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Abstract. This paper is devoted to studying the initial-boundary value prob-
lem for the radiative full Euler equations, which are a fundamental system in
the radiative hydrodynamics with many practical applications in astrophysi-
cal and nuclear phenomena, with the slip boundary condition on an imper-
meable wall. Different from our recent paper named “Asymptotic stability of
rarefaction wave with slip boundary condition for radiative Euler flow”, in this
paper we study the initial-boundary value problem with the Neumann bound-
ary condition instead of the Dirichlet boundary on the temperature. Based on
the Neumann boundary condition on the temperature, we obtain that the pres-
sure also satisfies the Neumann boundary condition. This observation allows
us to establish the local existence and a priori estimates more easily than the
case of the Dirichlet boundary condition which is studied in the mentioned
paper. Since for the impermeable problem, there are quite a few results avail-
able for the Navier-Stokes equations and the radiative Euler equations, it will
contribute a lot to our systematical study on the asymptotic behaviors of the
rarefaction wave with the radiative effect and different boundary conditions
such as the inflow/outflow problem and the impermeable boundary problem
in our series papers.
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1 Introduction

The radiative full Euler equations are a fundamental system to describe the mo-
tion of the compressible gas with the radiative heat transfer phenomena, which
has many applications in astrophysics and nuclear explosions. Mathematically,
the one-dimensional radiative full Euler equations in the Eulerian coordinates are
a hyperbolic-elliptic coupled system of the following form:






ρt+(ρu)x =0, (1.1a)

(ρu)t+(ρu2+p)x =0, (1.1b)
{

ρ

(
e+

u2

2

)}

t

+

{
ρu

(
e+

u2

2

)
+pu

}

x

+qx =0, (1.1c)

−qxx+aq+b(θ4)x =0, (1.1d)

where ρ,u, p, e and θ are respectively the density, velocity, pressure, internal en-
ergy and absolute temperature of the gas, and q is the radiative heat flux. Posi-
tive constants a and b depend only on the gas itself. Like the classic compressible
Euler equations, the Eqs. (1.1a)-(1.1c) stand for the conservation of the mass, mo-
mentum and energy respectively. The Eq. (1.1d) is related to the radiative heat
transfer phenomenon, and one can refer [1,12,23,29,36,40] for more details. Sys-
tem (1.1) can also be derived by the non-relativistic limit (speed of light tending
to +∞) from a hyperbolic-kinetic system, and rigorous mathematical derivation
can be found in [16]. Throughout this paper, we will concentrate on the ideal
polytropic gas

p=Rρθ, e=Cvθ, Cv=
R

γ−1
, (1.2)

where γ>1 is the adiabatic exponent and R>0 is the specific gas constant.
In this paper, we will investigate the initial-boundary value problem of system

(1.1) on 0≤ x<+∞ and 0≤ t<+∞ with the initial data

(ρ,u,θ)(x,0)=(ρ0 ,u0,θ0)(x) for x≥0, and inf
x∈R+

(ρ0,θ0)(x)>0, (1.3)
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the asymptotic boundary condition at the far field x=+∞

(ρ,u,θ,q)(+∞,t)=(ρ+ ,u+,θ+,0), t≥0, (1.4)

and the Dirichlet-Neumann boundary conditions on the boundary x=0

u(0,t)=0, θx(0,t)= θ− , q(0,t)=0, t≥0, (1.5)

where ρ+>0,u+,θ±>0 are given constants.
The slip boundary condition u(0,t)=0 means the wall is impermeable, so we

call the initial-boundary value problem (1.1)-(1.5) the impermeable wall problem.
We will consider the asymptotic stability of the 3-rarefaction wave of the imper-
meable wall problem (1.1)-(1.5). As far as we know, so far there is one rigorous
result obtained recently in [9] on the global-in-time solutions of the impermeable
wall problem for the radiative Euler equations, and most of the existing results
are on the global-in-time existence and stability of the elementary wave of the
Cauchy problem or the initial-boundary value (inflow/outflow) problem for the
one-dimensional radiative full Euler equations (1.1). Actually, due to the diffi-
culty that the velocity vanishes on the boundary, even for some strong dissipative
systems such as Navier-Stokes equations, there are quite few results (see [25] for
traveling wave and [28] for rarefaction wave) on the impermeable wall problem.

To study this problem, lots of additional boundary estimates on the perturba-
tion of the velocity is needed (see (4.23), (4.47), (4.51), (4.75)). However, we do
not need the estimates on the time-derivatives thanks for the Neumann bound-
ary condition on the temperature considered in this paper. It is very different
from those estimates in [9]. In fact, the combination of the condition θx(0,t)= 0
with u(0,t)= 0 implies px(0,t)= 0, which greatly simplifies the estimates on the
boundary.

For the Cauchy problem, the global-in-time existence of solutions around
a constant state was shown in [17]. If the initial data is a small perturbation of
a given rarefaction wave with small strength, it was proved in [20] that the so-
lutions converge to the rarefaction wave as t →+∞. Then in [14], the authors
showed that when the absorption coefficient α tends to +∞, the solutions con-
verge to the rarefaction wave with the convergence rate α−1/3|lnα|2, where the
absorption coefficient α is defined by the relationship a=3α2 and b=4ασ for pos-
itive constants a,b and the Stefan-Boltzmann constant σ. The asymptotic stability
of a single viscous contact wave was proved in [37,38]. The existence and stability
for zero mass perturbation of the small amplitude shock profile were respectively
studied in [21, 22]. The authors in [30] showed the nonlinear orbital asymptotic
stability of small amplitude shock profiles for general hyperbolic-elliptic coupled
systems of the type modeling the radiative gas. Analysis of large amplitude shock
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profiles was given in [2,24]. Finally, for the case of composite waves, the stability
of rarefaction waves and a viscous contact wave was investigated in [31, 39]. The
unique global-in-time existence and the asymptotic stability of two viscous shock
waves were studied in [4] by employing the anti-derivative method.

We initiated the research of the initial-boundary value problem on a half line
for the radiative full Euler equations (1.1) in [5], where the asymptotic stability
of rarefaction wave for the inflow problem was established. Then the asymp-
totic stability of rarefaction wave for the outflow problem was established in [7].
Recently the asymptotic stability of rarefaction wave for the impermeable wall
problem was established in [9]. In addition, the asymptotic stability of viscous
contact wave for the inflow problem and the asymptotic stability of shock wave
for the outflow problem were established in [6, 8], respectively.

In order to systematically study the behaviour of rarefaction wave with the ra-
diative effect and of different-type boundary conditions such as the inflow/out-
flow problems [5, 7], it is natural to consider the impermeable wall problem.

We need to mention that we are also motivated by the related investigations
on the simplified radiative Euler model (Hamer model), which gives a good ap-
proximation to the fundamental system in a certain physical situation, c.f. [13,19].
The investigations on the simplified model provide a good understanding on the
radiative effect. The exhaustive literature list is beyond the scope of the paper,
and thus, only few closely related results on the rarefaction waves are mentioned,
c.f. [3,10,11,18,32–34]. Interested readers can refer to them and references therein.

The rest of the paper is organized as follows. In Section 2, the smooth rarefac-
tion wave is constructed based on the Riemann problem of the full Euler equa-
tions. Properties of smooth rarefaction waves which will be frequently used in
this paper and the main theorem of this paper are given. In Section 3, we refor-
mulate the system and establish the local existence of the reformulated problem.
Then series of a priori estimates are established in Sections 4-5.

2 Construction on rarefaction wave and main results

In this section, we will introduce the smooth rarefaction wave which is the asymp-
totic profile considered in this paper. Then several properties of the smooth rar-
efaction wave and main theorem of this paper will be given.

