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Abstract

Implicit determinant method is an effective method for some linear eigenvalue opti-

mization problems since it solves linear systems of equations rather than eigenpairs. In

this paper, we generalize the implicit determinant method to solve an Hermitian eigenvalue

optimization problem for smooth case and non-smooth case. We prove that the implicit

determinant method converges locally and quadratically. Numerical experiments confirm

our theoretical results and illustrate the efficiency of implicit determinant method.
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1. Introduction

Let A(ω) ∈ Cn×n be an Hermitian matrix which analytically depends on a parameter ω ∈ R.

Let eigenvalues of A(ω) be sorted by λ1(ω) ≥ λ2(ω) ≥ · · · ≥ λn(ω). In this work, for a fixed

integer l, 1 ≤ l ≤ n, we restrict our attention to minimize or maximize ϕ(ω) = λl(ω) in

a bounded interval (a, b), that is

min
ω∈(a,b)

ϕ(ω) or max
ω∈(a,b)

ϕ(ω). (1.1)

We assume that there exists a local extreme point ω∗ in (a, b).

Eigenvalue optimization problem (1.1) has many applications. For examples, the com-

putation of the stable radius [24] of a stable matrix, the computation of the H∞ norm [13]

of a linear system, the computation of the Crawford number [15] and quadratic constrained

quadratic programming [25] for a frequently encountered case [8], can be converted into eigen-

value optimization problem (1.1).

Many methods solve the eigenvalue optimization problem which is more general than (1.1),

say the parameter ω may be in high dimensional space. For example, Overton’s method bases

on successive quadratic programming [21]. The method of Mengi et al. bases on piecewise

quadratic support functions [20]. Subspace method of Kangal et al. solves large-scale eigenvalue

optimization problem [14]. All these methods require to solve an eigenvalue problem at each

iteration step.

The implicit determinant method (IDM for short) was originally proposed by Spence and

Poulton [23] for solving the nonlinear eigenvalue problem H(ω, λ)x = 0, where H(ω, λ) is an
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Hermitian matrix function with respect to the parameter ω, and λ is the eigenvalue of this

nonlinear eigenvalue problem. Later, Freitag and Spence [6] applied IDM to compute the

stable radius of a stable matrix. The computation of stable radius can be transformed into

eigenvalue optimization problem (1.1) which has a global minimizer ω∗ existing in a bounded

interval (−2‖A‖, 2‖A‖), with A(ω) = Ã− ωC̃ and l = N , where Ã, C̃ ∈ C
2N×2N are Hermitian

matrices [24]. In [7], Freitag et al. applied IDM to compute the H∞ norm. The computation

of the H∞ norm can also be converted into eigenvalue optimization problem (1.1) which has a

global maximizer ω∗ existing in a bounded interval, where λ1(ω) ≥ λ2(ω) ≥ · · · ≥ λm(ω) are

finite generalized eigenvalues of the matrix pencil (A(ω), diag(I,0)), A(ω) = Ã−ωC̃, l = 1, Ã, C̃

are Hermitian matrices [7]. Compared with most methods for eigenvalue optimization problem,

the computation cost of IDM is to solve linear systems rather than eigenvalue problem at each

iteration step. However, in [6, 7], the conditions for IDM include 1. A(ω) is a linear matrix

function, that is A(ω) = Ã− ωC̃, 2. ϕ(ω∗) is a simple eigenvalue of A(ω∗).

In this paper, we first generalize IDM to solve eigenvalue optimization problem (1.1) where

A(ω) is a nonlinear Hermitian matrix function of ω. The generalization is almost straightfor-

ward, and the purpose is to introduce the IDM. However, the sequence generated by IDM only

converges to (ω∗, ϕ(ω∗)) if ϕ(ω∗) is a simple eigenvalue of A(ω∗), which implies ϕ(ω) is smooth

at ω∗. Secondly, we generalize the IDM for the case that ϕ(ω∗) is an eigenvalue of A(ω∗) with

multiplicity 2, and in this case, ϕ(ω) is usually non-smooth at ω∗. We prove that this general-

ized IDM converges locally quadratically. Similar to previous IDM, our generalized IDM only

needs to solve linear systems at each iteration step, and in turn, IDM is more effective than

other methods such as subspace method.

This paper is organized as follows. In Section 2, we apply IDM to solve eigenvalue optimiza-

tion problem (1.1) for the case that λ∗ = ϕ(ω∗) is a simple eigenvalue of A(ω∗), where A(ω)

is a nonlinear matrix function of ω. Under the condition that λ∗ = ϕ(ω∗) is an eigenvalue of

A(ω∗) with multiplicity 2, we generalize IDM to solve (1.1) and prove that it converges locally

quadratically in Section 3. In Section 4, numerical experiments confirm the rate of convergence

established in theory and show the efficiency of generalized IDM.

2. Implicit Determinant Method for Smooth Case

We first introduce the relation between smoothness of ϕ(ω) and multiplicity of eigenvalues

of A(ω) (see e.g., [9, 16, 18, 22]).

Theorem 2.1 ([9, Theorem S6.3]). Let A(ω) ∈ Cn×n be an Hermitian matrix-valued func-

tion that depends on ω ∈ R analytically. Then there exist scalar functions λ̃1(ω), . . . , λ̃n(ω) and

a matrix-valued function V (ω) = [v1(ω), . . . , vn(ω)], which are analytic for ω and possess the

following properties for every ω ∈ R:

A(ω) = V (ω) diag(λ̃1(ω), . . . , λ̃n(ω))V (ω)H, V (ω)HV (ω) = I.

The left subplot of Fig. 2.1 depicts these analytic eigenvalue curves λ̃i(ω), i = 1, . . . , n.

Now we sort these eigenvalue curves as λ1(ω) ≥ λ2(ω) ≥ · · · ≥ λn(ω). The right subplot of

Fig. 2.1 depicts these sorted eigenvalue curves λi(ω). From Theorem 2.1, we can see that, λi(ω),

i = 1, . . . , n, are continuous and piecewise analytic [20]. For a fixed point ω, if λi(ω) is a simple

eigenvalue of A(ω), then λi(ω) is analytic at ω. If λi(ω) is not differentiable at ω, then λi(ω)

must be a multiple eigenvalue of A(ω).



Implicit Determinant Method for Solving an Hermitian Eigenvalue Optimization Problem 1119

Fig. 2.1. Eigenvalue curves of A(ω). Left: Analytic eigenvalue curves λ̃i(ω). Right: Sorted eigenvalue

curves λi(ω) and the local extreme points marked with ’o’.

2.1. Algorithm

In this section, we apply IDM to solve eigenvalue optimization problem (1.1) where A(ω)

is Hermitian and a nonlinear matrix function in ω, and λ∗ = ϕ(ω∗) is a simple eigenvalue of

A(ω∗), for example, the extreme points of eigenvalue curves λ1(ω) or λ4(ω) in Fig. 2.1. The

generality is almost straight forward and the purposes is to introduce the IDM to readers.

Similar to the analysis of [6, section 3], we consider the following linear equation system,

M(ω, λ)

[

x(ω, λ)

f(ω, λ)

]

≡
[

A(ω)− λI c

cH 0

] [

x(ω, λ)

f(ω, λ)

]

=

[

0

1

]

, (2.1)

where ω, λ are two real parameters, c ∈ Cn is a constant vector, A(ω) ∈ Cn×n is an Hermitian

matrix which analytically depends on ω. It is clear that M(ω, λ) is also an analytic matrix

function with respect to ω and λ. If there exists a neighbor O of (ω∗, λ∗), such that M(ω, λ)

is nonsingular when (ω, λ) ∈ O, then equation system (2.1) has a unique solution, say x(ω, λ),

f(ω, λ), which is an analytic function of ω and λ when (ω, λ) ∈ O. The following proposition

discuss the non-singularity of M(ω, λ).

