
Journal of Computational Mathematics

Vol.41, No.6, 2023, 1093–1116.

http://www.global-sci.org/jcm

doi:10.4208/jcm.2202-m2021-0324

A FAST FREE MEMORY METHOD FOR AN EFFICIENT
COMPUTATION OF CONVOLUTION KERNELS*

Matthieu Aussal and Marc Bakry1)

Ecole Polytechnique (CMAP), INRIA, Institut Polytechnique Paris, Route de Saclay 91128,

Palaiseau, France

Email: matthieu.aussal@polytechnique.edu, marc.bakry@polytechnique.edu

Abstract

We introduce the Fast Free Memory method (FFM), a new implementation of the Fast

Multipole Method (FMM) for the evaluation of convolution products. The FFM aims at

being easier to implement while maintaining a high level of performance, capable of han-

dling industrially-sized problems. The FFM avoids the implementation of a recursive tree

and is a kernel independent algorithm. We give the algorithm and the relevant complex-

ity estimates. The quasi-linear complexity enables the evaluation of convolution products

with up to one billion entries. We illustrate numerically the capacities of the FFM by solv-

ing Boundary Integral Equations problems featuring dozen of millions of unknowns. Our

implementation is made freely available under the GPL 3.0 license within the Gypsilab

framework.

Mathematics subject classification: 65T50, 65Z05, 65R20.

Key words: Convolution product, Fast multipole method, Boundary integral equations,

Open-source.

1. Introduction

The numerical computation of convolution products is a crucial issue arising in many do-

mains like the filtering, the computation of boundary integral operators, optimal control, etc.

In a continuous framework, a convolution product is of the form

v(x) =

∫

Ω

G(x, y)u(y) dΩy, (1.1)

where Ω is some domain of integration in Rd, d ∈ N⋆, u some function. The bivariate function

G(. , .) is some convolution kernel of the form

G(x, y) = G(x − y, |x− y|), (1.2)

where | . | is the euclidean distance. Of course, Eq. (1.1) does not admit an analytical expression

in the general case and the integral is computed numerically using, for instance, a quadrature

rule. Assuming we want to evaluate v on a finite set of nodes X = (xi)i∈[[1,NX]], we have

v(xi) ≈
NY
∑

j=1

ωj G(xi, yj)u(yj), (1.3)

* Received November 16, 2021 / Accepted February 16, 2022 /

Published online July 26, 2022 /
1) Corresponding author

1094 M. AUSSAL AND M. BAKRY

where (ωj)j∈[[1,NY]] and Y = (yj)j∈[[1,NY]] are respectively the weights and nodes of such

a quadrature. The discrete convolution may be recast as a simple matrix-vector product

v = G ·W · u, (1.4)

where u = (uj)j = (u(yj))j , v = (vi)i = (v(xi))i, G = G(xi, yj)){i,j} and W = diag((ωj)j)

(we omit W in the following). Obviously, the matrix G is dense. Therefore, the memory

footprint and computational cost grow quadratically. The computation of (1.4) is constrained

to smaller problems (NX , NY ≈ a few thousand) on personal computers and smaller servers,

and to NX , NY ≈ 106 for industrial servers.

The current approach is to perform the computation approximately up to a given tolerance

ε (accuracy). In the past thirty years, multiple so-called acceleration methods have been pro-

posed. The entries of G can be seen as the description of an interaction between a source set

of nodes Y and a target set of nodes X . Thus all blocks of G describe the interaction between

a source subset of Y and a target subset of X . Theses interactions may be compressible, i.e.

it admits a low-rank representation. This is the case, for example, when two subsets are far

enough following an admissibility criterion. The methods mentioned in the following propose

different alternatives on the way the interactions are characterized and computed. The standard

way is probably the Fast Multipole Method (FMM) developed by L. Greengard and V. Rokhlin

(see [13]), initially introduced for the computation of the gravitational potential of a cloud of

particles. Later versions feature the support of oscillatory kernels like the Helmholtz Green

kernel. One major drawback is that the implementations are mostly kernel-specific despite

recent advances in the domain. We refer to [14] for more details. In 1999, a new approach

named Hierarchical matrices (H-matrices) was introduced by S. Börm, L. Grasedyck and W.

Hackbusch. This method is based on the representation of the matrix by a quadtree whose

leaves are low-rank or full-rank submatrices. A strong advantage in favor of hierarchical ma-

trices is that a complete algebra has been created: addition, multiplication, LU-decomposition,

etc. Unfortunately, H-matrices become less effective for strongly oscillating kernels because

the rank of the compressible blocks increases with the frequency of the oscillations. For more

details and a complete mathematical analysis, we refer to [1, 6]. A recent compression method

is the Sparse Cardinal Sine Decomposition (SCSD) proposed by F. Alouges and M. Aussal

in 2015 [15]. It is based on a representation of the Green kernel in the Fourier domain us-

ing the integral representation of the cardinal sine function. One major advantage is that the

matrix-vector product is performed without partitioning of the space. However, there is no

corresponding algebra. More recently, we find skeletonization techniques like the Hierarchical

Interpolative Factorization [30]. All the aforementioned methods aim at having a quasi-linear

memory footprint and computational complexity.

In this paper, we present a simplified implementation of the well-known FMM algorithm

which we call the Fast Free Memory method (FFM). The FFM aims at being easier to implement

and enabling a high level of versatility without compromising too much on the performance.

The purpose of this method is not to compete with the high-performance industrial FMM but

rather to provide a good and well-performing academic tool still capable of dealing with very

large problems with dozen of millions of entries. Unlike the FMM, there are no communications

between levels of the octree (there are no L2L or M2M operators): only a downward “implicit”

tree traversal is performed. It makes use of the Non Uniform Fast Fourier Transform algorithm

when the convolution kernel is oscillating, and the Lagrange interpolation in the other case.

Consequently, it is easy to support a new kernel in an already-existing implementation. The

A Fast Free Memory Method for an Efficient Computation of Convolution Kernels 1095

complexity remains quasi-linear for non-oscillatory kernels or for oscillatory kernels when the

nodes are scattered in a volume. In the case of nodes scattered over a surface, we show that the

oscillating FFM has a O(N3/2 · log2(N) complexity. In practice, linear or quasi-linear com-

plexity is achieved. Moreover, computations with hundred of millions of nodes are performed

on laboratory-sized servers. A reference implementation written in the Matlab programming

language is provided under the GPL 3.0 license within the Gypsilab framework. We divide

this paper in three parts. In the first part, we develop the FFM algorithm for standard ker-

nels. We take as examples the Laplace and Helmholtz kernels. We point out the differences

with a reference implementation of the FMM. In the second part, we prove the memory and

computational complexity estimates. In the last part, we illustrate the functioning of the FFM

on various examples including academic and industrially-sized problems with millions of nodes,

up to one billion.

2. The FFM Algorithm

Like the FMM, the FFM is a divide-and-conquer method. A typical example of the main

loop of the algorithm is given on Algorithm 2.1 and reflects the implementation which can be

found in the file ffmProduct.m in the subfolder openFfm/ at [21]. It is based on two partitioning

trees (one for the source and one for the target set) just like the one used in the FMM (see for

example [29] and Fig. 2.1).