2.1 Construction on rarefaction wave

It is well known that the 3-rarefaction wave curve through the right-hand side
state (ρ+,u+,θ+) is
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R3(ρ+,u+,θ+) :=

{
(ρr ,ur,θr) : 0<ρr

<ρ+,(ρr)1−γθr =ρ
1−γ
+ θ+,

ur =u++
2

γ−1

√
Rγρ

1−γ
+ θ+

[
(ρr)

γ−1
2 −ρ

γ−1
2

+

]}
. (2.1)

In particular, there exist an unique pair (ρ−,θ−) such that (ρ−,0,θ−)∈R3(ρ+,u+,θ+).
The 3-rarefaction wave (ρr,ur,θr)(x/t) connecting (ρ−,0,θ−) and (ρ+,u+,θ+) is
a global-in-time weak solution to the following Riemann problem of Euler sys-
tem: 




ρr
t+(ρrur)x =0,

(ρrur)t+[ρr(ur)2+pr]x=0,{
ρ

[
er+

(ur)2

2

]}

t

+

{
ρrur

(
er+

(ur)2

2

)
+prur

}

x

=0,

(ρr,ur,θr)(x,0)=

{
(ρ−,0,θ−), x<0,

(ρ+,u+,θ+), x>0.

(2.2)

In addition, qr is defined by

qr =−
b

a

{
(θr)4

}
x
. (2.3)

Next, in order to give the details of the large-time behavior of the solutions to
the impermeable problem, it is necessary to construct a smooth approximation

solution (ρ̃,ũ, θ̃)(x,t) from (ρr,ur,θr)(x/t). As done in [15], firstly let us define
w̃(x/t) to be the solution of

w̃t+w̃w̃x=0,

w̃(x,0)= w̃0(x)=
1

2
(w++w−)+w̄Kν

∫ εx

0

dy

(1+y2)ν
,

(2.4)

where w̄=(w+−w−)/2>0, ε>0 and Kν is a constant such that

Kν

∫
∞

−∞

dy

(1+y2)ν
=1

for ν>3/2. The properties of the solution w̃ to the regularized problem (2.4) were
given in Lemma 2.1 of [26, 27, 35] as follows.

Lemma 2.1 ([26, 27, 35]). The regularized problem (2.4) admits a unique global smooth

solution w̃(x,t) satisfying the following properties:
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(i) w−< w̃(x,t)<w+ , w̃x(x,t)>0 for each (x,t)∈R×[0,∞).

(ii) For any p with 1≤ p≤∞, there exists a constant Cp,ν depending on p and ν such

that

‖w̃x(t)‖
p
Lp ≤Cp,ν min(εp−1w̄p, w̄t−p+1),

‖w̃xx(t)‖
p
Lp ≤Cp,νmin

(
ε2p−1w̄p, ε(p−1)(1− 1

2ν )w̄−
p−1
2ν t−p−

p−1
2ν

)
.

(iii) There exists a constant Cν depending on ν such that
∫

R

∣∣∣∣
w̃2

xx

w̃x

∣∣∣∣dx=

∥∥∥∥
w̃2

xx

w̃x

∥∥∥∥
L1

≤Cνmin
(

ε2w̄, ε1− 1
2ν w̄− 1

2ν t−1− 1
2ν

)
.

(iv) |∂l
t∂

k
xw̃|∞≤C|w+−w−|l+k+1, l,k≥0, l+k≤4.

(v) sup
R
|w̃(x,t)−wR(x/t)|→0, as t→+∞, where wR(x/t) is a classic rarefaction

wave connecting w− and w+.

Let w−=λ3(ρ−,0,θ−) and w+=λ3(ρ+,u+,θ+). Here λ3 is the third eigenvalue
of the full Euler system. Then the smooth approximated solution

z̃(x,t)=
(

ρ̃(x,t),ũ(x,t), θ̃(x,t)
)

is constructed by solving the following equations:

Sr(ρ̃,ũ, θ̃)(x,t)=Sr(ρ+,u+,θ+),

λ3(ρ̃,ũ, θ̃)(x,t)= w̃(x,1+t),

ũ=u+−
∫ ṽ

v+
λ3(µ,Sr

+)dµ,

(2.5)

where
Sr(ρ̃,ũ, θ̃)=Rθ̃ ρ̃1−γ, Sr

+=Sr(ρ+,u+,θ+)=Rθ+ρ
1−γ
+ .

It is easy to check that




ρ̃t+(ρ̃ũ)x =0,

(ρ̃ũ)t+
(
ρ̃ũ2+ p̃

)
x
=0,

{
ρ̃

(
R

γ−1
θ̃+

ũ2

2

)}

t

+

{
ρ̃ũ

(
R

γ−1
θ̃+ ũ2

2

)
+ p̃ũ

}

x

=0,

(ρ̃,ũ, θ̃)(0,t)=(ρ− ,0,θ−),

(ρ̃,ũ, θ̃)(x,0) →

{
(ρ−,0,θ−), x → 0+,

(ρ+,u+,θ+), x → +∞.

(2.6)
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In addition, q̃ is defined by

q̃=−
b

a
(θ̃4)x. (2.7)

The following properties are satisfied by the smooth rarefaction wave z̃ and q̃.

Lemma 2.2 (Property of Smooth Rarefaction Wave). Smooth rarefaction wave z̃(x,t)
obtained via (2.4) and (2.5) satisfies

(1) ũx ≥0 for x>0, t>0.

(2) For any p (1≤ p≤+∞), there exists a constant C such that

∥∥(ρ̃x,ũx, θ̃x

)
(t)
∥∥

Lp ≤Cp,νmin
{

ǫ
1− 1

p ,(1+t)
−1+ 1

p

}
,

∥∥(ρ̃xx,ũxx, θ̃xx

)
(t)
∥∥

Lp ≤Cp,νmin
{

ǫ
2− 1

p ,(1+t)
−1−

p−1
2p

}
.

(2.8)

(3) limt→+∞supx∈R+ |(ρ̃,ũ, θ̃)(x,t)−(ρr ,ur,θr)(x/t)|=0.

(4) In particular, for p=2,

‖(ṽx ,ũx, θ̃x)(t)‖
2.ǫ

1
8 (1+t)−

7
8 , ‖q̃x(t)‖

2 .ǫ
1
8 (1+t)−

7
4 , (2.9)

‖(ṽxx ,ũxx, θ̃xx)(t)‖.ǫ
1
8 (1+t)−

7
8 .

(5)
∫

R+

(
θ̃2

xx

ũx
+

θ̃4
x

ũx

)
(x,t)dx.ǫ

1
8 (1+t)−

9
8 . (2.10)

The proof of Lemma 2.2 can be found elsewhere such as [7, 35].

In this paper, we will use (ρ̃,ũ, θ̃, q̃)(x,t) to represent (ρ̃,ũ, θ̃, q̃)(x,t)|x≥0 for the
notational simplicity.

2.2 Main results

In this subsection, we will reformulate the impermeable problem mathematically
by introducing the difference of the solutions and the smooth rarefaction wave
defined by (2.5) and (2.7)

(φ,ψ,ξ,w)=(ρ,u,θ,q)−(ρ̃,ũ, θ̃, q̃). (2.11)
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Then (φ,ψ,ξ,w) satisfies the following equations:

φt+uφx+ρψx=h1, (2.12a)

ρ(ψt+uψx)+(p− p̃)x =h2, (2.12b)

Cvρ(ξt+uξx)+pψx+wx=h3, (2.12c)

−wxx+aw+4bθ3ξx+4bθ̃xξ
(

θ2+θθ̃+ θ̃2
)
= q̃xx, (2.12d)

where
h1 :=−ρ̃xψ− ũxφ=O(1)

∣∣(ρ̃x,ũx)
∣∣ |(φ,ψ)|,

h2 :=−ρũxψ+
p̃x

ρ̃
φ=O(1)

∣∣(ρ̃x ,ũx, θ̃x)
∣∣ |(φ,ψ)|,

h3 :=−Rρξũx−Cvθ̃xρψ− q̃x =O(1)
∣∣(ũx , θ̃x)

∣∣ |(ψ,ξ)|+ q̃x

(2.13)

with the initial-boundary conditions





(φ,ψ,ξ)(x,0)=(φ0 ,ψ0,ξ0)(x)→ (0,0,0) as x→+∞,

ψ(0,t)=0, ξx(0,t)=−θ̃x(0,t), w(0,t)=−q̃(0,t)=
4b

a
θ3θ̃x(0,t).