Proposition 2.1. Let ω∗ solve the eigenvalue optimization problem (1.1) and λ∗ = ϕ(ω∗).

Assume that λ∗ is a simple eigenvalue of A(ω∗) and x∗ is the corresponding normalized eigen-

vector. Let c ∈ Cn be a constant vector satisfying

cHx∗ 6= 0. (2.2)

Then M(ω∗, λ∗) is nonsingular and there exists a neighbor O of (ω∗, λ∗), such that M(ω, λ) is

nonsingular when (ω, λ) ∈ O.

This proposition is a mimic of [23, Lemma 1], so we omit the proof.

If λ∗ = ϕ(ω∗) is a simple eigenvalue of A(ω∗), then we easily deduce from Theorem 2.1

that ϕ(ω) is analytic at ω∗, and ϕ′(ω∗) = 0. With the result of Proposition 2.1, the following

proposition states that (ω∗, λ∗) can be computed by solving a zero of a nonlinear equation.

Proposition 2.2. If λ∗ is a simple eigenvalue of A(ω∗) and ϕ′′(ω∗) 6= 0, when (ω, λ) ∈ O,

(ω∗, λ∗) can be computed by solving

g(ω, λ) ≡
[

f(ω, λ)

fω(ω, λ)

]

= 0. (2.3)
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The proof is similar to the analysis of [6, section 3] and [23, Lemma 2]. Key points of this

proof are: (1) f(ω, λ) = 0 is the necessary and sufficient condition of A(ω)x(ω, λ) = λx(ω, λ),

(2) with f(ω, λ) = 0, when (ω, λ) ∈ O, fω(ω, λ) = 0 is the necessary and sufficient condition of

ϕ′(ω) = 0.

By using Cramers rule to the linear equation (2.1)

f(ω, λ) =
det(A(ω)− λI)

det(M(ω, λ))
. (2.4)

Thus f(ω, λ) = 0 if and only if det(A(ω) − λI) = 0, i.e., λ(ω) is an eigenvalue of A(ω). IDM

solves linear system (2.1) to obtain f(ω, λ), i.e., compute the determinant implicitly, that is

why this method is called implicit determinant method. IDM is precisely the application of

Newton’s method to solve a zero of nonlinear equation g(ω, λ) in (2.3). Now we consider the

Jacobian of g(ω, λ).

By differentiating (2.1) with respect to ω, we get

[

A(ω)− λI c

cH 0

] [

xω(ω, λ)

fω(ω, λ)

]

=

[

−A′(ω)x(ω, λ)

0

]

. (2.5)

Differentiating (2.1) with respect to λ gives

[

A(ω)− λI c

cH 0

] [

xλ(ω, λ)

fλ(ω, λ)

]

=

[

x(ω, λ)

0

]

. (2.6)

By differentiating (2.5) with respect to ω, we get

[

A(ω)− λI c

cH 0

] [

xωω(ω, λ)

fωω(ω, λ)

]

=

[

−2A′(ω)xω(ω, λ)−A′′(ω)x(ω, λ)

0

]

, (2.7)

where xω is obtained from (2.5). Similarly, by differentiating (2.5) with respect to λ, we get

[

A(ω)− λI c

cH 0

] [

xωλ(ω, λ)

fωλ(ω, λ)

]

=

[

−A′(ω)xλ(ω, λ) + xω(ω, λ)

0

]

, (2.8)

where xλ and xω is obtained from (2.6) and (2.5). By solving four Eqs. (2.5)–(2.8) with the

same coefficient matrix M(ω, λ), we get the entries of the Jacobian of g(ω, λ):

G(ω, λ) =

[

fω(ω, λ) fλ(ω, λ)

fωω(ω, λ) fωλ(ω, λ)

]

. (2.9)

The following proposition guarantees the non-singularity of G(ω, λ).

Proposition 2.3. Assume that λ∗ is a simple eigenvalue of A(ω∗) and ϕ′′(ω∗) 6= 0, then

G(ω, λ) is nonsingular at (ω∗, λ∗).

Proof. We deduce from Proposition 2.2 that fω(ω
∗, λ∗) = 0, thus G(ω∗, λ∗) is nonsingular

if and only if fλ(ω
∗, λ∗) 6= 0 and fωω(ω

∗, λ∗) 6= 0.

By similar proof of [6, Lemma 3], we multiply the first row of (2.6) with xH(ω, λ) from the

left and get

fλ(ω, λ) =
‖x(ω, λ)‖2

xHc
6= 0.
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Since fλ(ω
∗, λ∗) 6= 0, by the implicit function theorem, we conclude that when (ω, λ) is in

a neighbor of (ω∗, λ∗), the equation f(ω, λ) = 0 implicitly determines λ as a function of ω, i.e.,

λ(ω). The first row of Eq. (2.1) writes (A(ω) − λI)x(ω, λ) + f(ω, λ)c = 0. We deduce that

f(ω, λ) = 0 if and only if A(ω)x(ω, λ) = λx(ω, λ). Thus λ(ω) = ϕ(ω). Then we conclude that

λ′(ω∗) = 0, λ′′(ω∗) 6= 0.

By differentiating f(ω, λ) = 0, we get

λ′(ω) = −fω(ω, λ)

fλ(ω, λ)
. (2.10)

By differentiating (2.10) with respect to ω, we obtain

λ′′(ω) =
−fωω(ω, λ)fλ(ω, λ) + fλω(ω, λ)fω(ω, λ)

fλ(ω, λ)2
. (2.11)

Note that fω(ω
∗, λ∗) = 0 and fλ(ω

∗, λ∗) 6= 0, then at the point ω∗, Eq. (2.11) becomes

λ′′(ω∗) = −fωω(ω
∗, λ∗)

fλ(ω∗, λ∗)
.

Since we have fλ(ω
∗, λ∗) 6= 0 and λ′′(ω∗) 6= 0, it follows that

fωω(ω
∗, λ∗) 6= 0.

Then we have det(G(ω∗, λ∗)) = −fλ(ω
∗, λ∗)fωω(ω

∗, λ∗) 6= 0. Thus G(ω∗, λ∗) is nonsingular.

The proof of fωω(ω
∗, λ∗) 6= 0 is different from that in [6, Lemma 4] and [7, Lemma 3.1], since

their proof make use of the property that A(ω) is linear with respect to ω in the calculation of

stable radius and H∞ norm. �

Here we present IDM for solving the eigenvalue optimization problem (1.1) under the con-

dition that ϕ(ω∗) is a simple eigenvalue of A(ω∗) and ϕ′′(ω∗) 6= 0.

Algorithm 2.1. Implicit determinant method for smooth case

Require: initial guess ω0, λ0, A(ω), A
′(ω), A′′(ω), tolerance tol.

Ensure: approximate solution ωk, λk of the eigenvalue optimization problem (1.1)

1: k = 0, rk = 1.