The basic idea is that the interaction between subsets of nodes sufficiently far one from

another admit a low-rank representation. The space is therefore partitioned using two octrees

(see Fig. 2.1) obtained by successive refinements of the bounding boxes of the initial source and

target set of nodes. At each level of refinement, boxes far from each other (following a given

criterion) correspond to compressible interactions. The other boxes are further subdivided and

yield in turn low-rank and non-compressible interactions. When the matrices corresponding to

the non-compressible interactions are small-enough, a full computation is performed. For more

details, we refer to the bibliography.

Fig. 2.1. Representation of the octree used in the FFM with three levels of refinement.

Remark 2.1. Regarding the implementation of the algorithm described thereafter, it is im-

portant to notice that everything is computed inline. There is absolutely no pre-computation

since the purpose is to spare as much memory as possible.

1096 M. AUSSAL AND M. BAKRY

2.1. The kernel-independent FFM

In this subsection, we describe the compression method for the kernel-independent matrix-

vector product. We first describe the initialization. Then, we explain how the kernel-independent

matrix-vector product is computed using a well-known Lagrange-interpolation method. We

show how the user can choose the compression method when dealing with the particular case

of the Helmholtz Green kernel. Finally, a stopping criterion is proposed. In the following, we

reuse the previous notations and we introduce l as the depth of the octree. The case l = 0

corresponds to the root and l = lmax is the maximum allowed depth.

The initialization (l = 0) is performed easily by computing the bounding boxes for X and

Y . Let dX,max and dY,max be the maximum edge length of X , resp. Y , then the initial length

for both bounding boxes is

d0 = max(dX,max, dY,max). (2.1)

The initial bounding box for each set is simply a cube enclosing X , resp. Y , with edge length

d0. At the depth l in the octree, the edge length of the bounding boxes is simply dl = d0/2
l.

The kernel-independent FFM may be seen as a H2-matrix-vector product on-the-fly where

the binary tree (see [31], chapter 3) has been replaced by an octree, see for example [23, 29].

We suppose that the current refinement level is l ∈ [[1, lmax]]. We consider only one interaction

between a box of the source tree and a box of the target tree. We try to perform a low-rank

approximation if the distance between their centers is greater than two-times the edge length

of a box. Let m be the number of nodes in the target box and n be the number of nodes in the

source box, the compressed product is performed using a bivariate Lagrange interpolation, see

for example [19] or the chapters related to the H2-matrices in [1]. The principle of the Lagrange

interpolation is to approximate the convolution kernel like

G(x, y) ≈
rX
∑

i=1

Li(x)
rY
∑

j=1

G(xc,i, yc,j)Lj(y), (2.2)

where

• {xc,i}i and {yc,j}j are the target and source control nodes for the Lagrange polynomials.

Following [19, 22], the best interpolation nodes are the Chebyshev nodes.

• Li(x), resp. Lj(y) are the Lagrange polynomials defined as the tensorization of the one-

dimensional Lagrange polynomials in each direction of the space and localized at the

control nodes.

• rX and rY are the ranks of the interpolation for the target and source variables. If

rX,d, rY,d are the rank of the interpolation in the direction d, then rX =
∏3

d=1 rX,d and

rY =
∏3

d=1 rY,d. For a prescribed accuracy ε on the interpolation, these ranks depend

on the size of the interpolation domain (in other words: the size of the bounding boxes)

and on the regularity of the kernel being interpolated (see for example Theorem 4.16

in [31] for one-dimensional polynomials). Since we build the multi-dimensional Lagrange

polynomials as a tensorization of one-dimensional polynomials, the ranks rX and rY are

bounded above by the maximum rank encountered for the interpolation at the top of the

tree and we have set

rX ≡ rY ≡ r ≡ (r1)
3 (2.3)

A Fast Free Memory Method for an Efficient Computation of Convolution Kernels 1097

in the FFM framework where r1 is the maximum rank of the one-dimensional interpola-

tions.

Remark 2.2. In the FFM, the one-dimensional Lagrange interpolators are computed by com-

puting each of the Lagrange polynomials, but it may eventually be improved following the

choice made in [23].

The interpolated matrix-vector product can be therefore recast as

v ≈ LT
X ·

(

T · (LY · u)
)

, (2.4)

where

• u is the source vector whose entries are localized at the nodes contained within the source

box.

• LY : r× n, resp. LX : r ×m, is the interpolation matrix whose entries are the Lagrange

polynomials localized at the source, resp. target, control nodes evaluated at the source,

resp. target, nodes.

• T : r × r is the transfer-matrix whose entries are the kernel evaluated for each possible

couple of target and source control node.

However, r is not necessarily low and T can be further compressed using the Adaptive Cross

Approximation, see [5], such that

T ≈ A ·BT , (2.5)

where A : r× rT and B : r× rT such that rT ≪ r. Finally, the Lagrange interpolation consists

in four successive matrix-vector products such that

v ≈ LT
X ·

(

A ·
(

BT · (LY · u)
))

. (2.6)

As the rank r depends on the kernel, it may increase unacceptably when dealing with

oscillatory kernels because the polynomial order must be high to fit the oscillations in the sub-

domains. In that case, it is beneficial to use kernel-specific compression method as illustrated

in the next subsection.

2.2. The case of oscillatory kernels

In this section, we illustrate the change of compression method for the special case of the

Helmholtz Green kernel

G(x, y) =
1

4π

eik|x−y|

|x− y| , (2.7)

where k ∈ [0,∞[is the wavenumber. A test is performed on the value of k · dl to determine

whether the low-rank interaction is oscillating. For example, the evaluation of the Helmholtz

kernel (2.7) for two nodes xi and yj sufficiently close can be detected as non-oscillating because

the value of k · |xi − yj| is small. In this case, we use the Lagrange interpolation instead of

a specific low-frequency FMM (see [11] or [12]). In the other case, we approximate the kernel

using its Gegenbauer-series expansion like in the FMM.

1098 M. AUSSAL AND M. BAKRY

Let x0, resp. y0, be the center of the target, resp. source, box, then

x− y = (x− x0) + (x0 − y0) + (y0 − y), (2.8)

which can be reformulated like

r = r0 + rxy, (2.9)

where r0 = x0 − y0. Let also S2 be the unit sphere in R3, then following for example [17]

eikr

r
= ik lim

L→∞

∫

S2

eikŝ·rxyTL,r0(ŝ) dŝ, (2.10)

where r = |x− y| and TL,r0(ŝ) is the Gegenbauer series such that

TL,r0(ŝ) =
L
∑

p=1

(2p+ 1)ip

4π
h(1)
p (k r0)Pp(ŝ · r̂0), r̂0 = r0/|r0|, r0 = |r0|, (2.11)

where h
(1)
p is the spherical Hankel function of the first kind and of order p, Pp is the Legendre

polynomial of order p. In practice, (2.11) is truncated at the rank

L = ⌊k ·
√
3 · dl − log(ε)⌋, (2.12)

where dl is the size of the edge of the bounding box and ε is the prescribed accuracy on the

matrix-vector product, see [18]. The integral (2.10) is computed using a spherical quadrature

{ωq, ŝq}q∈[[1,nQ]] such that, for two nodes xi and yj ,

eik|xi−yj |

|xi − yj|
≈ ik

nQ
∑

q=1

eikxi·ŝq
((

ωqTL,r0(ŝq)e
ikr0·ŝq

)

e−ikŝq ·yj
)

. (2.13)

While it is worth noticing that any spherical quadrature is suitable in (2.13), we chose the

following rule:

1. Compute the Gauss-Legendre quadrature {ωg, xg} on [0, 1] of order L given by (2.12)

where ωg and xg are the weights and nodes.