(2.14)

We are ready to introduce the main result of this paper in this subsection. First,
we define the solution space as

XM(0,t) :=
{
(φ,ψ,ξ)∈C

(
[0,t];H2(R+)

)
,w∈C

(
[0,t];H3(R+)

)
,

wt∈C
(
0,t;H2(R+)

)
, (φ,ψ,ξ)x ∈L2

(
0,t;H1(R+)

)
,

w∈L2
(
[0,t];H3(R+)

)
,wt∈L2

(
0,t;H2(R+)

)
,

sup
τ∈[0,t]

{
‖(φ,ψ,ξ)(τ)‖2+‖w(τ)‖3+‖wt(τ)‖2

}
≤M

}
. (2.15)

Now we turn to state our main result that the smooth rarefaction wave con-
structed in (2.5) and (2.7) is globally stable.

Theorem 2.1. Assume (ρ−,0,θ−)∈R3(ρ+,u+,θ+). Suppose the initial data (1.3) and

the boundary data (1.5) satisfy the compatibility condition u0(0)=0, and the initial data

satisfy (
ρ0− ρ̃0,u0− ũ0,θ0− θ̃0

)
∈ (H2∩L1)[0,+∞). (2.16)

If there exist constants ǫ0>0 and η0>0 suitably small such that ǫ.ǫ0 and

∥∥(ρ0− ρ̃0,u0− ũ0,θ0− θ̃0

)∥∥
2
.η0, (2.17)
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then the impermeable problem (1.1)-(1.5) admits a unique solution (ρ,u,θ,q)(x,t) satis-

fying

(ρ− ρ̃,u− ũ,θ− θ̃,q− q̃)(x,t)∈XM [0,+∞). (2.18)

Furthermore, it holds

sup
x≥0

∣∣∣(ρ,u,θ,q)(x,t)−(ρr ,ur,θr,qr)
(x

t

)∣∣∣ → 0 as t → +∞. (2.19)

3 The local-in-time existence

In this section, we will prove the local-in-time existence of the initial-boundary
value problem (2.12)-(2.14), which is stated as follows.

Proposition 3.1 (Local-in-Time Existence). There exist positive constants ǫ1,η1 and

C(Cη1≤η0) such that if η.η1 and ǫ.ǫ1, then for any constant M∈(0,η1), there exists

a positive constant t0=t0(M), which does not depend on τ such that if

‖(φ,ψ,ξ,w)(τ)‖2 ≤M,

then problem (2.12)-(2.14) admits a unique solution (φ,ψ,ξ,w)(x,t)∈XC̄ M(τ,τ+t0).

Proof. We will extend the initial data from being defined on {τ}×R
+ to {τ}×R

to show the local-in-time existence. In fact, by the boundary condition (1.5), we

extend (u,θ,q) by
(
u(−x,τ),θ(−x,τ),q(−x,τ)

)
:=
(
−u(x,τ),θ(x,τ),−q(x,τ)

)
for x≥0.

Moreover, by the Eq. (1.1b), px(0,t)=0. So, by the first identity in (1.2), we know

that ρx(0,t)=0. Then we extend ρ by

ρ(−x,τ) :=ρ(x,τ) for x≥0.

Then define the initial data (φ,ψ,ξ,w) on {τ}×R by (2.11), it follows from

‖(φ,ψ,ξ,w)(τ)‖2 ≤M that the extended functions (φ,ψ,ξ,w) also satisfy the same

estimate. Now, following the argument in the proof of [4, Theorem 4.1], we know

there exists a unique H2-solution (φ,ψ,ξ,w) of Eqs. (2.12) on (τ,τ+t0)×R with

the initial condition (2.14) and estimate (φ,ψ,ξ,w)(x,t)∈XC̄M(τ,τ+t0). Moreover,

for a given solution (ρ(x,t),u(x,t),θ(x,t),q(x,t)) of Eqs. (1.1), it is easy to see that

(ρ(−x,t),−u(−x,t),θ(−x,t),−q(−x,t)) is also a solution of Eqs. (1.1). Because the

two solutions satisfy the same boundary condition due to the fact that
(
ρ(−x,τ),u(−x,τ),θ(−x,τ),q(−x,τ)

)
=
(
ρ(x,τ),−u(x,τ),θ(x,τ),−q(x,τ)

)
,
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we have
(
ρ(−x,t),u(−x,t),θ(−x,t),q(−x,t)

)
=
(
ρ(x,t),−u(x,t),θ(x,t),−q(x,t)

)
.

So on the boundary x=0, we have the solution satisfies the boundary condition

(1.5). Finally, assume there are two solutions (ρ1(x,t),u1(x,t),θ1(x,t),q1(x,t)) and

(ρ2(x,t),u2(x,t),θ2(x,t),q2(x,t)) of Eqs. (1.1). For i=1 or 2, define
(
ρi(−x,t),ui(−x,t),θi(−x,t),qi(−x,t)

)
=
(
ρi(x,t),−ui(x,t),θi(x,t),−qi(x,t)

)
.

Then they both are the solutions of Eqs. (1.1) with the same initial data. So, by the

uniqueness, we know that
(
ρ1(x,t),u1(x,t),θ1(x,t),q1(x,t)

)
=
(
ρ2(x,t),u2(x,t),θ2(x,t),q2(x,t)

)
.

Therefore, problem (2.12)-(2.14) admits a unique solution

(φ,ψ,ξ,w)(x,t)∈XC̄M(τ,τ+t0).

The proof is complete.

4 Energy estimates on fluid perturbation parts

Based on Proposition 3.1, the global-in-time existence can be established with
a priori estimates obtained in this section. Suppose that solutions (φ,ψ,ξ,w)(x,t)
of problem (2.12)-(2.14) has been extended to the time T > t, we will derive the
following a priori estimates.

Proposition 4.1 (A Priori Estimates). Under the assumptions of Theorem 2.1, there ex-

ist positive constants η2≤η1,ǫ2≤min{ǫ1,1} and C such that for any t<T, if (φ,ψ,ξ,w)∈
X([0,t]) with satisfying ǫ≤ǫ2 and

N(t) := sup
0≤τ≤t

{
‖(φ,ψ,ξ)(τ)‖2+‖w(τ)‖3+‖wt(τ)‖2

}
.η2, (4.1)

then it holds the estimate that

sup
0≤τ≤t

{
‖(φ,ψ,ξ)(τ)‖2

2+‖w(τ)‖2
3+‖wt(τ)‖

2
2

}

+
∫ t

0
|(φx,ψx,wx,ψxx,φtx,wtx,wtxx)|

2(0,τ)dτ

+
∫ t

0

(
‖(φx,ψx,ξx)(τ)‖

2
1+‖w(τ)‖2

3+‖wt(τ)‖
2
2

)
dτ

.‖(φ0,ψ0,ξ0)‖
2
2+ǫ

1
8 . (4.2)

Here both η1 and ǫ1 are the same positive constants as in Proposition 3.1.
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Once Proposition 4.1 is proved, we can extend the local solution (φ,ψ,ξ,w)(x,t),
obtained in Proposition 3.1 to the time t=+∞ by the standard continuation argu-
ment. Moreover, the estimate (4.2) with passing the limit t→∞ implies that

∫
∞

0

(
‖(φx,ψx,ξx,wx)(τ)‖

2+
d

dt
‖(φx,ψx,ξx,wx)(τ)‖

2

)
dτ<+∞.