2: while rk > tol do

3: Solve Eqs. (2.1), (2.5), (2.6), (2.7), (2.8) to get g(ωk, λk) and G(ωk, λk);

4:

[

ωk+1

λk+1

]

=

[

ωk

λk

]

−G(ωk, λk)
−1g(ωk, λk);

5: rk = ‖g(ωk, λk)‖;
6: end while

Initial guess ω0 and λ0 are application-dependent. If only ω0 is given, we always set λ0 =

ϕ(ω0). Note that if c ≈ x∗, then cHx∗ 6= 0, and (2.1) is nonsingular by Proposition 2.1. So we

let c to be the normalized eigenvector of A(ω0) corresponding to λ0.

Similar to the analysis of [6, section 4.1], the linear systems in step 2.1 of Algorithm 2.1 have

the same coefficient matrix M(ωk, λk), thus only one LU factorisation is needed per iteration.

Since IDM is essentially Newton’s method for solving a zero of the equation g(ω, λ) = 0, it

converges locally and quadratically. Generally, the computation complexity of one LU factori-

sation is cheaper than solving an eigenvalue problem, IDM is faster than methods which require

to solve an eigenvalue problem at each iteration step, providing that we have a good initial.
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3. Implicit Determinant Method for Non-smooth Case

Non-smoothness at extreme points is a common phenomenon in eigenvalue optimization

problems. In Section 2, we apply IDM to solve the eigenvalue optimization problem (1.1) if λ∗

is a simple eigenvalue of A(ω∗), i.e., ϕ(ω) is smooth at ω∗. However, if ϕ(ω) is not differentiable

at ω∗, for example, the extreme points of λ2(ω) and λ3(ω) in the right part of Fig. 2.1, the

assumption that λ∗ is a simple eigenvalue of A(ω∗) in Proposition 2.2 is not satisfied. Thus

Algorithm 2.1 is not suitable for this non-smooth case, as shown in Example 4.2, Table 4.2, the

sequence generated by Algorithm 2.1 will not converge to (ω∗, λ∗).

In this section, we mainly consider the case that λ∗ is an eigenvalue of A(ω∗) with mul-

tiplicity 2, possible extension to the case where multiplicity is higher than 2 is considered in

Subsection 3.3.

Let (ω∗, λ∗) be the intersection of two analytic functions λ̃1(ω) and λ̃2(ω). Since ω∗ is an

extreme point of ϕ(ω), we have λ̃′
1(ω

∗)λ̃′
2(ω

∗) ≤ 0. The following theorem shows that λ̃′
1(ω

∗)

and λ̃′
2(ω

∗) can be obtained from A′(ω∗) and eigenvectors of A(ω∗) corresponding to λ∗.

Theorem 3.1. Let (λ̃1(ω), v1(ω)), (λ̃2(ω), v2(ω)) be two analytic eigenpairs of A(ω). Let

(ω∗, λ∗) be the intersection of λ̃1(ω) and λ̃2(ω). We denote

X∗ = [v1(ω
∗), v2(ω

∗)], Λ1(ω) = diag(λ̃1(ω), λ̃2(ω)). (3.1)

Then

X∗HA′(ω∗)X∗ = Λ′
1(ω

∗) = diag(λ̃′
1(ω

∗), λ̃′
2(ω

∗)). (3.2)

Proof. Letting V1(ω) = [v1(ω), v2(ω)], we have

A(ω)V1(ω) = V1(ω)Λ1(ω). (3.3)

The derivative of (3.3) is

A′(ω)V1(ω) +A(ω)V ′
1 (ω) = V ′

1 (ω)Λ1(ω) + V1(ω)Λ
′
1(ω). (3.4)

By left multiplying (3.4) with V H
1 (ω), we get

V H
1 (ω)A′(ω)V1(ω) + V H

1 (ω)A(ω)V ′
1 (ω) = V H

1 (ω)V ′
1 (ω)Λ1(ω) + V H

1 (ω)V1(ω)Λ
′
1(ω).

Note that Λ1(ω
∗) = λ∗I. We have

V H
1 (ω∗)A(ω∗)V ′

1(ω
∗) = Λ1(ω

∗)V H
1 (ω∗)V ′

1 (ω
∗)

= λ∗V H
1 (ω∗)V ′

1 (ω
∗)

= V H
1 (ω∗)V ′

1(ω
∗)Λ1(ω

∗).

It follows that

V H
1 (ω∗)A′(ω∗)V1(ω

∗) = V H
1 (ω∗)V1(ω

∗)Λ′
1(ω

∗) = Λ′
1(ω

∗).

For the case that λi(ω
∗) is a simple eigenvalue of A(ω∗), it is well known that λ′

i(ω
∗) =

vHi (ω
∗)A′(ω∗)vi(ω

∗) [18, Theorem 5]. By Theorem 3.1, for the case that λi(ω
∗) is a multiple

eigenvalue of A(ω∗), the conclusion is the same. This theorem plays an important role in the

derivation of IDM. �

In the remainder of this section, we make the following assumption:
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Assumption 3.1. Let λ̃1(ω), λ̃2(ω) be defined by Theorem 2.1. Let (ω∗, λ∗) be the intersec-

tion of λ̃1(ω) and λ̃2(ω). Assume that λ∗ is an eigenvalue of A(ω∗) with multiplicity 2 and

λ̃′
1(ω

∗)λ̃′
2(ω

∗) < 0.

If λ∗ is an eigenvalue of A(ω∗) with multiplicity 2, there are three cases, 1: λ̃′
1(ω

∗) 6= 0,

λ̃′
2(ω

∗) 6= 0. 2: λ̃′
1(ω

∗) = 0, λ̃′
2(ω

∗) 6= 0. 3: λ̃′
1(ω

∗) = λ̃′
2(ω

∗) = 0. See Fig. 3.1. Please note that

Assumption 3.1 only excludes the case that

λ̃′
1(ω

∗)λ̃′
2(ω

∗) = 0,

i.e., middle and right figure in Fig. 3.1. In this case, the IDM can also be derived and analysed,

but the process will be more tedious.

Fig. 3.1. If λ∗ is an eigenvalue of A(ω∗) with multiplicity 2, there are three cases. Left: λ̃′

1(ω
∗) 6= 0,

λ̃′

2(ω
∗) 6= 0. Middle: λ̃′

1(ω
∗) = 0, λ̃′

2(ω
∗) 6= 0. Right: λ̃′

1(ω
∗) = λ̃′

2(ω
∗) = 0.

3.1. Algorithm

In this subsection, we generalize IDM to solve eigenvalue optimization problem (1.1) under

Assumption 3.1. Analogous to Section 2, we consider the following linear equation:

M(ω, λ)

[

x(ω, λ)

f(ω, λ)

]

≡
[

A(ω)− λI C

CH 0

] [

x(ω, λ)

f (ω, λ)

]

=

[

0

d

]

, (3.5)

where d ∈ C
2 is a nonzero constant vector, C ∈ C

n×2 is a constant matrix, A(ω) ∈ C
n×n is an

Hermitian matrix which analytically depends on ω. It is clear that M(ω, λ) is also an analytic

function with respect to ω and λ. If there exist a neighbor O of (ω∗, λ∗), such that M(ω, λ) is

nonsingular when (ω, λ) ∈ O, then the system (3.5) has a unique solution, say x(ω, λ) ∈ Cn,

f(ω, λ) ∈ C2, which is an analytic function of ω and λ when (ω, λ) ∈ O.

The following lemma discuss the non-singularity of M(ω∗, λ∗).