2. Compute the ”elevation angle” nodes and weights using

θg = arccos(2xg − 1)− π

2
, ωθg = 2ωg (2.14)

in reversed order (in other words the first element θg corresponds to the last xg). Compute

the nϕ = 2L+ 1 azimutal evenly spaced quadrature nodes such that the i-th quadrature

node is

ϕg,i = (i − 1)
2π

nϕ
, ωϕg,i =

2π

nϕ
, i ∈ [[1, nϕ]]. (2.15)

3. The spherical quadrature is obtained as a tensorization of the elevation and azimuthal

quadratures computed at the steps 2 and 3.

The computation is therefore recast as three successive matrix vector products

v ≈ Fŝ→X ·
(

TL,r0 · (FY →ŝ · u)
)

, (2.16)

where

A Fast Free Memory Method for an Efficient Computation of Convolution Kernels 1099

• FY→ŝ is the densematrix representing the discrete non-uniform forward Fourier transform

from the source set to the Fourier domain such that

ũq =
n
∑

j=1

e−ikŝq ·yjuj. (2.17)

• TL,r0 is the transfer diagonal matrix whose entries contain the value of Gegenbauer series

evaluated at ŝq such that

ṽq = ik ωq

(

TL,r0(ŝq)e
ikr0·ŝq

)

ũq. (2.18)

• Fŝ→X is the dense matrix representing the discrete non-uniform backward Fourier trans-

form from the Fourier domain to the target set such that

vi =

nQ
∑

q=1

eikxi·ŝq ṽq. (2.19)

Of course, the Fourier-operators FY→ŝ and Fŝ→X are never assembled and the Fourier trans-

forms are computed using the corresponding Non-Uniform Fast Fourier Transform (NUFFT)

introduced by A. Dutt and V. Rokhlin [8], later improved by Greengard [9]. We refer to these

papers for a complete analysis of the algorithm.

Remark 2.3. In the FMM, the Fast Fourier Transforms are computed at the deepest level in

the trees, forcing a back-propagation in the octree. In the FFM, they are performed on-the-fly

enabling a downward-only algorithm in the sense that only a downward pass of the tree is

performed.

Stopping criterion. The recursive partitioning is stopped whenever one of the following is

verified:

• any compressible interaction has been computed,

• the average number of nodes in the boxes is below some value.

The remaining non-compressible interactions, if any, are computed as a dense matrix-vector

product.

Comparison with a reference implementation of the Fast Multipole Method. We

recall below the main steps of the FMM fmm3dlib available at [25]. According to the source

code, these steps are

1. assign the source nodes to boxes and compute multipole expansions,

2. compute local expansions or evaluate directly,

3. merge multipole expansions (this is the end of the upward pass),

4. convert multipole expansions to local expansions,

5. split local expansions,

1100 M. AUSSAL AND M. BAKRY

6. for the target node, evaluate multipole expansions or evaluate directly,

7. evaluate the local expansions,

8. evaluate the direct interactions.

Algorithm 2.1. The main FFM loop

Input: X , Y , u (input vector), ε (rel. accuracy), k

Output: v = G · u up to ε

v← 0

% initialize the root boxes. The octrees are not recursively implemented.

[Xmin, Xmax, Ymin, Ymax]← [min(X), max(X), min(Y), max(Y)]

el ← 1.01 ·max(Xmax −Xmin, Ymax − Ymin) ⊲ Maximum edge length

[Xctr, Yctr]← [Xmin + el/2, Ymin + el/2] ⊲ Centers of the X and Y boxes

[Xind, Yind]← [1 : NX , 1 : NY]

Xboxes ← initBoxes(Xctr, Xind, X) ⊲ Init. the boxes with their data

Yboxes ← initBoxes(Yctr, Yind, Y)

% initialize the list of interactions

LlX×Y = [1, 1] ⊲ only two boxes at step 0

% now the main loop

while length(LX×Y) > 0 & average(Xboxes) > 100 & average(Yboxes) > 100 do

% subdivides the boxes

Xboxes ← subdivide(Xboxes) ⊲ subdivide target tree

Yboxes ← subdivide(Yboxes) ⊲ subdivide source tree

el ← el/2

% compute the list of compressible and non-compressible interactions

[LlX×Y ,Llfar]← computeFarInteractions(LlX×Y)

% compute the compressible (far) interactions if any

if length(Llfar) > 0 then

if the interactions are computable using the Gegenbauer series

if isHighFreqency(k, el, ε) then

% here, we use the Non Uniform Fast Fourier Transform

v← v+ computeHighFrequency(u, k, ε, Llfar, Xboxes, Yboxes, X , Y)

else

% here, we use the Lagrange interpolation

v← v+ computeLowFrequency(u, ε, Llfar, Xboxes, Yboxes, X , Y)

end if

end if

now we can go to the next level

end while

% we deal with remaining non-compressible interactions if any

if length(LlX×Y) > 0 then

v← v+ computeFullProduct(u, k, ε, LlX×Y , Xboxes, Yboxes, X , Y)

end if

% the end

return v

A Fast Free Memory Method for an Efficient Computation of Convolution Kernels 1101

The only common steps with the FMM are step 1. (computation of the octree) and step 8.

(computation of the direct interactions). In the FFM, the computations of the octree and of the

interactions are merged together at each level of subdivision of the source and target sets. The

computation of the compressible interactions is performed in a much simpler manner thanks to

the NUFFT algorithm or Lagrange interpolation.

3. Complexity Analysis

In this section, we prove the O(N) storage complexity and the O(N · log(N)) computational

complexity of the kernel-independent FFM, where N = max(NX , NY). Then, we deal with

the case of the Helmholtz Green kernel. To that purpose, we assume that each set X or Y

consists in an uniform distribution of nodes in a cube. The case of surface node-distributions

is eventually tackled as a particular case.

3.1. Complexity of an octree

We recall here some general well-known results on space partitioning trees. Assuming d0
is the length of the edge of the root bounding box, the bounding boxes at level l have the

edge length dl = d0/2
l. They contain (in average) n = N/8l nodes. Consequently, assuming

uniformly distributed nodes, there are 8l non-empty boxes and the depth of the octree is

lmax = ⌊log8(N)⌋ in average. The construction of the tree itself requires O(N · log8(N))

operations. In general, the required storage is also O(N · log8(N)) but it is O(N) in the

FFM framework because we store only the data needed at the current depth. For the sake of

simplicity, we assume that the boxes contain exactly N/8l nodes as it does not modify the

overall estimate.

The particular case of surface distributions. We emphasize the fact that using an oc-

tree to subdivide evenly distributed nodes on a surface amounts to consider a plane surface

partitioned using a quadtree as illustrated on Fig. 3.1.