Combining the Sobolev inequality, we can easily get the asymptotic behavior
(2.19), that concludes the proof of Theorem 2.1. Therefore, the remaining task
is to show the a priori estimate in Proposition 4.1.

At first, let

E=Rθ̃ω

(
ρ̃

ρ

)
+

ψ2

2
+Cvθ̃ω

(
θ

θ̃

)
, ω(s)= s−1−lns. (4.3)

By the definition of ω, we see that there exists a positive continuous function C(s)
such that

C(s)−1(s−1)2≤ω(s)≤C(s)(s−1)2 .

In addition, by direct calculations, one has

ω(s)≥
1

3
ln2 s as |s−1|≤

1

4
. (4.4)

Following the almost same calculations as in [9, Lemma 4.1], we have the basic
energy estimate on the fluid perturbation part (φ,ψ,ξ)(x,t) as follows.

Lemma 4.1. Under the assumptions of Proposition 4.1, if ǫ and N(t) are suitably small,

it holds

‖(φ,ψ,ξ)(t)‖2+
∫ t

0

(
‖
√

ũx(φ,ψ,ξ)(τ)‖2+‖w(τ)‖2
1

)
dτ

.‖(φ0,ψ0,ξ0)‖
2+ǫ

1
8 +N(t)

∫ t

0
‖(ξx ,wxx)(τ)‖

2dτ. (4.5)

4.1 First-order energy estimates

In this subsection, we will show the first-order energy estimates on the fluid per-
turbation part (φ,ψ,ξ)(x,t). Due to different boundary conditions from [9], here
differentiate (2.12) with respect to x instead of t, the reformed equations can be
written as

φtx+uφxx+ρψxx =H1, (4.6a)
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ρ(ψtx+uψxx)+Rρξxx+Rθφxx =H2, (4.6b)

Cvρ(ξtx+uξxx)+pψxx+wxx=H3, (4.6c)

−wxxx+awx+4bθ3ξxx =H4, (4.6d)

where
H1 :=h1x−uxφx−ρxψx,

H2 :=h2x−ρx(ψt+uψx)−ρuxψx

−2R
(
φxξx+ θ̃xφx+ ρ̃xξx

)
−Rρ̃xxξ−Rθ̃xxφ,

H3 :=h3x−Cvρx(ξt+uξx)−Cvρuxξx−pxψx,

H4 := q̃xxx−12bθ2θxξx−4b
[
θ̃xξ
(

θ2+θθ̃+ θ̃2
)]

x
.

(4.7)

Then we have the following first-order energy estimate.

Lemma 4.2. Under the assumptions of Proposition 4.1, if ǫ and N(t) are suitably small,

then it holds for t∈ [0,T],

‖(φx ,ψx,ξx)(t)‖
2+
∫ t

0

(
‖(ξx ,wx,wxx)(τ)‖

2+|(wx,wxx)|
2(0,τ)

)
dτ

.‖(φ0,ψ0,ξ0)‖
2
1+ǫ

1
8 +
(
ǫ+N(t)

)∫ t

0
‖(φx,ψx,ψxx)(τ)‖

2dτ. (4.8)

Proof. Step 1. Multiplying (4.6a) by Rθφx/ρ2, we get

(
Rθ

2ρ2
φ2

x

)

t

+

(
Rθuφ2

x

2ρ2

)

x

+
Rθ

ρ
φxφxx

=
Rθ

ρ2
φxH1+

[(
Rθ

2ρ2

)

t

+

(
Rθu

2ρ2

)

x

]
φ2

x. (4.9)

Multiplying (4.6b) by ψx/ρ, we have

(
1

2
ψ2

x

)

t

+

(
uψ2

x

2

)

x

+
Rθ

ρ
ψxφxx+Rψxξxx =

ux

2
ψ2

x+
ψx

ρ
H2. (4.10)

Multiplying (4.6c) by ξx/(ρθ), we obtain

(
Cv

2θ
ξ2

x

)

t

+

(
Cvu

2θ
ξ2

x

)

x

+Rψxξxx+
ξx

ρθ
wxx

=
ξx

ρθ
H3+

[(
Cv

2θ

)

t

+

(
Cvu

2θ

)

x

]
ξ2

x. (4.11)
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Multiplying (4.6d) by wx/(4bρθ4), we get

−

(
wx

4bρθ4
wxx

)

x

+

(
wx

4bρθ4

)

x

wxx+
aw2

x

4bρθ4
+

wxξxx

ρθ
=

wxH4

4bρθ4
. (4.12)

Combining (4.9)-(4.12), one has

(
φ2

x

2
+

ψ2
x

2
+

Cv

2θ
ξ2

x

)

t

+

(
wx

4bρθ4

)

x

wxx+
aw2

x

4bρθ4
+ I2x

=
Rθ

ρ2
φxH1+

ψx

ρ
H2+

ux

2
ψ2

x+

[(
Rθ

2ρ2

)

t

+

(
Rθu

2ρ2

)

x

]
φ2

x+

(
Rθ

ρ

)

x

ψxφx

+
ξx

ρθ
H3+

[(
Cv

Cv

2θ

)

t

+

(
Cvu

2θ

)

x

]
ξ2

x+
wx H4

4bρθ4
+

(
1

ρθ

)

x

wxξx , (4.13)

where

I2 :=
Rθuφ2

x

2ρ2
+

uψ2
x

2
+

Cvu

2θ
ξ2

x+
Rθ

ρ
φxψx

+Rψxξx+
ξx

ρθ
wx−

wx

4bρθ4
wxx. (4.14)

Integrating (4.13) over R
+×[0,t], choosing ǫ and N(t) suitable small, we obtain

‖(φx,ψx,ξx)(t)‖
2+
∫ t

0
‖(wx,wxx)(τ)‖

2
1dτ

.‖(φ0,ψ0,ξ0)‖
2
1+
(
ǫ+N(t)

)∫ t

0
‖(φx,ψx,ξx)(τ)‖

2dτ

+
∫ t

0

∫

R+

∣∣(θ̃x, θ̃xx

)∣∣2|(φ,ψ,ξ)|2dxdτ+
∫ t

0
I2(0,τ)dτ. (4.15)

Step 2. Estimates of the boundary integral
∫ t

0 I2(0,τ)dτ.

Firstly, we see from u(0,t)=ψ(0,t)=0,ξx (0,t)=−θ̃x(0,t) that

I2(0,t)=
1

ρ

(
Rθφxψx+Rρψxξx+

ξx

θ
wx−

wx

4bθ4
wxx

)
(0,t). (4.16)

From the Eq. (2.12d), it holds

wxx(0,t)= aw(0,t)+4bθ3ξx(0,t)+12bθ2 θ̃xξ(0,t)− q̃xx(0,t). (4.17)
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That is
( wx

4bθ4
wxx−

wx

θ
ξx

)
(0,t)=

wx

4bθ4
(aw− q̃xx)(0,t)+

3wx

θ2
θ̃xξ(0,t). (4.18)

Hence, we obtain
∫ t

0

(wx

θ
ξx−

wx

4bθ4
wxx

)
(0,τ)dτ

.
∫ t

0

∣∣wx

(
θ̃x, q̃xx, θ̃xξ

)∣∣(0,τ)dτ

.
∫ t

0
‖wx(τ)‖∞‖

(
θ̃x, q̃xx, θ̃xξ

)
(τ)‖∞dτ

.
1

8

∫ t

0
‖wxx(τ)‖

2dτ+
∫ t

0
‖w(τ)‖2

1dτ+ǫ
1
8 . (4.19)

On the other hand, we get from (2.12b) and boundary conditions that

(p− p̃)x(0,t)=0, (4.20)

(Rθφx+Rρξx)(0,t)=−R(ρ̃x ξ+ θ̃xφ)(0,t). (4.21)

Since ‖(ρ̃x ,ũx, θ̃x)(t)‖∞ .min{ǫ,(1+t)−1}, it yields

∫ t

0
(Rθφx+Rρξx)ψx(0,τ)dτ.