Lemma 3.1. Let matrix X∗ be defined in Theorem 3.1. Let C ∈ Cn×2 be a constant matrix

satisfying that CHX∗ is nonsingular. Under Assumption 3.1, there exists a rectangular neighbor

O = Oω ×Oλ of (ω∗, λ∗), such that Hermitian matrix M(ω, λ) is nonsingular when (ω, λ) ∈ O.

The proof is similar to that of [23, Lemma 1], so we omit it.

Assume that CHX∗ is nonsingular. We make the following assumption about the neigh-

bor O:

Assumption 3.2. Let O = Oω × Oλ be a rectangular neighbor of (ω∗, λ∗) satisfying the fol-

lowing two conditions:
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1. If (ω, λ) ∈ O, M(ω, λ) is nonsingular.

2. If ω ∈ Oω, ϕ(ω) is a simple eigenvalue of A(ω) except for ω∗.

The following theorem states that, the point (ω∗, λ∗) can be obtained by solving a zero of

nonlinear equation f(ω, λ) = 0.

Theorem 3.2. Let

X = {vi(ω) | ω ∈ Oω , ω 6= ω∗, i = 1, 2},
where vi(ω), i = 1, 2 are defined by Theorem 3.1. If for any x ∈ X , d is not parallel to CHx,

then (ω∗, λ∗) is the only point in O such that

f (ω, λ) = 0.

Proof. We first prove f (ω∗, λ∗) = 0. The first row of Eq. (3.5) at (ω∗, λ∗) writes

(A(ω∗)− λ∗I)x(ω∗, λ∗) + Cf (ω∗, λ∗) = 0. (3.6)

Multiplying (3.6) by X∗H from the left, we obtain

X∗HCf(ω∗, λ∗) = 0.

Since CHX∗ is nonsingular, thus

f (ω∗, λ∗) = 0.

On the other side, if f(ω, λ) = 0, Eq. (3.5) can be rewritten as

[

A(ω)− λI

CH

]

x =

[

0

d

]

. (3.7)

The first row of (3.7) writes A(ω)x = λx. Note that M(ω, λ) is nonsingular when (ω, λ) ∈ O.

It follows that, when (ω, λ) ∈ O,

rank

[

A(ω)− λI

CH

]

= n. (3.8)

We will prove that λ is a multiple eigenvalue of A(ω) by contradiction. If λ is a simple eigenvalue

of A(ω), then x ∈ X , i.e., x = ‖x‖vi(ω), i ∈ {1, 2}. Consider a unitary matrix U = [ x
‖x‖ , U1].

When (ω, λ) ∈ O, we have

rank

[

A(ω)− λI 0

CH d

]

= rank

[

A(ω)− λI 0

CH d

] [

U

1

]

= rank

[

0 (A(ω)− λI)U1 0
CHx
‖x‖ CHU1 d

]

= n+ 1.

The last equality being a consequence of d is not parallel to CHx, and by Eq. (3.8),

rank

[

A(ω)− λI

CH

]

U = rank

[

0 (A(ω)− λI)U1

CHx
‖x‖ CHU1

]

= n.

For the system (3.7), the rank of augmented matrix is not equal to that of the coefficient matrix,

then there does not exist a solution satisfies (3.7), which leads to a contradiction. We deduce

from condition 3.2 of Assumption 3.2 that, (ω, λ) determined by f(ω, λ) = 0 is (ω∗, λ∗). �
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By Theorem 3.2, we only need to seek the solution of f(ω, λ) = 0. We apply Newton’s

method to solve it. First consider the Jacobian of f(ω, λ). By differentiating (3.5) with respect

to ω and λ respectively, we get
[

A(ω)− λI C

CH 0

] [

xω(ω, λ)

fω(ω, λ)

]

=

[

−A′(ω)x(ω, λ)

0

]

, (3.9)

[

A(ω)− λI C

CH 0

] [

xλ(ω, λ)

fλ(ω, λ)

]

=

[

x(ω, λ)

0

]

, (3.10)

where x(ω, λ) can be obtained by solving the linear equation system (3.5). The Jacobian of

f(ω, λ) is

J(ω, λ) = [fω(ω, λ),fλ(ω, λ)]. (3.11)

Now we give the non-singularity of J(ω∗, λ∗).

Theorem 3.3. Under the Assumptions 3.1 and 3.2, J(ω∗, λ∗) is nonsingular if and only if d

is not parallel to CHX∗ei, i = 1, 2, where ei is the ith column of the two by two identity matrix.

Proof. The first rows of (3.9) and (3.10) at (ω∗, λ∗) are

(A(ω∗)− λ∗I)xω(ω
∗, λ∗) + Cfω(ω

∗, λ∗) = −A′(ω∗)x(ω∗, λ∗), (3.12)

and

(A(ω∗)− λ∗I)xλ(ω
∗, λ∗) + Cfλ(ω

∗, λ∗) = x(ω∗, λ∗), p (3.13)

respectively. By multiplying (3.12) and (3.13) with X∗H from the left, we get

X∗HC[fω(ω
∗, λ∗),fλ(ω

∗, λ∗)] = [−X∗HA′(ω∗)x(ω∗, λ∗), X∗Hx(ω∗, λ∗)]. (3.14)

Note that CHX∗ is nonsingular. Then J(ω∗, λ∗) is nonsingular if and only if the right side of

Eq. (3.14) is nonsingular.

Since (A(ω∗) − λ∗I)x(ω∗, λ∗) = 0, we deduce that x(ω∗, λ∗) belongs to the span of the

columns of X∗. Thus there exists a nonzero vector y ∈ C2 such that

x(ω∗, λ∗) = X∗y. (3.15)

By Theorem 3.1 and Eq. (3.15), we conclude that

X∗HCJ(ω∗, λ∗) = [−X∗HA′(ω∗)X∗y,X∗HX∗y]

= [− diag(λ̃′
1(ω

∗), λ̃′
2(ω

∗))y, y].

Thus J(ω∗, λ∗) is nonsingular if and only if y is not the eigenvector of diag(λ̃′
1(ω

∗), λ̃′
2(ω

∗)),

i.e., y is not parallel to ei, i = 1, 2. Note that CHx(ω∗, λ∗) = d. Thus we have

CHX∗y = d. (3.16)

We deduce that J(ω∗, λ∗) is nonsingular if and only if d is not parallel to CHX∗ei, i = 1, 2. �

Here we show that a random nonzero vector d is very likely to satisfy assumptions in

Theorems 3.2 and 3.3, so that we can apply Newton’s method to solve a zero of f(ω, λ) = 0

and get (ω∗, λ∗). By Theorem 2.1, vi(ω), i = 1, 2, are continuous on ω. If x ∈ X , then x is close

to vi(ω
∗), i.e., CHx is close to CHX∗ei, i = 1 or 2. From above analysis we conclude that, if

the direction of d is not close to CHX∗ei, i = 1, 2, then d satisfies assumptions in Theorems 3.2

and 3.3. A random vector d is very likely not close to CHX∗ei, i = 1, 2.
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Now we give IDM for non-smooth case.

Algorithm 3.1. Implicit determinant method for non-smooth case

Require: initial guess ω0, λ0, A(ω), A
′(ω), tolerance tol.

Ensure: approximate solution ωk, λk of eigenvalue optimization problem (1.1)

1: k = 0, rk = 1.

