavelength G and the parameters of the
media have in the numerical dispersion.

Table 1 describes the parameters of the three types of media. Figure 2, Figure
4 and Figure 6 show the numerical dispersion results of second order FDM for the
diffusive-viscous wave equation with comparison of those of acoustic waves (see
Figure 3, Figure 5 and Figure 7) in three medium (dry sandstone, water-saturated
and oil-saturated rocks) with p = 0.496, p = 0.6125 and p = 0.406, respectively.
Therefore, from those results we can draw some conclusions as:

1) The dispersion is greatest when the wave propagates parallel to the grid (θ = 0
degree);

2) The dispersion is smallest if we take a time step close to the stability condi-
tion (see Figure 4 and Figure 5), which indicates that it should be made as large
as possible to minimize dispersion and the maximum value is determined by the
stability limit of (26) and (27);

3) A minimum of 10 nodes per wavelength is recommended to achieve accurate
results for second order FDM;

4) Angle frequency decreases with the number of grid points per wavelength for
both cases of diffusive-viscous waves and acoustic waves (see Figure 2(a) - Figure
7(a));

5) The numerical dispersion of second order FD scheme is inversely proportional
to the number of grid points per wavelength for both cases of diffusive-viscous waves
and acoustic waves (see Figure 2(b) - Figure 7(b));

6) The numerical dispersion of second order FD scheme increases with the angle
(0-45 degrees) between the direction of wave propagation and x-axis for both cases
of diffusive-viscous waves and acoustic waves (see Figure 2(c) - Figure 7(c));

7) However, the numerical dispersion of diffusive-viscous waves is smaller than
that of acoustic waves with the same time and spatial steps because of their dif-
ferent stability limits, and it requires a smaller time step for diffusive-viscous wave
equation than acoustic case with the same spatial step and the same parameters of
the media. We note that the results of 1)-3) are consistent with the conclusions in
[1].

Table 1. Parameters of medium

medium υ /(m/s) γ /Hz η /(m2/s)

dry sandstone 1190 56 0.056
water-saturated rock 1470 90 0.2

oil-saturated rock 1015 65.4 0.0147

5. Conclusions

We present the stability condition and numerical dispersion relation of the diffusive-
viscous wave equation for second order FDM, and further analyze the numerical
dispersion properties by comparing the results of acoustic case. The results show
that the stability limits are different for diffusive-viscous wave equation and acous-
tic wave equation, and it requires a smaller time step for the diffusive-viscous wave
equation than acoustic case with the same parameters of the media. Moreover, we
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Figure 2. (a) Angle frequency varies with the angle θ between the
direction of wave propagation and x-axis, (b) Normalized phase
velocity Cp/υ varies with the angle θ and (c) Normalized phase
velocity of second order FDM as a function of the sampling ratio
G, with angles of 0, 15.06, 30.12, and 44.82 degrees. Those re-
sults are obtained in dry sandstone medium for diffusive-viscous
wave equation with p = 0.496. The time step is controlled by the
stability condition (26).

(a) (b) (c)

Figure 3. (a) Angle frequency varies with the angle θ between the
direction of wave propagation and x-axis, (b) Normalized phase
velocity Ccp/υ varies with the angle θ and (c) Normalized phase
velocity of second order FDM as a function of the sampling ratio G,
with angles of 0, 15.06, 30.12, and 44.82 degrees. Those results are
obtained in dry sandstone medium for acoustic wave equation with
p = 0.496. The time step is controlled by the stability condition
(27).

obtain the same conclusions published in the literature for both cases. However, the
numerical dispersion of the diffusive-viscous waves is smaller than that of acoustic
waves with the same time and spatial steps due to its more restrictive stability
condition. Finally, we bear in mind that more dispersion may arise from boundary
conditions, irregular grids, or heterogeneities in the medium in practical applica-
tions. The results of this paper provide a better understanding of the numerical
dispersion and stability properties of FDM for the diffusive-viscous wave equation.
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(a) (b) (c)

Figure 4. (a) Angle frequency varies with the angle θ between the
direction of wave propagation and x-axis, (b) Normalized phase
velocity Cp/υ varies with the angle θ and (c) Normalized phase
velocity of second order FDM as a function of the sampling ratio
G, with angles of 0, 15.06, 30.12, and 44.82 degrees. Those results
are obtained in water-saturated medium for diffusive-viscous wave
equation with p = 0.6125. The time step is controlled by the
stability condition (26).

(a) (b) (c)

Figure 5. (a) Angle frequency varies with the angle θ between the
direction of wave propagation and x-axis, (b) Normalized phase
velocity Ccp/υ varies with the angle θ and (c) Normalized phase
velocity of second order FDM as a function of the sampling ratio
G, with angles of 0, 15.06, 30.12, and 44.82 degrees. Those results
are obtained in water-saturated medium for acoustic wave equa-
tion with p = 0.6125. The time step is controlled by the stability
condition (27).
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