∫ t

0

∣∣(ρ̃x, θ̃x)(φ,ξ)ψx

∣∣(0,τ)dτ

.

∫ t

0
‖(φ,ξ)ψx(τ)‖

1
2‖(φx ,ξx)ψxx(τ)‖

1
2
∥∥(ρ̃x, θ̃x

)
(τ)
∥∥

∞
dτ

.N(t)
∫ t

0
‖(φx,ξx)ψxx(τ)‖dτ+

∫ t

0
‖ψx(τ)‖

∥∥(ρ̃x, θ̃x

)
(τ)
∥∥2

∞
dτ

.
(

N(t)+ǫ
)∫ t

0
‖(φx,ψx,ξx,ψxx)(τ)‖

2dτ+ǫ
1
8 . (4.22)

Furthermore, we get

∫ t

0
I2(0,τ)dτ.

∫ t

0
(Rθφx+Rρξx)ψx(0,τ)dτ

+
∫ t

0

(wx

θ
ξx−

wx

4bθ4
wxx

)
(0,τ)dτ

.
(

N(t)+ǫ
)∫ t

0
‖(φx ,ψx,ξx,ψxx)(τ)‖

2dτ

+
1

8

∫ t

0
‖wxx(τ)‖

2dτ+
∫ t

0
‖w(τ)‖2

1dτ+ǫ
1
8 . (4.23)
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Based on Lemma 4.1, we can control the boundary term and obtain

‖(φx,ψx,ξx)(t)‖
2+
∫ t

0
‖wx(τ)‖

2
1dτ

.‖(φ0,ψ0,ξ0)‖
2
1+ǫ

1
8 +
(
ǫ+N(t)

)∫ t

0
‖(φx ,ψx,ξx,ψxx)(τ)‖

2dτ. (4.24)

Furthermore, we see that

∫ t

0
w2

x(0,τ)dτ.
∫ t

0
‖wx(τ)‖

2
∞

dτ.
∫ t

0
‖wx(τ)‖‖wxx(τ)‖dτ

.
1

8

∫ t

0
‖wxx(τ)‖

2dτ+
∫ t

0
‖wx(τ)‖

2dτ. (4.25)

By (4.17), it holds

∫ t

0
w2

xx(0,τ)dτ.
∫ t

0

∣∣(θ̃x, θ̃xξ, q̃xx

)
(0,τ)

∣∣2dτ

.

∫ t

0

∥∥(θ̃x, θ̃xξ, q̃xx

)
(τ)
∥∥2

∞
dτ.ǫ

1
8 . (4.26)

At last, by (2.12d), it holds

∫ t

0
‖ξx(τ)‖

2dτ.
∫ t

0
‖(w,wxx)(τ)‖

2dτ+
∫ t

0

∫

R+

(
θ̃2

xξ2+ q̃2
xx

)
dxdτ. (4.27)

Thus, we get (4.8). This completes the proof.

Now we will deal with the term
∫ t

0 ‖(φx,ψx)(τ)‖2dτ.

Lemma 4.3. Under the assumptions of Proposition 4.1, if ǫ and N(t) are suitably small,

it holds
∫ t

0
‖(φx,ψx)(τ)‖

2dτ.‖(φ0,ψ0,ξ0)‖
2
1+ǫ

1
8 +
(
ǫ+N(t)

)∫ t

0
‖ψxx(τ)‖

2dτ. (4.28)

Proof. (2.12b) can be written as

ψt+uψx+
Rθ

ρ
φx+Rξx =

h2

ρ
−

R

ρ

(
θ̃xφ+ ρ̃xξ

)
. (4.29)

Multiplying (4.29) by Rθφx/2, we get

(
Rθ

2
φxψ

)

t

+

(
R

2
θuφxψ+

p

2
ψψx

)

x

+
R2θ2

2ρ
φ2

x−
p

2
ψ2

x
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=−Rξx Rθ
φx

2
+

R

2
(θt−uθx+uxθ)φxψ−

R

2
θψ(uxφx+ρxψx)

+
1

2
pxψψx+

R

2
ψh1x+

Rθ

2ρ
φxh2−

R2θ

2ρ
φx

(
θ̃xφ+ ρ̃xξ

)
. (4.30)

Multiplying (2.12c) by ψx, we have

(Cvρξψx)t−(Cvρξψt)x+pψ2
x+Cvρuξxψx

+Cv(ρu)xξψx+Cv(ρξ)xψt+wxψx =h3ψx. (4.31)

Combining (4.30) with (4.31), we obtain

(
Rθ

2
φxψ+Cvρξψx

)

t

+

(
R

2
θuφxψ+

p

2
ψψx−Cvρξψt

)

x

+
R2θ2

2ρ
φ2

x+
p

2
ψ2

x

=−Rθ2ξx
φx

2
+

R

2
(θt−uθx+uxθ)φxψ−

R

2
θψ(uxφx+ρxψx)

+
1

2
pxψψx−

R2θ

2ρ
φx

(
θ̃xφ+ ρ̃xξ

)
−wxψx+

R

2
ψh1x+

Rθ

2ρ
φxh2+h3ψx

=
(
ǫ+N(t)

)
|(φx,ψx,ξx)|

2+O(1)
(∣∣(θ̃x, θ̃xx

)∣∣|(φ,ψ,ξ)|2+|ξxφx+wxψx|
)

. (4.32)

Integrating (4.32) over R
+×[0,t] and using boundary conditions (ψ,ψt)(0,t) =

(0,0), one has

∫ t

0
‖(φx ,ψx)(τ)‖

2dτ.‖(φ0,ψ0,ξ0)‖
2
1+

(
1

8
+ǫ+N(t)

)∫ t

0
‖(φx,ψx)(τ)‖

2dτ

+
∫ t

0

∫

R+

(∣∣(θ̃x, θ̃xx

)∣∣2|(φ,ψ,ξ)|2+ξ2
x+w2

x

)
dxdτ. (4.33)

Using Lemmas 4.1 and 4.2, it yields (4.28). The proof is complete.

Finally, we get H1-estimate on the solution (φ,ψ,ξ) by using Lemmas 4.1-4.3

‖(φ,ψ,ξ)(t)‖2
1+

∫ t

0
|(wx ,wxx)|

2(0,τ)dτ

+
∫ t

0

(∥∥√ũx(φ,ψ,ξ)(τ)
∥∥2

+‖(φx,ψx,ξx)(τ)‖
2+‖w(τ)‖2

2

)
dτ

.‖(φ0,ψ0,ξ0)‖
2
1+ǫ

1
8 +
(
ǫ+N(t)

)∫ t

0
‖ψxx(τ)‖

2dτ. (4.34)
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4.2 Second-order energy estimates

In this subsection, we will show the second-order energy estimates on the fluid
perturbation part (φ,ψ,ξ)(x,t). To do this, we first estimate the radial derivative.
Differentiate (2.12) with respect to t, then the reformed equations can be writ-
ten as

φtt+uφtx+ρψtx= h̃1, (4.35a)

ρ(ψtt+uψtx)+(p− p̃)tx = h̃2, (4.35b)

Cvρ(ξtt+uξtx)+pψxt+wtx= h̃3, (4.35c)

−wtxx+awt+4bθ3ξtx = h̃4, (4.35d)

where
h̃1 :=h1t−utφx−ρtψx,

h̃2 :=h2t−ρt(ψt+uψx)−ρutψx,

h̃3 :=h3t−Cvρt(ξt+uξx)−Cvρutξx−ptψx,

h̃4 := q̃txx−12bθ2θtξx−4b
[
θ̃xξ
(

θ2+θθ̃+ θ̃2
)]

t
.

(4.36)

First, we establish the space-time estimates as follow. We remark that the bound-
ary estimates are very different from [9].