2: while rk > tol do

3: Solve Eqs. (3.5), (3.9) and (3.10) to get f(ωk, λk) and J(ωk, λk);

4:

[

ωk+1

λk+1

]

=

[

ωk

λk

]

− J(ωk, λk)
−1f(ωk, λk);

5: rk = ‖f(ωk, λk)‖, k = k + 1;

6: end while

Initial guess ω0 and λ0 are application-dependent. If only ω0 is given, we always set λ0 =

ϕ(ω0). Note that if C ≈ X∗, then CHX∗ is nonsingular, and Eq. (3.5) is nonsingular by

Lemma 3.1. So we let

C = [v1(ω0), v2(ω0)],

where v1(ω),v2(ω) are defined by Theorem 3.1. If ω0 is close to ω∗, then CHX∗ is close to the

identity matrix I, and CHX∗ei is close to ei, i = 1, 2. Thus we let the direction of d be away

from ei, i = 1, 2, such that it satisfies assumptions in Theorems 3.2 and 3.3.

Similar to the analysis of [6, section 4.1], most computational cost of Algorithm 3.1 is in

step 3, i.e., solving three linear systems with the same coefficient matrix, thus only one LU

factorisation is needed per iteration. Generally, the computation complexity of one LU factori-

sation is cheaper than solving an eigenvalue problem, thus IDM is faster than the methods which

require to solve an eigenvalue problem at each iteration step. Since IDM is essentially applying

Newton’s method to solve the zero of f(ω, λ) = 0, it converges locally and quadratically.

3.2. A special choice of the vector d

In subsection 3.1, we show that the sequence (ωk, λk) generated by Algorithm 3.1 will locally

quadratically converge to (ω∗, λ∗). However, sequence (ωk, λk) generated by Algorithm 3.1 may

converge to a point which is not an extreme point, like point (ωm, λm) in Fig. 3.2. Actually,

Algorithm 3.1 only ensures the computed λk is an approximate eigenvalue with multiplicity

2. In this subsection, we will present an algorithm which is guaranteed to get a local extreme

point.

Consider the following linear equation system:

[

A(ω)− λI C

CH 0

] [

X(ω, λ)

F (ω, λ)

]

=

[

0

I

]

. (3.17)

By Assumption 3.2, when (ω, λ) ∈ O, equation system (3.17) has a unique solution, sayX(ω, λ),

F (ω, λ), which is analytic functions of ω and λ when (ω, λ) ∈ O. It can be checked easily that

F (ω∗, λ∗) = 0, (3.18)

X(ω∗, λ∗) = X∗(CHX∗)−1. (3.19)
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Fig. 3.2. Sequence generated by Algorithm 3.1 may converge to (ωm, λm), where λm is a multiple

eigenvalue of A(ωm) but ωm is not a local extreme point of ϕ(ω).

Note that the two columns of X(ω∗, λ∗) are two linearly independent eigenvectors of A(ω∗)

corresponding to λ∗. If C = X∗, then X(ω∗, λ∗) = X∗. If C 6= X∗, the two columns of

X(ω∗, λ∗) are not orthogonal, while the two columns of X∗ are orthogonal.

Since in practice, we choose C such that C is close to X∗, then by Eq. (3.19), X(ω∗, λ∗) is

close to X∗. We deduce from Theorem 3.1 and Assumption 3.1 that X∗HA′(ω∗)X∗ is an indefi-

nite matrix, say it has both positive and negative eigenvalues, then XH(ω∗, λ∗)A′(ω∗)X(ω∗, λ∗)

should also be an indefinite matrix. Thus there exists a nonzero vector d∗ ∈ C2 such that

d∗HXH(ω∗, λ∗)A′(ω∗)X(ω∗, λ∗)d∗ = 0. (3.20)

We restrict the first component of d∗ to be nonnegative and ‖d∗‖ = 1, then d∗ is unique.

If we replace d with d∗ in equation (3.5), then the solution of (3.5), say x(ω∗, λ∗) =

X(ω∗, λ∗)d∗, satisfies the equation

x(ω∗, λ∗)HA′(ω∗)x(ω∗, λ∗) = 0. (3.21)

Note that,

(CHX∗ei)
HXH(ω∗, λ∗)A′(ω∗)X(ω∗, λ∗)(CHX∗ei) = λ̃′

i(ω
∗) 6= 0.

From above, the direction of d∗ is away from CHX∗ei, i = 1, 2. Thus d∗ satisfies assumptions

in Theorems 3.2 and 3.3.

Here we describe a process which generates the sequence (ωk, λk) and dk, such that (ωk, λk)

converges to (ω∗, λ∗) and dk converges to d∗, both at a quadratic rate.

Since (ωk, λk) is close to (ω∗, λ∗), we assume that XH(ωk, λk)A
′(ωk)X(ωk, λk) is also an

indefinite matrix. With a point (ωk, λk) at the kth step, we choose dk such that

dHk X(ωk, λk)
HA′(ωk)X(ωk, λk)dk = 0. (3.22)

We restrict the first component of dk to be nonnegative and ‖dk‖ = 1, then dk is unique. With d

replaced by dk in the Eq. (3.5), by doing one-step Newton’s method to solve the zero of equation

f(ω, λ) = 0, we get the updated (ωk+1, λk+1). Repeat these procedures until convergence.
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If X(ωk, λk)
HA′(ωk)X(ωk, λk) is definite, then there does not exist a nonzero vector dk such

that dHk X(ωk, λk)
HA′(ωk)X(ωk, λk)dk = 0. Then the process stops and returns that with this

initial point, it can not converge to a local extreme point.

With the following lemma, we will show that dk converges to d∗ at the same rate as (ωk, λk)

converges to (ω∗, λ∗).

Lemma 3.2. Let (ωk, λk) be an O(ǫ) approximation of (ω∗, λ∗), i.e.,

‖ωk − ω∗‖ = O(ǫ), ‖λk − λ∗‖ = O(ǫ),

where ǫ is a small quantity, O(ǫ) is a quantity that has the same order as ǫ. Then

‖dk − d∗‖ = O(ǫ).

Proof. With (ωk, λk), we get the unique vector dk which satisfies following conditions:

(1) dHk X(ωk, λk)
HA′(ωk)X(ωk, λk)dk = 0, (2) the first component of dk is nonnegative, (3)

‖dk‖ = 1. Note that A(ω) is analytic with respect to ω, and X(ω, λ) is an analytic function of

ω and λ, then we have XH(ω, λ)A′(ω)X(ω, λ) is also analytic with respect to ω and λ. Since

(ωk, λk) is an O(ǫ) approximation of (ω∗, λ∗), it can be deduced that,

XH(ωk, λk)A
′(ωk)X(ωk, λk)−XH(ω∗, λ∗)A′(ω∗)X(ω∗, λ∗) = O(ǫ).

Be recalled that ‖dk‖ = ‖d∗‖ = 1, the first components of both dk and d∗ are nonnegative, d∗

and dk satisfy d∗HXH(ω∗, λ∗)A′(ω∗)X(ω∗, λ∗)d∗ = 0 and dHk X(ωk, λk)
HA′(ωk)X(ωk, λk)dk = 0

respectively, the rest of the proof is trivial. �

Lemma 3.2 shows if (ωk, λk) is an O(ǫ) approximation of (ω∗, λ∗), then dk is also an O(ǫ)

approximation of d∗. Since d∗ satisfies assumptions of Theorems 3.2 and 3.3, so does dk. Now

we give our algorithm.

Algorithm 3.2. Implicit determinant method for non-smooth case 2

Require: initial guess ω0, λ0, A(ω), A
′(ω), tolerance tol.