Fig. 3.1. Illustration of the subdivision of a surface using an octree.

1102 M. AUSSAL AND M. BAKRY

Consequently, we replace the 8 by 4 in the aforementioned results: the depth of a quadtree

for uniformly distributed nodes is ⌊log4(N)⌋ in average, etc.

Remark 3.1. For the sake of simplicity, the subscript for the log indicating the type of the

logarithm is omitted whenever it is not required for the comprehension.

3.2. Complexity estimates for the kernel-independent FFM

We prove here the storage and computational complexity for the kernel-independent version.

We consider here any kernel of the form (1.2) as long as N does not depend on any kernel-

related parameter like a wavenumber (we refer to the next Section 3.3 on the particular case

of oscillating kernels). Since the FFM is a downward-only (downward tree traversal only)

algorithm, we can discard data stored at the parent level in the tree. This minimal storage

requirement leads to the following proposition.

Proposition 3.1. The storage complexity of the FFM is O(N) and the computational com-

plexity is O(N · log(N)).

Proof. Before we prove the estimates, we make some preliminary remarks. We first empha-

size that the interpolation step for each of the source set, resp. target, is performed only once

for all the corresponding subsets. Second, we drive the attention to the fact that, while there

should be many interpolations to compute, most of the transfers are the same. This is a con-

sequence of, first the translation invariance of the kernel, and second the previous assumption

that the target and source root boxes have exactly the same size (see subsection 2.1 and eq.

(2.1)). On Fig. 3.2, the two transfers (arrows) represented between the boxes from the source

tree (full lines) and the target tree (dotted) have the same transfer matrix which is computed

only once.

Fig. 3.2. Example of two equivalent transfer steps.

In fact, the amount of different translations is uniquely determined by the initial configu-

ration of the root bounding boxes as illustrated in 2-dimension on Fig. 3.3. The left picture

corresponds to two overlapping quadtrees. In this very particular case, we enumerate all the pos-

sible low-rank interactions for the filled box at the depth 2 and we find 27. All the other boxes

are children of boxes involved in low-rank interactions at the previous level of refinement.

On the right configuration, the trees are shifted and the amount of possible interactions is

A Fast Free Memory Method for an Efficient Computation of Convolution Kernels 1103

Fig. 3.3. Space configuration of two three-leveled quadtrees in 2-dimension. Left: the quadtrees overlap.

Right: the quadtree are shifted. Very thick line: level-0, thick line: level-1, thin line: level-2. Fully

colored cell: bounding box for which we want to determine the low-rank interactions, dotted cells:

closest possible interactions with the cully colored cell, striped cells: possible low-rank interactions at

the given level.

now 48. This number corresponds to the total number of transfer matrices which needs to be

computed at the current depth l; it does not depend on l.

1. Let r1 be the number of control nodes for the Lagrange interpolation in each direction

of space, then r = r31 is bounded above by a value independent on N (see 2.1). Let

nY = NY /8
l and nX = NX/8l, then the storage requirement for the first interpolation is

O(nY · r) = O(nY) per interpolation matrix. Since there are as many matrices as there

are boxes in the tree at level l, the storage requirement is then 8l · O(nY) = O(NY).

The interpolation consists in 8l matrix-vector products, each of them of size r× nY . The

computational complexity of the complete Lagrange interpolation of the source set for

any l is therefore O(NY).

2. Let NT be the maximum number of unique transfers (see again Fig. 3.3), the storage

and the computation of these matrices are each O(1) as the number and the sizes of the

transfer matrices do not depend on NY nor NX . Each interpolated source vector is

then multiplied at most NT-times by a transfer matrix whose size is independent on NX

or NY . Consequently, this transfer step has O(N) complexity for the storage and the

computational complexity where we recall that N = max(NX , NY). The result of this

transfer step is a set of “transferred vectors”.

3. Finally, the last interpolation is performed in two steps:

(a) The construction of the interpolation matrices for the target set has the same com-

plexity as for the source set, i.e. it is O(NX).

(b) The computation of the target set of interpolations consist in assembling the “interpo-

lation matrix”-“transferred vector” for each of the NT ·8l “transferred vector”. This

step should be performed at most NT times for each of the target i.e. NT · 8l-times.

1104 M. AUSSAL AND M. BAKRY

Therefore, the second interpolation step has the same complexity as the step 1, i.e. it is

O(NX) in storage and computational complexity.

To these costs, we must add the worst case cost of the construction of the octrees which

is O(N · log(N)) and of the non-compressible interactions which is linear because the maxi-

mum number of close interactions for one node is bounded by the number of nodes per leaves

multiplied by the number of neighbours, which is bounded.

We conclude that the storage requirement for the FFM is O(max(NX , NY)). Regarding the

computational requirement, the worst case consists in performing the interpolation lmax-times.

We conclude that the computational cost for the complete FFM product is O(N · log(N)). �

Remark 3.2. These complexity estimates do not depend on whether the nodes are evenly

distributed in a volume (octree-based partitioning) or on a surface (equivalent quadtree-based

partitioning). By evenly distributed, it is meant that the distance from one node to its closest

neighbor is approximately the same for all nodes in the set.

3.3. Complexity estimates for the oscillating kernels

In the previous subsection 3.2, we proved very general estimates. When dealing with os-

cillating kernels, one must introduce the notion of wavelength λ and of ”discretization” per

wavelength. Let ∆x be the average distance between two nodes,

k ·∆x = O(1), (3.1)

where we recall that k = 2π/λ is the wavenumber. In the following, we assume that k ·∆x = 1,

meaning that there are approximately six nodes per wavelength. This is fundamentally different

from the generic case as the number of nodes in a given volume depends explicitly on k. We

assume in the following that k is accordingly adjusted as a function of N .

In the FFM, we use a three-dimensional type-3 NUFFT1) . Following the companion paper

[7] of one of the latest development in this field, the transform is performed in four steps:

0. The gridding step consists in creating the regular grid on which the input data will be

spread on step 1.

1. The data is spread from the original nodes to the regular grid using a spreading-kernel.

2. A type-2 NUFFT1) is performed.

3. The output data is corrected in order to compensate for the spreading.

The number of nodes in the grid in each direction may be computed using the formula (3.23)

given in [7]

ni =
2σ

π
XiSi + ⌈| log10(ε)|⌉+ 1 (3.2)

where σ is some constant upsampling factor, Xi is the largest extent in the direction i in the

“physical space”, and Si is the largest extent in the Fourier space. In most applications, Xi

does not depend on the number of nodes and it is assumed so in the following. By looking at

1) A type-2 NUFFT is a uniform to non-uniform NUFFT. A type-3 NUFFT is a non-uniform to non-uniform

NUFFT. See [9]

A Fast Free Memory Method for an Efficient Computation of Convolution Kernels 1105

(2.17), it appears that elements in the Fourier space are distributed over a sphere with radius

k which depends on N implying that Si = k. Since this dependence is not the same whether

the nodes are distributed in a volume or over a surface, we treat both cases in two different

subsections.

3.3.1. Nodes evenly distributed in a volume

Proposition 3.2. The storage complexity for the oscillating FFM when the nodes are evenly

distributed in a volume is O(N) and the computational complexity is O(N · log2(N)).