Lemma 4.4. Under the assumptions of Proposition 4.1, if ǫ and N(t) are suitably small,

it holds

‖(φtx,ψtx,ξtx)(t)‖
2+
∫ t

0

(
|(φtx,wtx,wtxx)|

2(0,τ)+‖(wtx ,wtxx)(τ)‖
2
)
dτ

.‖(φ0,ψ0,ξ0)‖
2
2+ǫ

1
8 +
(
ǫ+N(t)

)∫ t

0
‖(φxx,ψxx,ξxx)(τ)‖

2dτ. (4.37)

Proof. Multiplying (4.35b) by ψtx/ρ, we get
(

ψ2
xt

2

)

t

+
(u

2
ψ2

xt

)

x
+Rξtxxψtx+

Rθ

ρ
φtxxψtx

=−
{

Rθtφxx+Rρtξxx+(Rθxφx+Rρxξx)t+R
(
ρ̃xξ+ θ̃xφ

)
tx

}ψtx

ρ

+
{

h̃2x−ρxψtt−(ρu)xψtx

}ψtx

ρ
, (4.38)

since

(p− p̃)txx=Rθφtxx+Rρξtxx+
{

R
(
θ̃xφ+ ρ̃xξ

)}
tx

+Rθtφxx+Rρtξxx+(Rθxφx+Rρxξx)t.
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Multiplying (4.35a) by Rθφxt/ρ2, we have
(

Rθ

2ρ2
φ2

xt

)

t

+

(
Rθu

2ρ2
φ2

xt

)

x

+
Rθ

ρ
φxtψtxx

=

{(
Rθ

2ρ2

)

t

+

(
Rθu

2ρ2

)

x

}
φ2

xt+
Rθ

ρ2
φxt

(
h̃1x−uxφxt−ρxψtx

)
. (4.39)

Multiplying (4.6c) by ξtx/(ρθ), we obtain
(

Cv

2θ
ξ2

tx

)

t

+

(
Cvu

2θ
ξ2

tx

)

x

+Rξtxψtxx+
ξtx

ρθ
wtxx

=

{(
Cv

2θ

)

t

+

(
Cvu

2θ

)

x

}
ξ2

tx+
ξtx

ρθ

{
h̃3x−Cvρxξtt−Cv(ρu)xξtx−R(ρθ)xψtx

}
. (4.40)

Multiplying (4.6d) by wtx/(4bρθ4), we get
(
−

wtx

4bρθ4
wtxx

)

x

+

(
wtx

4bρθ4

)

x

wtxx+
aw2

tx

4bρθ4
+

wtx

ρθ
ξtxx

=
wtx

4ρθ4
h̃4x−

3θx

ρθ2
ξtxwtx. (4.41)

Combining (4.38)-(4.41), one has

(
Rθ

2ρ2
φ2

xt+
ψ2

xt

2
+

Cv

2θ
ξ2

tx

)

t

+

(
wtx

4bρθ4

)

x

wtxx+
aw2

tx

4bρθ4
+ I3x

=

(
1

ρθ

)

x

wtxξtx+

(
Rθ

ρ

)

x

φtxψtx+
wtx

4ρθ4
h̃4x−

3θx

ρθ2
ξtxwtx

+

{(
Rθ

2ρ2

)

t

+

(
Rθu

2ρ2

)

x

}
φ2

xt+
Rθ

ρ2
φxt

(
h̃1x−uxφxt−ρxψtx

)

−
{

Rθtφxx+Rρtξxx+(Rθxφx+Rρxξx)t+R
(
ρ̃tξ+ θ̃tφ

)
tx

}ψtx

ρ

+
{

h̃2x−ρxψtt−(ρu)xψxx

}ψxt

ρ
+

{(
Cv

2θ

)

t

+

(
Cvu

2θ

)

x

}
ξ2

tx

+
ξtx

ρθ

{
h̃3x−Cvρxξtt−Cv(ρu)xξtx−R(ρθ)xψtx

}
, (4.42)

where

I3 :=
Rθu

2ρ2
φ2

xt+
u

2
ψ2

xt+
Cvu

2θ
ξ2

tx+Rξtxψtx+
Rθ

ρ
φtxψtx−

wtx

4bρθ4
wtxx+

wtx

ρθ
ξtx.
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Integrating (4.42) over R
+×[0,t], we have

‖(φxt,ψxt,ξtx)(t)‖
2+
∫ t

0
‖(wtxx,wtx)(τ)‖

2dτ

.‖(φ0,ψ0,ξ0)‖
2
2+‖(φt,ψt,ξt)(0)‖

2
1+ǫ

1
8 +
∫ t

0
I3(0,τ)dτ

+
(
ǫ+N(t)

)∫ t

0
‖(φx,ψx,ξx)(τ)‖

2
1dτ

+
∫ t

0

∫

R+

∣∣(θ̃x, θ̃xx, θ̃txx

)∣∣2|(φ,ψ,ξ)|2dxdτ. (4.43)

Similarly, using the boundary condition u(0,t)=0, we get

I3(0,t)=
1

ρ
(Rρξtxψtx+Rθφtxψtx)(0,t)+

1

ρ

(wtx

θ
ξtx−

wtx

4bθ4
wtxx

)
(0,t). (4.44)

Recall that (p− p̃)tx(0,t)=0 and

(p− p̃)tx =Rρξtx+Rθφtx+Rρ̃txξ+Rθ̃txφ

+Rρ̃tξx+Rθ̃tφx+Rρxξt+Rθxφt. (4.45)

Thus, it holds by w(0,t)=−q̃(0,t),∂i
tψ(0,t)=0, i=0,1,2,

(Rρξtx+Rθφtx)ψtx(0,t)=−R(ρ̃txξ+ θ̃txφ+ ρ̃tξx+ θ̃tφx)ψtx(0,t)−Rρxξtψtx(0,t)

=−R{(ρ̃txξ+ θ̃txφ+ ρ̃tξx+ θ̃tφx)ψx}t(0,t)

+R(ρ̃txξ+ θ̃txφ+ ρ̃tξx+ θ̃tφx)tψx(0,t)

+
Rρx

Cvρ

(
pψx+Rρξũx+Cvθ̃xρψ

)
ψtx(0,t)

=−R{(ρ̃txξ+ θ̃txφ+ ρ̃tξx+ θ̃tφx)ψx}t(0,t)

+R(ρ̃txξ+ θ̃txφ+ ρ̃tξx+ θ̃tφx)tψx(0,t)

+R(γ−1)θρxψxψtx(0,t)

+Rρx[(γ−1)ξũx+ θ̃xψ]ψtx(0,t)

=−R{(ρ̃txξ+ θ̃txφ+ ρ̃tξx+ θ̃tφx)ψx}t(0,t)

+R(ρ̃txξ+ θ̃txφ+ ρ̃tξx+ θ̃tφx)tψx(0,t)

+R(γ−1)

(
θρx

ψ2
x

2
+ρxξũxψx

)

t

(0,t)

−R(γ−1)

{
(θρx)t

ψ2
x

2
+(ρxξũx)t ψx

}
(0,t), (4.46)
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which implies

∫ t

0
|(Rρξtx+Rθφtx)ψtx|(0,τ)dτ

.‖(φ,ψ,ξ)(t)‖2
1+‖(φ,ψ,ξ)(0)‖2

1+ǫ
1
8

+
(
ǫ+N(t)

)∫ t

0
|(φx,ψx,φtx)|

2(0,τ)dτ. (4.47)

In addition, we have

∫ t

0
ξ2

tx(0,τ)dτ=
∫ t

0
θ̃2

tx(0,τ)dτ=
∫ t

0
‖θ̃tx(τ)‖

2
∞

dτ

.ǫ
1
4

∫ t

0
(1+τ)−

7
4 dτ.ǫ

1
4 , (4.48)