Ensure: approximate solution ωk, λk of eigenvalue optimization problem (1.1).

1: k = 0, rk = 1.

2: while rk > tol do

3: Solve the linear system (3.17) to get X(ωk, λk);

4: if X(ωk, λk)
HA′(ωk)X(ωk, λk) is definite then

5: return Can not converge to a local extreme point with this initial point.

6: break

7: end if

8: Choose dk such that dHk X(ωk, λk)
HA′(ωk)X(ωk, λk)dk = 0. Restrict the first

component of dk to be nonnegative and ‖dk‖ = 1;

9: With dk, solve Eqs. (3.5), (3.9) and (3.10) to get f(ωk, λk) and J(ωk, λk);

10:

[

ωk+1

λk+1

]

=

[

ωk

λk

]

− J(ωk, λk)
−1f(ωk, λk);

11: rk = ‖f(ωk, λk)‖, k = k + 1;

12: end while
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Theorem 3.4. Under the Assumptions 3.1 and 3.2, Algorithm 3.2 converges locally quadrati-

cally.

Proof. Let (ωk, λk) be an O(ǫ) approximation of (ω∗, λ∗). At the kth step, we treat (ωk, λk)

and dk as the initial point, then by the analysis of Algorithm 3.1, (ωk+1, λk+1) is an O(ǫ2)

approximation of (ω∗, λ∗). We can conclude from Lemma 3.2 that dk+1 is also an O(ǫ2) ap-

proximation of d∗. Thus our method generates the sequence (ωk, λk) and dk, which converge

to (ω∗, λ∗) and d∗ both at a quadratic rate. �

3.3. Possible extension to the case where multiplicity is higher than 2

In this subsection, we will discuss some possible extensions to the case where λ∗ is an

eigenvalue of A(ω∗) with multiplicity m > 2.

In this case, Eq. (3.5) is singular at (ω∗, λ∗). A natural thought is to consider the linear

equation system

M(ω, λ)

[

x(ω, λ)

f(ω, λ)

]

≡
[

A(ω)− λI C

CH 0

] [

x(ω, λ)

f (ω, λ)

]

=

[

0

d

]

, (3.23)

where d ∈ Cm is a nonzero constant vector, C ∈ Cn×m is a constant matrix. Analogous to the

analysis in subsection 3.1, we can choose C such that M(ω, λ) is nonsingular in a neighbor of

(ω∗, λ∗), then we solve f (ω, λ) = 0 to get (ω∗, λ∗). The number of equations m are larger than

the number of unknowns 2. The subsequent analysis is more complex and difficult.

Actually, in practice, Eq. (3.5) is always nonsingular when (ω, λ) 6= (ω∗, λ∗). When (ω, λ)

is very close to (ω∗, λ∗), i.e., the last one or two iteration step before convergence, though

the condition number of the coefficient matrix becomes very large, we still solve Eq. (3.5)

numerically. As shown in Example 4.3, Algorithm 3.2 still works and the convergence rate

looks more than 2. This is probably because when Eq. (3.5) is nearly singular, the computed

result is a good approximation of the null space. Strict analysis will be considered in other

places.

4. Numerical Experiments

We now describe four numerical experiments to give insight into Algorithms 2.1, 3.1–3.2

and their performance. Examples 4.1 and 4.2 show our algorithms work and converge lo-

cally quadratically. Example 4.3 shows the behaviour of our algorithm for the case that λ∗

is an eigenvalue of A(ω∗) with multiplicity higher than 2. Example 4.4 shows the difference

between Algorithms 3.1 and 3.2. The numerical experiments were performed in MATLAB

Version 9.7.0.1165820(R2019b) on a standard desktop with the following specifications: Dell

DESKTOP-725VTKL with Intel(R) Core(TM) i5-9500 CPU @ 3.00GHz 8GB RAM.

The Crawford number γ(B) of a matrix B ∈ Cn×n is defined as the distance of its numerical

range F(B) from zero

γ(B) = min{|z| : z ∈ F(B)}, F(B) = {vHBv : v ∈ C, ‖v‖ = 1}. (4.1)

Cheng and Higham [3] found that (4.1) is a univariate optimization problem

γ(B) = max
{

max
ω∈[0,2π]

λmin(A(ω)), 0
}

, (4.2)



1130 S.R. GONG AND Y.F. SU

where

A(ω) = S cos(ω) +K sin(ω), (4.3)

S = (B +BH)/2 and K = (B −BH)/2ı are Hermitian matrices, ı is the imaginary unit.

Example 4.1. This example is used to demonstrate that the sequence generated by Algo-

rithm 2.1 converges to a local extreme point locally quadratically. We consider the tridiagonal

matrix B as in [15, 17], where

B = tridiag





ı ı . . . ı

1 1 a3 . . . an
ı ı . . . ı



+ 0.5ı · In with aj = 2 +
j

n
, j = 3, . . . , n, (4.4)

with n = 120. Fig. 4.1 shows some eigenvalue curves of A(ω), where A(ω) is defined by Eq. (4.3).

As shown in Fig. 4.1, λ∗ is the Crawford number of matrix B. The maximum of λn(A(ω)) is

attained at ω∗ = 0, and λ∗ = 1 is an eigenvalue of A(ω∗) with multiplicity 2. λn(A(ω)) is

non-smooth at ω∗. ωs is a local extreme point of λn−1(A(ω)), λs is a simple eigenvalue of

A(ωs), and λn−1(A(ω)) is analytic at ωs.

Fig. 4.1. Some eigenvalue curves of A(ω), n = 120.

In this example, we use Algorithm 2.1 to maximize

ϕ(ω) = λn−1(A(ω)), ω ∈ [−0.5, 0], (4.5)

with initials

ω0 = −0.2, λ0 = ϕ(ω0).

We set c be the eigenvector of A(ω0) corresponding to λ0 in Eq. (2.1), such that Eq. (2.1) is

nonsingular by Proposition 2.1. Table 4.1 shows the computed results of Example 4.1. We

observed local quadratic convergence of Algorithm 2.1.

Example 4.2. In this example, we apply Algorithms 3.1 and 3.2 to compute the Crawford

number of the same matrix B, i.e., (4.4), as in Example 4.1. We use Algorithms 3.1, 3.2 to

maximize

ϕ(ω) = λn(A(ω)), ω ∈ [−1, 1], (4.6)
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Table 4.1: Results of Algorithm 2.1 for Example 4.1, n = 120, starting with ω0 = −0.2, λ0 = ϕ(ω0).

k λk ωk rk

0 1.055691712763221 -0.200000000000000 2.3e-02

1 1.055858416183899 -0.207367720148854 3.5e-04

2 1.055774284941694 -0.207261997306516 1.1e-07

3 1.055774267042194 -0.207261963683489 1.0e-15

and A(ω) is defined by Eq. (4.3). As stated in Example 4.1, λ∗ is the Crawford number of matrix

B. The maximum of ϕ(ω) = λn(A(ω)) is attained at ω∗ = 0, and λ∗ = 1 is an eigenvalue of

A(ω∗) with multiplicity 2. ϕ(ω) is non-smooth at ω∗.

In Algorithms 3.1 and 3.2, we set initials as

ω0 = −0.2, λ0 = ϕ(ω0).