Proof. The proof is very similar to the proof of Proposition 3.1. We first remark that

the NUFFT is based on the Fast Fourier Transform which has a O(max(nQ, nY)) storage

requirement and a O(max(nQ, nY)) · log(O(max(nQ, nY))) computational complexity where we

recall that nQ is the number of nodes in the spherical quadrature (see 2.2) and that nY = NY /8
l

(see proof of 3.1). The first step is to evaluate the value of ni introduced in Eq. (3.2). Following

the hypothesis k ·∆x = 1, we have that

N ∼
(d0
∆x

)3

⇔ k ∼ N1/3, (3.3)

where ∼ means “is proportional to”. Consequently, ni grows like N1/3 and the total grid size

is n3
i = O(N). On the other side, we have

nQ = 2 · L · (L + 1), (3.4)

where L is given by (2.12) and nq is assumed small with respect toN . By substituting dl = d0/2
l

and expanding nQ, we obtain

nQ = A

(

k

2l

)2

+B

(

k

2l

)

+ C, (3.5)

where A,B,C are constants. Finally,

nQ = A
N2/3

4l
+B

N1/3

2l
+ C (3.6)

meaning that nQ = O(N2/3). We detail now the complexity of each step:

1. Following the previous remark on the gridding for the “volumic case”, the NUFFT has the

same complexity as the FFT. Therefore, the storage requirement for one NUFFT is O(ny)

meaning that the total storage requirement is O(NY). The total number of NUFFTs is 8l

and each has the computational complexity O(nY ·log(nY)). Since nQ < max(nY , nX), we

conclude that the storage complexity of the first step is O(N) and that the computational

complexity is O(N · log(N)).

2. The second step is a simple multiplication in the Fourier domain which is performed

NT · 8l-times on vectors of length nQ, see the proof of Proposition 3.1. By remarking

that 8l · nQ = O(N), we conclude that this step has a linear storage and computational

complexity.

3. The last step is the backward step of the first one. Consequently, we obtain exactly the

same complexities. �

1106 M. AUSSAL AND M. BAKRY

3.3.2. Nodes evenly distributed on a surface

Proposition 3.3. The storage complexity for the oscillating FFM when the nodes are evenly

distributed on a surface is O(N3/2) and the computational complexity is O(N3/2 · log2(N)).

Proof. In the particular case of surface distributions of nodes, we have k ∼ N1/2 and the

polynomial (3.5) becomes

nQ = A
N

4l
+B

N1/2

2l
+ C. (3.7)

This means that for surface distributions of nodes, nQ = O(N). Since the coefficients A,B,C

are all positive, we conclude that we always have nQ ≪ N . The size of the grid in each direction

is now ni = O(N1/2) and the total number of nodes in the regular grid is O(N3/2). We conclude

as in the proof of Proposition 3.3. �

Remark 3.3. It has been shown previously that the real cost of the NUFFT is O(N3/2 ·
log2(N)). Following [7] for example, it appears that the costliest step is the evaluation of the

spreading kernel which happens on the grid-points in the vicinity of the non-uniformly dis-

tributed points. This step is O(N) with eventually a large multiplicative constant depending

on the space-dimension. For smaller problem sizes, it is expected that the NUFFT behaves

nicely and that the complete algorithm behaves a little bit worse than O(N · log(N)) as illus-

trated in the next Section 4. However, from the memory point of view, O(N3/2) nodes are

allocated, mostly filled with 0.

4. Numerical Examples

In this section, we give examples of application of the FFM. Our implementation is written

in the MATLAB language. First we illustrate the estimates proven in the previous Section 3.

In a second time, we show how one can use the FFM to solve Boundary Integral Equations

iteratively and we solve two publicly available benchmarks in acoustic and electromagnetic

scattering. In the following and unless mentioned otherwise, the error is the relative error

defined by

ε =
|vref − vFFM|
|vFFM|

, (4.1)

where vref is the “exact” matrix-vector product and vFFM is the FFM product. When the

computation of the reference is impossible because of its quadratic complexity, a subset of 100

entries of the target set is randomly chosen. The computation time is measured using the tic

and toc functions of Matlab.

4.1. Scalability of the FFM

We first illustrate the scalability of the FFM by computing the convolution product where

the kernel is the Laplace Green kernel

G0(x, y) =
1

4π

1

|x− y| (4.2)

A Fast Free Memory Method for an Efficient Computation of Convolution Kernels 1107

Fig. 4.1. Source (red) and target nodes (blue).

or the Helmholtz Green kernel

Gk(x, y) =
1

4π

eik|x−y|

|x− y| . (4.3)

To that purpose, we pick randomly N source nodes and N target nodes on the unit sphere S2

centered at the origin as illustrated on Fig. 4.1.

Then, we simply compute the convolution product (1.4) with the FFM. For each of the

computations, the number of nodes is chosen by multiplying the number of the previous com-

putation by 2, starting from N = 512. For the Laplace kernel, the FFM is expected to perform

quasi-linearly using the kernel-independent version. For the Helmholtz kernel, the wavenumber

is adjusted to the number of nodes such that k · d ≈ 1 where d ≡ ∆x is the average distance

between nodes and ≈ means “close to”. This is the high-frequency regime where the FFM is

expected to perform like O(N3/2 · log2(N)) using the oscillatory approach. For both cases, the

scaling is compared to FMM library fmm3dlib-1.2 available on the personal web page of L.

Greengard [25].

Remark 4.1 (Warning!). Please note that the sole purpose of this comparison is to compare

the complexity. The CPU time and the RAM requirements are implementation-dependent

and only given as “markers”. We recall that the FMM is written in Fortran and the FFM in

Matlab. Moreover, the adaptive FMM in fmm3dlib-1.2 is for educational or research purposes

and is based, quoting the documentation, “on rotations and translation along the z-axis. For a

fully optimized code, plane wave-based operators should be used.”

We measure only the time taken by either the call to our ffmProduct() function or the call

to the L. Greengard’s code Matlab interface. The computation1) was performed on a server

on a single CPU core at 3.0 GHz, 512 GBytes of RAM and Matlab R2019a using double

1) The convolution product between two sets of nodes may be computed using the ffmProduct() function,

available within the open-source Gypsilab framework [21] in the ./openFfm directory. An example is provided

by running the nrtFfmBuilder.m script.

1108 M. AUSSAL AND M. BAKRY

Fig. 4.2. Comparison of the complexity between the FFM and the FMM for fixed k = 0. We recall

that the two implementations cannot be directly compared except for the computational complexity

as the FMM is implemented in Fortran and the FFM is fully implemented in Matlab.

precision floating point numbers. The relative accuracy for the FFM is set to ε = 10−6 which

yields the same relative accuracy as the parameter iprec=1 as defined in the documentation

of fmm3dlib-1.2 at [25]. The results for the case k = 0 are displayed on Fig. 4.2. The FFM

switches automatically to the Lagrange interpolation and we can observe that both algorithms

scale between (O(N)) and O(N · log(N)).

The results for the computation with k · d ≈ 1 are given on Fig. 4.3. Moreover, by setting

Ω the “longest dimension” of the geometry, which can also be seen as the maximum possible

length between two nodes (here Ω = 2 ·R where R = 1 is the radius of the sphere), the product

k · Ω describes the number of wavelength on the geometry). If this product has a low value,

Fig. 4.3. Comparison of the complexity between the FFM and the FMM for k · d ≈ 1.