∫ t

0
w2

tx(0,τ)dτ.
∫ t

0
‖wtx(τ)‖

2
∞

dτ

.
1

8

∫ t

0
‖wtxx(τ)‖

2dτ+
∫ t

0
‖wtx(τ)‖

2dτ. (4.49)

Since wtxx =4bθ3ξtx− h̃4+awt, we have

∫ t

0
w2

txx(0,τ)dτ.
∫ t

0
|(ξtx ,h̃4,wt)(0,τ)|2dτ.ǫ

1
8 . (4.50)

In summary, we get

∫ t

0
I3(0,τ)dτ.‖(φ,ψ,ξ)(t)‖2

1+‖(φ,ψ,ξ)(0)‖2
1+ǫ

1
8

+
(
ǫ+N(t)

)∫ t

0
|(φx,ψx,φtx)|

2(0,τ)dτ. (4.51)

At last, (4.45) implies

∫ t

0
φ2

tx(0,τ)dτ.
∫ t

0
ξ2

tx(0,τ)dτ+
∫ t

0
|(ρ̃tx, θ̃tx)(φ,ξ)|2(0,τ)dτ

+
∫ t

0
|(ρ̃t, θ̃t)(φx,ξx)|

2(0,τ)dτ

+
∫ t

0
|ρx(ψx,wx,h3)|(0,τ)dτ

.

∫ t

0
|(φx,ψx)|

2(0,τ)dτ+ǫ
1
8



L. Fan, L. Ruan and W. Xiang / Commun. Math. Anal. Appl., 2 (2023), pp. 357-387 377

.
∫ t

0
‖(φx ,ψx)(τ)‖

2
∞

dτ+ǫ
1
8

.
∫ t

0
‖(φx ,ψx)(τ)‖

2
1dτ+ǫ

1
8 , (4.52)

∫ t

0
I3(0,τ)dτ.‖(φ,ψ,ξ)(t)‖2

1+‖(φ,ψ,ξ)(0)‖2
1+ǫ

1
8

+
(
ǫ+N(t)

)∫ t

0
‖(φxx,ψxx)(τ)‖

2dτ. (4.53)

Combining (4.53) and (4.43), we obtain (4.37). The proof is complete.

Now we establish the estimate on the second-order derivatives as follow.

Lemma 4.5. Under the same assumptions listed in Proposition 4.1, if ǫ and N(t) are

suitably small, it holds

‖(φxx,ψxx,ξxx)(t)‖
2+
∫ t

0

(
|(ψxx,ψtxx)|

2(0,τ)+‖(ξxx ,wxx,wxxx)(τ)‖
2
)
dτ

.‖(φ0,ψ0,ξ0)‖
2
2+ǫ

1
8 +
(
ǫ+N(t)

)∫ t

0
‖(φxx ,ψxx)(τ)‖

2dτ. (4.54)

Proof. Step 1. Multiplying (4.6a) by Rθφxx/ρ2, we get
(

Rθ

2ρ2
φ2

xx

)

t

+

(
Ruθ

2ρ2
φ2

xx

)

x

+
Rθ

ρ
φxxψxxx

=

{(
Rθ

2ρ2

)

t

+

(
Ruθ

2ρ2

)

x

}
φ2

xx+
Rθ

ρ2
φxx(H1x−uxφxx−ρxψxx). (4.55)

Multiplying (4.6b) by ψxx/ρ, we have

(
ψ2

xx

2

)

t

+
(u

2
ψ2

xx

)

x
+

Rθ

ρ
ψxxφxxx+Rψxxξxxx

=
ux

2
ψ2

xx+ψxx

{(
H2

ρ

)

x

−

(
Rθ

ρ

)

x

φxx

}
. (4.56)

Multiplying (4.6c) by ξxx/(ρθ), we obtain
(

Cv

2θ
ξ2

xx

)

t

+

(
Cvu

2θ
ξ2

xx

)

x

+Rψxxxξxx+
ξxx

ρθ
wxxx

=

{(
Cv

2θ

)

t

+

(
Cvu

2θ

)

x

}
ξ2

xx+
ξxx

ρθ

{
H3x−Cvρxξtx−Cv(ρu)xξxx−pxψxx

}
. (4.57)
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Multiplying (4.6d) by wxx/(4bρθ4), we get

−

(
wxx

4bρθ4
wxxx

)

x

+

(
wxx

4bρθ4

)

x

wxxx+
aw2

xx

4bρθ4
+

wxx

ρθ
ξxxx

=
wxx

4bρθ4
H4x−θxξxx

wxx

ρθ2
. (4.58)

Combining (4.55)-(4.58), one has

{
Rθ

2ρ2
φ2

xx+
ψ2

xx

2
+

Cv

2θ
ξ2

xx

}

t

+

(
wxx

4bρθ4

)

x

wxxx+
aw2

xx

4bρθ4
+ I4x

=O(1)
(
ǫ+N(t)

)∣∣(φx,ψx,ξx,wx,φxx,ψxx,ξxx,wxx

)∣∣2

+O(1)
∣∣(θ̃x, θ̃xx, θ̃xxx

)∣∣2|(φ,ψ,ξ)|2 , (4.59)

where

I4 :=
Ruθ

2ρ2
φ2

xx+
u

2
ψ2

xx+
Cvu

2θ
ξ2

xx+Rψxxξxx

+
Rθ

ρ
φxxψxx+

wxx

ρθ
ξxx−

wxx

4bρθ4
wxxx. (4.60)

Integrating (4.59) over R
+×[0,t], choosing ǫ and N(t) suitable small, we have

‖(φxx ,ψxx,ξxx)(t)‖
2+
∫ t

0

(
‖wxx(τ)‖

2
1+‖ξxx(τ)‖

2
)
dτ

.‖(φ0,ψ0,ξ0)‖
2
2+ǫ

1
8 +
(
ǫ+N(t)

)∫ t

0
‖(φx,ψx,ξx)(τ)‖

2
1dτ

+
∫ t

0
I4(0,τ)dτ+

∫ t

0

∫

R+

∣∣(θ̃x, θ̃xx, θ̃xx

)∣∣2|(φ,ψ,ξ)|2dxdτ, (4.61)

where we used
∫ t

0
‖ξxx(τ)‖

2dτ.
∫ t

0

∫

R+

(
w2

xxx+w2
x+H2

4x

)
dxdτ. (4.62)

Step 2. Deal with the boundary integral
∫ t

0 I4(0,τ)dτ.

Due to u(0,t)=0, we get

I4(0,t)=
1

ρ
(Rρξxx+Rθφxx)ψxx(0,t)+

wxx

4bρθ4

(
4bθ3ξxx−wxxx

)
(0,t). (4.63)
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At first, one has from (4.35)

φtx(0,t)+ρψxx(0,t)=H1(0,t), (4.64a)

ρψtx(0,t)+Rρξxx(0,t)+Rθφxx(0,t)=H2(0,t), (4.64b)

pψxx(0,t)+wxx(0,t)=H3(0,t)−Cvρξtx(0,t), (4.64c)

−wxxx(0,t)+4bθ3ξxx(0,t)=H4(0,t)−awx(0,t). (4.64d)

It holds by (4.64c) and ξx(0,t)=−θ̃x(0,t) that

∫ t

0
ψ2

xx(0,τ)dτ.
∫ t

0

(
w2

xx+ξ2
tx+H2

3

)
(0,τ)dτ

.ǫ
1
8 +
(
ǫ+N(t)

)∫ t

0

(
ψ2

x+ξ2
x

)
(0,τ)dτ

+
∫ t

0

(∣∣(θ̃x, θ̃xx)(φ,ξ)
∣∣2+ q̃2

xx

)
(0,τ)dτ

.
(
ǫ+N(t)

)∫ t

0
‖(ψx , θ̃x)(τ)‖

2
∞

dτ+ǫ
1
8

.
(
ǫ+N(t)

)∫ t

0
‖(ψx ,ψxx)(τ)‖

2dτ+ǫ
1
8 . (4.65)