We set C = [vn−1(ω0), vn(ω0)] in equation (3.5), whose columns are eigenvecotrs of A(ω0) corre-

sponding to λn−1(ω0) and λn(ω0) respectively, such that Eq. (3.5) is nonsingular by Lemma 3.1.

In Eq. (3.5) of Algorithm 3.1, we set d = [1, 2]T.

Table 4.2 shows the computed results of Example 4.2. We observed that both Algorithms

3.1 and 3.2 converge locally quadratically. With the same starting point ω0 = −0.2, λ0 = ϕ(ω0),

Table 4.2: Results of Algorithms 3.1, 3.2 and 2.1 for Example 4.2, n = 120, starting with same initals

ω0 = −0.2, λ0 = ϕ(ω0).

Algorithm k λk ωk rk

Algorithm 3.1

0 0.664750682012569 -0.200000000000000 7.8e-01

1 1.066182489769177 0.043801545553132 1.8e-01

2 1.001541295371960 0.001560381871468 4.7e-03

3 1.000001854813342 0.000001551099389 5.3e-06

4 1.000000000001885 0.000000000001652 5.5e-12

5 1.000000000000000 0.000000000000000 2.5e-16

Algorithm 3.2

0 0.664750682012569 -0.200000000000000 3.9e-01

1 1.035330809265056 0.097643817489541 1.0e-01

2 1.006327673231500 0.003527613694800 7.2e-03

3 1.000010556307111 0.000009977293151 1.4e-05

4 1.000000000076651 0.000000000062189 9.6e-11

5 1.000000000000000 0.000000000000000 1.1e-16

Algorithm 2.1

0 0.664750682012569 -0.200000000000000 4.2e-01

1 1.040118579251858 0.041483466382649 5.8e-01

2 1.017445576406488 -0.029097446053152 4.5e-01

3 1.104029592625749 -0.233351595680445 1.07e-01

4 1.056786286550737 -0.211075583121032 1.2e-02

5 1.055797222558788 -0.207297767443690 1.2e-04

6 1.055774269089027 -0.207261967306892 1.2e-08

7 1.055774267042192 -0.207261963683486 1.0e-15
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and let c = vn−1(ω0) in Eq. (2.1), if we apply Algorithm 2.1 to maximize ϕ(ω) = λn(A(ω)),

sequence generated by Algorithm 2.1 will converge to (ωs, λs) in Fig 4.1, which has no relation

with (ω∗, λ∗), see Table 4.2. This example shows that the generalization in Section 3 is necessary.

Example 4.3. This example is used to show the behaviour of our algorithm in Section 3

for the case that λ∗ is an eigenvalue of A(ω∗) with multiplicity higher than 2. We consider

the computation of the Crawford number of matrix B = S + ıK as in [10], where (S,K) are

generated by the subroutine GETMAT of [5] with parameter KPAR = 1. The size of matrix B

is n = 25. Fig. 4.2 shows all eigenvalue curves of A(ω), where A(ω) is defined by Eq. (4.3). As

shown in Fig. 4.2, λ∗ is the Crawford number of matrix B. The maximum of ϕ(ω) is attained

at ω∗ = 1
4π and the multiplicity of λ∗ =

√
2 is the same with the size of B.

Fig. 4.2. All eigenvalue curves of A(ω) of Example 4.3, n = 25.

We use Algorithm 3.2 to maximize

ϕ(ω) = λn(A(ω)), (4.7)

with initials ω0 = 0, λ0 = ϕ(ω0). Let

i1 = arg max
i=1,...,n

vi(ω0)
HA′(ω0)vi(ω0) and i2 = arg min

i=1,...,n
vi(ω0)

HA′(ω0)vi(ω0),

where vi(ω0), i = 1, . . . , n, are eigenvectors of A(ω0) corresponding to n eigenvalues. Then we

set

C = [vi1(ω0), vi2 (ω0)].

Table 4.3 shows the computation result of Example 4.3. The last column of Table 4.3 shows

condition number of the coefficient matrix M(ωk, λk) in Eq. (3.5). Though condition number

of the coefficient matrix, i.e., κ(M(ωk, λk)), becomes very large when (ω, λ) is quite close to

(ω∗, λ∗), numerical results in Table 4.3 shows that our algorithm also works and the convergence

rate looks more than 2.
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Table 4.3: Results of Algorithm 3.2 for Example 4.3, k=1, starting with ω0 = 0, λ0 = ϕ(ω0), n = 25.

k λk ωk rk κ(M(ωk, λk))

0 2.985417748196108 0 1.9e+00 96

1 2.000000000000000 1.000000000000000 0.8e+00 53

2 1.447415443253716 0.782041901539138 3.5e-02 43

3 1.414221527610335 0.785398175999702 7.9e-06 1e+05

4 1.414213562373095 0.785398163397448 0 1e+17

Example 4.4. This example is used to show that Algorithm 3.1 may converge to a point which

is not an extreme point, while Algorithm 3.2 will not. We construct an Hermitian matrix A(ω)

artificially as follows: Let D(ω) ∈ Rn×n be a diagonal matrix,

D(ω) = diag

(

ω2 − 1.52

2
,
(ω − 3)2 − 1.52

2
, 4(ω − 1.5)2 − 2, d4(ω), . . . , dn(ω)

)

, (4.8)

where dj(ω) = −3j + 2j sin(ω)− 2, j = 4, . . . , n. Let

v(ω) =
(

cos(ω), sin(ω) cos(ω), sin2(ω) cos(ω), . . . , sinn−2(ω) cos(ω), sinn−1(ω)
)T

. (4.9)

Construct the Householder matrix

V (ω) = I − 2
v(ω)v(ω)T

‖v(ω)‖2 . (4.10)

Let

A(ω) = V (ω)D(ω)V (ω)T.

We consider minimizing

ϕ(ω) = λ1(ω), ω ∈ [0, 3].

As shown in Fig. 4.3, the local minimum of λ1(A(ω)) is attained at ω∗ = 1.5, and λ∗ = 0 is an

eigenvalue of A(ω∗) with multiplicity 2. λm = 2 is an eigenvalue of A(ωm) with multiplicity 2,

but ωm = 2.5 is not an extreme point of λ1(ω).

Fig. 4.3. Some eigenvalue curves of A(ω) of Example 4.4.
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In Algorithm 3.1, we set the initials as

ω0 = 2.1, λ0 = ϕ(ω0).

We set C = [v1(ω0), v2(ω0)], where vi(ω), i = 1, 2 are eigenvectors of A(ω0) corresponding

to λ1(ω0) and λ2(ω0), such that Eq. (3.5) is nonsingular by Lemma 3.1. We set d = [1, 1]T.

Table 4.4 shows that, with the initials ω0 = 2.1, λ0 = ϕ(ω0), sequence generated by Algorithm

3.1 converges to the point (ωm, λm), which is not a local extreme point. While the matrix

X(ω0, λ0)
TA′(ω0)X(ω0, λ0) is definite, thus Algorithm 3.2 can not go on. If we choose the

initials as ω0 = 2, λ0 = ϕ(ω0), and set C = [v1(ω0), v2(ω0)], then X(ω0, λ0)
TA′(ω0)X(ω0, λ0) is

indefinite, sequence generated by Algorithm 3.2 converges to (ω∗, λ∗). Table 4.4 shows that the

sequence generated by Algorithm 3.2 satisfies x(ωk, λk)
HA′(ωk)x(ωk, λk) = 0, which ensures

the computed result is a local extreme point.