A Fast Free Memory Method for an Efficient Computation of Convolution Kernels 1109

eventually much lower than 1, it corresponds to the low-frequency regime while a high value

corresponds to the high-frequency regime. It also means that interactions at the lower-levels of

the tree may be considered low-frequency while the interactions at levels closer to the root are

high-frequency. In our case, it ranges from k ·Ω ≈ 8 to k ·Ω ≈ 1500. These results clearly show

that the FFM is able to cover a large range of frequencies and that the scaling is comparable to

the FMM and lies between O(N · log(N)) and O(N · log2(N)), lower than the theoretical value.

The maximum memory requirement for both computations is given in Table 4.1. It is

estimated using the /usr/bin/time -v command provided by the operating system Ubuntu

Server. The memory requirement remains in an acceptable range, even at high frequencies.

The RAM used by Matlab is approximately 0.56 GBytes of the total amount.

Table 4.1: Maximum memory requirement for N = 224(= 16777216) in GBytes.

FFM FMM

k = 0 15.25 15.25

k · d ≈ 1 15.27 22.3

Parallelization of the FFM. The FFM can be parallelized quite naturally. Assuming Np

the number of parallel processes, both source and target sets are split in as many subsets. It is

equivalent to a block-representation of the original matrix with Np×Np sub-matrices. Finally,

each process computes a single line-block. We illustrate the parallelization for the Laplace

Green kernel

G(x, y) =
1

4π

1

|x− y| (4.4)

and for the Helmholtz Green kernel. The computations are performed on a 12 cores processor

at 2.9 GHz, 256 GBytes of RAM and Matlab R2017a using single precision accuracy. The

parallelization is performed using the spmd instruction (Single Process Multiple Dispatch) of

the Matlab Parallel Computing Toolbox. It is a very high-level overlay to MPI-like paral-

lelization: entering the spmd environment, the data is sent to all the parallel workers meaning

that there is no shared memory between them. Exiting the environment, the newly created

data is sent back to the main worker in a so-called Composite object. We refer to the official

documentation1) for more informations. The results for the Laplace kernel are gathered on

Table 4.2 for a prescribed accuracy ε = 10−3 on the matrix-vector product. We observe that

the computational scalability is close to linear since the ratio of two successive computation

times is close to 10 which is the multiplicative factor by which N is increased. More importantly

we are able to achieve a matrix-vector product with one billion of nodes in each of the source

and target set in less than four hours. In this last case, the memory peak is approximately 100

GBytes among which 40 GBytes are required for the storage of the coordinates of the nodes,

the input vector and the output vector.

The same experiment is repeated for the Helmholtz Green kernel. The results are given in

Table 4.3 with the corresponding maximum k · d value where d is the diameter of the sphere.

Remark 4.2. For smaller problem sizes, we notice that the parallel time is worse than the

single-threaded time. We do not have a rigorous explanation. However, it is possible that

1) https://fr.mathworks.com/help/parallel-computing/spmd.html

1110 M. AUSSAL AND M. BAKRY

Table 4.2: Summary of the computation time – Laplace kernel.

N Time 1 core (s) Time 12 cores (s) Speed-up Rel. error

104 2.04 9.08 0.22 8.03 · 10−5

105 9.30 17.1 1.84 1.34 · 10−4

106 87.8 33.4 2.63 1.35 · 10−4

107 1063 169 6.29 1.98 · 10−4

108 – 1499 – 1.81 · 10−4

109 – 11340 – 3.11 · 10−4

Table 4.3: Summary of the computation times – Helmholtz kernel.

N f (Hz) k · d
Time

1 core (s)

Time

12 cores (s)
Speed-up Rel. error

104 541 20 1.65 8.81 0.18 2.98 · 10−4

105 1893 70 16.2 16.3 0.99 1.69 · 10−4

106 5411 200 143 48.2 2.97 2.77 · 10−4

107 16234 600 1557 350 4.45 2.91 · 10−4

108 54113 2000 – 8246 – 3.52 · 10−4

it is a consequence of memory transfers since we do not have the possibility to tune directly

the memory. It could also be dependant on the Matlab version and the computer. Finally,

the choice for the parallelization may not be optimal. An implementation using a compiled

language like, C, C++ or Fortran should give a better insight on the situation.

4.2. Boundary Integral Equations and the FFM

Boundary Integral Equations can be obtained from certain equations describing, for ex-

ample, physical phenomena like the propagation of an acoustic or electromagnetic wave in a

homogeneous medium. We refer to [2] starting p. 110, or [3] starting p. 66, for more details on

how they are obtained. In order to explain how the FFM is used to solve such equations, we

consider the scattering of an acoustic wave propagating in an infinite medium by a scatterer

with boundary Γ on which we apply a Dirichlet boundary condition. This problem can be

tackled by solving the following Boundary Integral Equation

∫

Γ

G(x, y)λ(y) dγy = −ui(x), x ∈ Γ, (4.5)

where λ is some unknown, G(x, y) is the Helmholtz Green kernel (see (2.7)) and ui is the

incident wave. This equation may be solved using different method. Here we present shortly

the Boundary Element Method based on a Galerkin formulation. We introduce a test function

λ⋆ to obtain the Galerkin formulation of Eq. (4.5)

∫

Γ×Γ

λ⋆(x)G(x, y)λ(y) dγy dγx = −
∫

Γ

ui(x)λ⋆(x) dγx for all λ⋆. (4.6)

A Fast Free Memory Method for an Efficient Computation of Convolution Kernels 1111

We further introduce the discrete approximation spaces (λj)j∈[[1,N]] and (λ⋆
i)i∈[[1,N]] such that

λ(y) =
N
∑

j=1

uj · λj(y), (4.7)

λ⋆(x) =

N
∑

i=1

vi · λ⋆
i (x). (4.8)

There are multiple ways to deal with this singular integral. Here we integrate the double integral

using a Gauss-Legendre quadrature. The resulting inaccurate integration of the singularity

is tackled later. Let {ωg,k, xg,k}k∈[[1,ng]] and {ωg,k, yg,k}k∈[[1,ng]] be the weight and nodes of

quadrature, the Eq. (4.6) now reads

∫

Γ×Γ

λ⋆(x)G(x, y)λ(y) dγy dγx

≈
N
∑

i=1

vi

ng
∑

k=1

λ⋆
i (xg,k)ωg,k

ng
∑

l=1

G(xg,k, yg,l)

N
∑

j=1

ωg,l λj(yg,l)uj . (4.9)

Therefore, Eq. (4.5) is rewritten as linear system of equations,

S · λ = Ui. (4.10)

The Galerkin matrix S can be recast as the product of three matrices such that

S = (Λ⋆)T · (G · Λ) , (4.11)

where Λ is the matrix “transporting” the basis functions to the quadrature nodes, (Λ⋆)T is the

matrix “quadrature-to-test-functions” and G is the matrix such that Gij = G(xg,i, yg,j). While

the matrices Λ and Λ⋆ are sparse and can be stored with linear complexity, G is full. In the

process of an iterative inversion algorithm such as GMRES, see [28], one or more matrix-vector

products are required,

1. ũ = Λ · u. This product has linear complexity.

2. ṽ = G · ũ. This product is compressed using the FFM.

3. v = (Λ⋆)
T · ṽ. This product also has linear complexity.

In general, ng is closely related to the number of elements in the discretization of Γ. Assuming

for example that there are three quadrature nodes per element, then ng = 3·(number of elements)

meaning that the size of G may be in fact much higher than the actual size of the linear system.

The singular integral is computed independently using a semi-analytical method. It takes the

form of an additional sparse matrix which “removes” the singularity integrated numerically in

G and adds the “exact” integration of the kernel.

Our FFM library is interfaced with the Gypsilab software. Gypsilab is an open-source

(GPL3.0) Finite Element framework entirely written in the Matlab language aiming at assem-

bling easily the matrices related to the variational formulations arising in the Finite Element

Method or in the Boundary Element Method. Among other things, it features a complete

H-matrix algebra (sum, product, LU decomposition, . . .) compatible with the native matrix

types of Matlab. For more details on the capabilities of Gypsilab we refer to [20, 21]. In

1112 M. AUSSAL AND M. BAKRY

the context of this paper, we use it to manage the computation of the matrices Λ, Λ⋆ and the

right-hand-side Ui 1) .

We present here two examples of application. The first one corresponds to the scattering

of an underwater acoustic wave by a submarine and the second one is the scattering of an

electromagnetic wave by a perfect electric conductor rocket launcher.

4.2.1. Acoustic scattering by a submarine

We solve the acoustic scattering by a submarine with Neumann Boundary condition. This

example is based on the BeTSSi benchmark [26]. The mesh is provided by ESI Group and it

is remeshed using the open-source Mmg Platform [27]. We could solve this problem using the

following equation

∫

Γ

∂2G

∂nx∂ny
(x, y)µ(y) dγy =

∂ui

∂nx
, (4.12)

whose variational formulation is

k2
∫

Γ×Γ

(µ⋆(x) ·G(x, y) · µ(y) · (nx · ny)) dγx dγy

−
∫

Γ×Γ

(rotΓµ
⋆(x) ·G(x, y) · rotΓµ(y)) dγx dγy =

∫

Γ

µ⋆(x) · ∂u
i

∂nx
(x) dγx, (4.13)

where µ is the unknown, µ⋆ is the test function, k the wavenumber, nx is the outbound normal

vector at position x, and ∂/∂nx is the normal derivative with respect to the variable x. Eq.

(4.12) is very ill-conditioned and is also ill-posed for some frequencies. The integral operator

is called the hypersingular boundary integral operator. The scattering problem could also be

solved using another boundary integral equation

−µ(x)

2
+

∫

Γ

∂G

∂nx
(x, y)µ(y) dγy = −ui(x), (4.14)

which is better conditioned but which is also ill-posed for some frequencies and less accurate in

practice. The boundary integral operator in Eq. (4.14) is the adjoint of the double layer oper-

ator. To circumvent these issues, we use a linear combination of the integral operators involved

in Eqs. (4.12) and (4.14) called the Brakhage-Werner formulation, see [4]. This formulation

is better conditioned and always well-posed. It is important to note that each iteration in the

GMRES algorithm requires in fact 6 + 3 = 9 FFM-products in our implementation: three

for the part with the scalar product of the normal vectors, three for the part with the scalar

product of the surface rotational, and three for the adjoint of the double layer operator.

The submarine is 60 m long and the frequency is set at 6.5 kHz. The source term is a

plane wave propagating along the axis of the submarine. Assuming, the celerity of sound in

water is 1500 m.s−1, the wavelength is 0.231 m meaning that there are approximately 260

wavelengths along the submarine, or differently written we have k · rmax ≈ 1687. The mesh

features 12.8 · 106 triangles. Since the numerical integration is performed using a quadrature

rule with 3 nodes per triangle, the size of one FFM-product is 38.4 · 106 × 38.4 · 106. The

problem is discretized with P1-elements implying that the total amount of (nodal) unknowns is

1) The high-level interface with the FFM is available as an other overloaded integral() function within

Gypsilab. An example is provided by running the nrtFfmBuilderFem.m script.

A Fast Free Memory Method for an Efficient Computation of Convolution Kernels 1113

Fig. 4.4. Absolute value of µ on the surface of the submarine.

6.4 · 106. It is solved using a preconditioned1) GMRES algorithm without restart on a 32 cores

server at 3.0 GHz with 512 GBytes RAM. The tolerance for both the GMRES and the FFM

product is set to ε = 10−3. Convergence is achieved in 12 iterations and 50000 seconds (≈ 13

hours and 50 minutes) including the assembling of the preconditioner and the regularization

matrix. Each iteration requires approximately 3570 seconds. The radiated field on the surface

is represented on Fig. 4.4. This computation is also performed using the FFM. The memory

peak is measured at approximately 200 GBytes when assembling the preconditioner and the

regularization matrix2) .

4.2.2. Perfect electric rocket launcher

This example is a slightly modified version of a test case extracted from the Workshop EM-

ISAE 2018, see [24]. We study the scattering of an electromagnetic plane wave by a perfect

electric launcher (the plane wave is propagating along the axis of the launcher). This problem

is solved the Combined Field Integral Equation (CFIE) which is a linear combination of the

Electric Field Integral Equation (EFIE) and the Magnetic Field Integral Equation (MFIE). For

the construction of these equations, we refer once again to [2] starting p. 234, or [3] starting p.

108. The EFIE reads

1

k2
∇Γ

∫

Γ

G(x, y)∇Γ · J(y) dγy +
(
∫

Γ

G(x, y)J(y) dγy

)

T

= − (Ei)T
ikZ

, (4.15)

where J is the tangential trace of the magnetic field, Ei is the incident electromagnetic wave,

Z is an impedance, and (.)T is the tangential trace operator. The MFIE reads

(J× nx) (x)

2
+ nx ×

∫

Γ

∇yG(x, y)× J(y) dγy = nx ×Hi(x), (4.16)

where Hi is the incident magnetic field. The CFIE then reads

CFIE = α · EFIE + (1− α) · Z ·MFIE, α ∈ [0, 1]. (4.17)

1) The system is preconditioned by performing an Incomplete LU decomposition of the (sparse) matrix of the

singular or close-to-singular interactions.
2) When assembling the BEM matrix, one issue which needs to be addressed is the computation of the singular

integrals. One way to do that is to compute the matrix as if everything where regular using standard quadratures,

then add a regularization matrix which contains the accurate computation of the singularity, for example using

semi-analytical formulas.

1114 M. AUSSAL AND M. BAKRY

Fig. 4.5. Real part of J on the whole launcher (top) and detail (bottom).

We use the Hdiv-conforming Raviart-Thomas finite element space of order 0 (RT0) and we

choose α = 0.5. The launcher is 60 m long and 12 m in diameter (including the boosters). The

electromagnetic wave propagates at 2 GHz meaning that the wavelength is 0.15 m, assuming a

celerity of light equals to 3 ·108 m.s−1. Therefore, there are 400 wavelength along the launcher.