For the same example, we compare the iterations and CPU time of our algorithms with the

subspace method proposed by Kangal et al. [14] and the support based algorithm proposed by

Kangal and Mengi [15] in Table 4.5. The subspace method and the support based algorithm are

methods of global convergence. The codes of these two methods are available in [14] and [15]

respectivly. We set the initial point ω0 = 2 in Algorithm 3.2. In subspace method, we set the

initial point as ω0 = 1.8 and initial lower bound and upper bound for ω as [1.4,1.8]. In support

based method we set the initial lower bound and upper bound for ω as [1.4,1.8]. All these

methods get the extreme point ω∗ = 1.5. We have carried out dozens of runs for each of these

algorithms in order to obtain average CPU time. Table 4.5 shows Algorithm 3.2 is faster than

other two algorithms.

Table 4.4: Results of Algorithm 3.1 for Example 4.4, n = 100, starting with ω0 = 2.1, d = [1, 1]T.

Algorithm k λk ωk rk xH
kA

′(ωk)xk

Algorithm 3.1

0 1.080000000000020 2.100000000000000 1.6e+01 7.52

1 2.546568695960197 2.707407407407380 2.1e+01 29.7

2 2.100219061263431 2.566915516731857 6.2e-01 17.6

3 2.007935528354060 2.507030591811159 6.4e-02 14.7

4 2.000053839808336 2.500074321596725 7.2e-04 14.4

5 2.000000003059168 2.500000008372691 8.7e-08 14.4

6 2.000000000000000 2.500000000000000 9.0e-16 14.4

Algorithm 3.2

0 0.874999999999886 2.000000000000000 1.2e+01 4.3e-15

1 -0.018907286209513 1.485501574144193 1.2e-01 -4.8e-15

2 0.001872914254212 1.500576012131182 4.9e-04 4e-16

3 0.000000129980282 1.500000033407006 7.0e-07 0

4 -0.000000000000001 1.500000000000000 0 -1e-16

Table 4.5: Comparison of three methods for Example 4.4.

Algorithm iter time(s) iter time(s) iter time(s)

(n = 102) (n = 103) (n = 2 ∗ 103)

Algorithm 3.2 5 0.007 5 0.8 5 7

Support function 6 0.02 6 3.2 6 27

Subspace method 6 0.04 6 3.3 4 15
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5. Conclusions

In this paper, we generalize the IDM such that it can solve a univariant eigenvalue opti-

mization problem (1.1). We also generalize the IDM for the non-smooth case. IDM converges

quadratically locally for both smooth and non-smooth case under reasonable assumptions. Nu-

merical experiments confirm the theoretical analysis and the efficiency of the algorithm. We

give the analysis of the case where the eigenvalue is of multiplicity 2 at the extreme point. For

the cases that the multiplicity is larger than 2, numerical experiments show that our method

still works, and needs further study.

Acknowledgments. The work of the authors was supported by the China NSF Project (No.

11971122).

References

[1] S. Boyd and V. Balakrishnan, A regularity result for the singular values of a transfer matrix and

a quadratically convergent algorithm for computing its L∞-norm, Systems Control Lett., 15:1

(1990), 1–7.

[2] R. Byers, A bisection method for measuring the distance of a stablematrix to the unstable matrices,

SIAM J. Sci. Statist. Comput., 9:5 (1988), 875–881.

[3] S.H. Cheng and N. J. Higham, The nearest definite pair for the Hermitian generalized eigenvalue

problem, Linear Algebra Appl., 302–303:1 (1999), 63–76.

[4] C.R. Crawford, A stable generalized eigenvalue problem, SIAM J. Numer. Anal., 13:6 (1976),

854–860.

[5] C.R. Crawford, Algorithm 646 pdfind: A routine to find a positive definite linear combination of

two real symmetric matrices, ACM Trans. Math. Software, 12:3 (1986), 278–282.

[6] M.A. Freitag and A. Spence, A newton-based method for the calculation of the distance to insta-

bility, Linear Algebra Appl., 435:12 (2011), 3189–3205.

[7] M.A. Freitag, A. Spence, and P. Van Dooren, Calculating the H∞-norm using the implicit deter-

minant method, SIAM J. Matrix Anal. Appl., 35:2 (2014), 619–635.

[8] D.D. Gaurav and K.V.S. Hari, A fast eigen solution for homogeneous quadratic minimization with

at most three constraints, IEEE Signal Process. Lett., 20:10 (2013), 968–971.

[9] I. Gohberg, P. Lancaster, and L. Rodman, Matrix Polynomials, Society for Industrial and Applied

Mathematics, 2009.

[10] C.H. Guo, N.J. Higham, and F. Tisseur, An improved arc algorithm for detecting definite Hermi-

tian pairs, SIAM J. Matrix Anal. Appl., 31:3 (2009), 1131–1151.

[11] C. Helmberg and F. Rendl, A spectral bundle method for semidefinite programming, SIAM J.

Optim., 10:3 (2000), 673–696.

[12] N.J. Higham, F. Tisseur, and P. M. Van Dooren, Detecting a definite Hermitian pair and a

hyperbolic or elliptic quadratic eigenvalue problem, and associated nearness problems, Linear

Algebra Appl., 351–352:15 (2002) 455–474.

[13] D. Hinrichsen and A.J. Pritchard, Mathematical Systems Theory I: Modelling, State Space Anal-

ysis, Stability and Robustness, Springer, 2005.

[14] F. Kangal, K. Meerbergen, E. Mengi, and W. Michiels, A subspace method for large-scale eigen-

value optimization, SIAM J. Matrix Anal. Appl., 39:1 (2018), 48–82.

[15] F. Kangal and E. Mengi, Nonsmooth algorithms for minimizing the largest eigenvalue with appli-

cations to inner numerical radius, IMA J. Numer. Anal., 40:4 (2020), 2342–2376.

[16] T. Kato, Perturbation Theory for Linear Operators, Springer, 1995.

[17] D. Kressner, D. Lu, and B. Vandereycken, Subspace acceleration for the Crawford number and

related eigenvalue optimization problems, SIAM J. Matrix Anal. Appl., 39:2 (2018), 961–982.



1136 S.R. GONG AND Y.F. SU

[18] P. Lancaster, On eigenvalues of matrices dependent on a parameter, Numer. Math., 6 (1964),

377–387.

[19] A.S. Lewis and M.L. Overton, Eigenvalue optimization, Acta Numer. , 5 (1996), 149–190.

[20] E. Mengi, E.A. Yildrim, and M. Kilic, Numerical optimization of eigenvalues of Hermitian matrix

functions, SIAM J. Matrix Anal. Appl., 35:2 (2014), 699–724.

[21] M.L. Overton, On minimizing the maximum eigenvalue of a symmetric matrix, SIAM J. Matrix

Anal. Appl., 9:2 (1988), 256–268.

[22] F. Rellich, Perturbation Theory of Eigenvalue Problems, Gordon and Breach Science Publishers,

1969.

[23] A. Spence and C. Poulton, Photonic band structure calculations using nonlinear eigenvalue tech-

niques, J. Comput. Phys., 204:1 (2005), 65-81.

[24] C. F. Van Loan, How near is a stable matrix to an unstable matrix?, Contemp. Math., 47 (1985),

465–478.

[25] Z.Q. Luo, W.K. Ma, A.M.-C. So, Y. Ye and S. Zhang, Semidefinite relaxation of quadratic opti-

mization problems, IEEE Signal Process. Mag., 27:3 (2010), 20–34.