The total number of unknowns is 60 · 106 for approximately 38 · 106 triangles. Consequently,

the size of a FFM product is approximately 114 · 106 × 114 · 106. We use the same server as

in subsubsection 4.2.1. One GMRES matrix-vector product involves now 10 (4 for the EFIE, 6

for the MFIE) FFM products and lasts approximately 4 hours for the prescribed accuracy for

the FFM is ε = 10−3. A GMRES convergence at 10−2 accuracy is achieved in approximately 6

days and 35 iterations. The real part of the solution is represented on Fig. 4.5.

5. Conclusions

We have proposed a powerful, scalable and easy-to-implement version of the well-known

Fast Multipole Method. The simple inner structure makes possible the use of the NUFFT

algorithm in the case of oscillating kernels. While probably not as fast as other implementations

of the FMM available in the industry, the FFM is still capable of dealing with convolution

products featuring dozens, or eventually hundreds, of millions of entries. We are even able to

reach 109 nodes for the Laplace kernel on a modest server. We prove quasi-linear complexity

estimates in the general case and a O(N3/2 · log2(N)) complexity for the oscillating kernel

case. Regarding this last case, such scaling is not observed until the very high frequency

regime (multiple dozens of millions of entries). Plugged into BEM methods, it is possible to

solve problems featuring dozen of millions of nodes on a laboratory server at low- and high-

frequencies. A powerful advantage of the FFM is that it can be implemented at a minimum cost

using only standard algorithms provided in all modern programing languages, to the exception

of the NUFFT. For example, our implementation requires as little as a few hundred Matlab

lines. For the sake of reproducibility, this implementation is provided within the git repository

of Gypsilab at [21] under the GPL 3.0 license.

A Fast Free Memory Method for an Efficient Computation of Convolution Kernels 1115

Acknowledgments. We would like to thank Houssem Haddar for his help and Leslie Green-

gard for providing the NUFFT code used for the computation of the numerical results. This

work was funded by the DGA-AID (Grant No. 2018600074).

References

[1] W. Hackbusch, Hierarchical Matrices: Algorithms and Analysis, Springer (2015).

[2] J.-C. Nédélec, Acoustic and Electromagnetic Equations: Integral Representations for Harmonic

Problems, Springer, 2001.

[3] D.L. Colton and R. Kress, Integral Equation Methods in Scattering Theory, Malabar Fla. Krieger

Pub. Co. (1992).

[4] R. Kress, Minimizing the condition number of boundary integral equations in acoustic and elec-

tromagnetic scattering, Q. Jl Mech. appl. Math., 38 Pt. 2 (1985), 323–396.

[5] M. Bebendorf, Adaptive Cross Approximation of Multivariate Functions, Constr. Approx., 34:2

(2011), 149–179.

[6] S. Börm, L. Grasedyck and W. Hackbusch, Hierarchical Matrices, Max-Planck Gesellschaft, 2015.

[7] A.H. Barnett, J.F. Magland and L. af Klinterberg, A parallel non-uniform fast Fourier transform

library based on an ”exponential of semi-circle” kernel, SIAM J. Sci. Comput., 41:5 (2018), 479–

504.

[8] A. Dutt and V. Rokhlin, Fast Fourier Transform for Nonequispaced data, SIAM J. Sci. Comput.,

14 (1993).

[9] L. Greengard and J.Y. Lee, Accelerating the Nonuniform Fast Fourier Transform, SIAM Rev.,

46:3 (2004), 443–454.

[10] L. Greengard and J. Huang, A new version of the Fast Multipole Method for Screened Coulomb

Interactions in Three Dimensions, J. Comput. Phys., 180 (2002), 642–658.

[11] L. Greengard, J. Huang and V. Rokhlin, Accelerating fast multipole methods for the Helmholtz

equation at low frequencies, IEEE Comput. Sci. Eng., 5:3 (1998), 32–38.

[12] E. Darve and P. Havé, Efficient fast multipole method for low-frequency scattering, J. Comput.

Phys., 197:1 (2004), 341–363.

[13] L. Greengard and V. Rokhlin, A Fast Algorithm for Particle Simulations, J. Computut. Phys., 73

(1987), 325–348.

[14] H. Cheng, L. Greengard and V. Rokhlin, A Fast Adaptive Multipole Algorithm in Three Dimen-

sions, J. Comput. Phys., 155 (1999), 468–498.

[15] F. Alouges and M. Aussal, The sparse cardinal sine decomposition and its application for fast

numerical convolution, Numer. Algorithms, 70 (2015), 427–448.

[16] Q. Carayol and F. Collino, Error estimates in the Fast Multipole Method for scattering problems

Part 2: Truncation of the Gegenbauer series, ESAIM: M2AN, 39:1 (2005), 183–221.

[17] E. Darve, The Fast Multipole Method: Numerical Implementation, J. Comput. Phys., 160 (2000),

195–240.

[18] E. Darve, The Fast Multipole Method I: Error Analysis and Asymptotic Complexity, SIAM J.

Numer. Anal., 38:1 (2000), 98–128.

[19] L. Cambier and E. Darve, Fast Low-Rank Kernel Matrix Factorization through Skeletonized

Interpolation, SIAM J. Sci. Comput., 41:3 (2017).

[20] F. Alouges and M. Aussal, FEM and BEM simulations with the Gypsilab framework, The SMAI

Journal of Computational Mechanics, 4 (2018), 297–318.

[21] Gypsilab, https://github.com/matthieuaussal/gypsilab/ (on-coming native C++ version at

https://github.com/marcbakry/ffm-cpp)

[22] G. Mastroianni and D. Occorsio, Optimal systems of nodes for Lagrange interpolation on bounded

intervals. A survey, J. Comput. Appl. Math., 134 (2001), 325–341.

1116 M. AUSSAL AND M. BAKRY

[23] W. Fong and E. Darve, The black-box fast multipole method, J. Comput. Phys., 228:23 (2009),

8712–8725.

[24] Workshop EM-ISAE 2018, https://websites.isae-supaero.fr/workshop-em-isae-2018/

[25] L. Greengard, https://cims.nyu.edu/cmcl/fmm3dlib/fmm3dlib.html

[26] C.W. Nell and L.E. Gilroy, An improved BASIS model for the BeTSSi submarine, DRDC Atlantic

TR, 199 (2003).

[27] C. Dapogny, C. Dobrzynski and P. Frey, Three-dimensional adaptive domain remeshing, implicit

domain remeshing, and applications to free and moving boundary problems, J. Comput. Phys.,

262 (2014), 358–378.

[28] Y. Saad and M.H. Schultz, GMRES: A generalized minimal residual algorithm for solving non-

symmetric linear systems, SIAM J. Sci. Comput., 7:3 (1986), 856–869.

[29] L. Ying, G. Biros and D. Zorin, A kernel-independent adaptive fast multipole algorithm in two

and three dimensions, J. Comput. Phys., 196 (2004), 591–626.

[30] K.L. Ho and L. Ying, Hierarchical interpolative factorization of Elliptic Operators: Integral Equa-

tions, Commun. Pur. Appl. Math., 69:7 (2016), 1314–1353.

[31] S. Börm, Efficient Numerical Methods for Non-local Operators, European Mathematical Society,

2010.