In addition, we see from (4.35d) that

−wtxx+awt+4bθ3ξtx = q̃txx−12bθ2θtξx−4b
[
θ̃xξ
(

θ2+θθ̃+ θ̃2
)]

t
, (4.66)

and ξx(0,t)=−θ̃x(0,t) and w(0,t)=−q̃(0,t) yield

∫ t

0
w2

txx(0,τ)dτ.
∫ t

0

(
w2

t +ξ2
tx+ q̃2

txx+θ2
t ξ2

x+ θ̃2
txξ2

)
(0,τ)dτ.ǫ

1
8 . (4.67)

Recall that Cvρ(ξtx+uξxx)+pψxx+wxx=H3, which implies

Cvρ(ξttx+uξtxx)+pψtxx+wtxx =H3t−Cvρtξtx−Cv(ρu)tξxx−ptψxx,

[Cvρξttx+pψtxx+wtxx](0,t)=(H3t−Cvρtξtx−ptψxx)(0,t), (4.68)

where

H3t :=h3tx−
[
Cvρx(ξt+uξx)+Cvρuxξx+pxψx

]
t

=
(
−Rρξũx−Cvθ̃xρψ− q̃x

)
tx
−

[
Cv

ρx

ρ
(h3−pψx−wx)+Cvρuxξx+pxψx

]

t
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=
(
−Rρξũx−Cvθ̃xρψ− q̃x

)
tx
−

[
ρx

ρ
(h3−wx)+Cvρuxξx+Rθxρψx

]

t

=
(
−Rρξũx− q̃x

)
tx
−Cv θ̃xρψtx−Cv θ̃xρtxψ−Cvθ̃x(ρxψt+ρtψx)−Cvθ̃txxρψ

−

[
ρx

ρ
(h3−wx)

]

t

−Cvρξx ũtx−Cvρξxψtx−Rθxρψtx−Cv(ρξx)tux−R(θxρ)tψx

=
(
−Rρξũx− q̃x

)
tx
−Cv θ̃xρtxψ−Cvθ̃x(ρxψt+ρtψx)−Cvθ̃txxρψ

−

[
ρx

ρ
(h3−wx)

]

t

−Cvρξx ũtx−γCvρθxψtx−Cv(ρξx)tux−R(ρθx)tψx

=O(1)
(
|(φtx,ξtx,wtx)|+|(ũx , θ̃x)(φx ,ψx,ξx)|+|(ũtxx , θ̃txx)(φ,ξ)|

+ q̃txx+γCvρθxψtx

)
. (4.69)

From (4.68) and (4.69), θx(0,t)=0 and ξx(0,t)=−θ̃x(0,t) yield

∫ t

0
ψ2

txx(0,τ)dτ.
∫ t

0
|(ξttx ,wtxx,H3t,ξtx,ψxx)|

2(0,τ)dτ

.

∫ t

0
|(wtxx,ψxx,wtx,φtx)|

2(0,τ)dτ+
∫ t

0

∣∣(θ̃ttx, θ̃tx, q̃txx

)∣∣2(0,τ)dτ

+
∫ t

0

(∣∣(ũx, θ̃x

)
(φx,ψx,ξx)

∣∣2+
∣∣(ũtxx, θ̃txx

)
(φ,ξ)

∣∣2
)
(0,τ)dτ

.
(
ǫ+N(t)

)∫ t

0
‖(φx ,ψx)(τ)‖

2
1dτ+

∫ t

0
w2

tx(0,τ)dτ+ǫ
1
8 . (4.70)

Hence, it holds
∫ t

0
ψtxψxx(0,τ)dτ=

∫ t

0
[ψtxψxx(0,τ)]τdτ−

∫ t

0
ψxψtxx(0,τ)dτ

.ψtxψxx(0,t)−ψtxψxx(0,0)+
∫ t

0

(
ψ2

txx+ψ2
x

)
(0,τ)dτ

.‖(ψtx,ψxx)(t)‖
2+‖(ψtx,ψxx)(0)‖

2+ǫ
1
8

+
(
ǫ+N(t)

)∫ t

0
‖(φx,ψx,ξx)(τ)‖

2
1dτ+

∫ t

0
w2

tx(0,τ)dτ. (4.71)

Therefore, one has
∫ t

0
I4(0,τ)dτ.

∫ t

0
ψxxψtx(0,τ)dτ−

∫ t

0

1

ρ
|ψxx H2|(0,τ)dτ

+
∫ t

0
|wxx(H4−awx)|(0,τ)dτ. (4.72)
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The second and third terms on the right-hand side of (4.72) are estimated as fol-

lows:

∫ t

0
ψxxH2(0,τ)dτ.

∫ t

0
ψ2

xx(0,τ)dτ+
(

ǫ+N(t)
)∫ t

0

(
φ2

x+ψ2
x

)
(0,τ)dτ

+
∫ t

0

∣∣(ρ̃xx,ũxx, θ̃xx

)
(φ,ξ)

∣∣2(0,τ)dτ, (4.73)

∫ t

0
|wxx(H4−awx)|(0,τ)dτ.

∫ t

0

(
w2

x+w2
xx+ξ2

x+ θ̃2
xξ2+ q̃2

xxx

)
(0,τ)dτ. (4.74)

Finally, by Lemma 4.4, we get

∫ t

0
I4(0,τ)dτ.‖(φ0,ψ0,ξ0)‖

2
2+ǫ

1
8 +
(
ǫ+N(t)

)∫ t

0
‖(φx,ψx)(τ)‖

2
1dτ. (4.75)

Substituting (4.75) into (4.61), we get (4.54). This proves the Lemma 4.5.

Combining the results in Lemmas 4.1-4.5, we get

‖(φ,ψ,ξ)(t)‖2
2+
∫ t

0
|(ψx ,wx,wxx,ψxx,φtx,wtx,wtxx)|

2(0,τ)dτ

+
∫ t

0

(
‖(φx,ψx,ξx,ξxx ,ξtx)(τ)‖

2+‖w(τ)‖2
3+‖wt(τ)‖

2
1

)
dτ

.‖(φ0,ψ0,ξ0)‖
2
2+ǫ

1
8 +
(
ǫ+N(t)

)∫ t

0
‖(φxx,ψxx)(τ)‖

2dτ. (4.76)

Finally, we will deal with
∫ t

0 ‖(φxx ,ψxx)(τ)‖2dτ.

Lemma 4.6. Under the assumptions of Proposition 4.1, if ǫ and N(t) are suitably small,

it holds ∫ t

0
‖(φxx,ψxx)(τ)‖

2dτ.‖(φ0,ψ0,ξ0)‖
2
2+ǫ

1
8 . (4.77)

Proof. Multiplying (4.6b) by Rθφxx/(2ρ) and (4.6c) by ψxx, we can get

(
Rθ

2
φxxψx

)

t

−

(
Rθ

2
φtxψx

)

x

+
p

2
ψ2

xx+
R2θ2

2ρ
φ2

xx

=
Rθ

2ρ
φxxH2−

R2θ

2
φxxξxx+

(
Rθ

2

)

t

φxxψx−

(
Rθ

2

)

x

φtxψx

−
Rθ

2
φxx H1+H3ψxx−Cvρ(ξtx+uξxx)ψxx−wxxψxx. (4.78)



382 L. Fan, L. Ruan and W. Xiang / Commun. Math. Anal. Appl., 2 (2023), pp. 357-387

Integrating (4.78) over R
+×[0,t], choosing ǫ and N(t) suitable small, we have

∫ t

0
‖(φxx,ψxx)(τ)‖

2dτ.‖(φxx,ψx)(t)‖
2+‖(φ0xx ,ψ0x)‖

2+
∫ t

0
|φtxψx|(0,τ)dτ

+
∫ t

0
‖(ξtx ,ξxx ,wxx,φx,ψx,ξx)(τ)‖

2dτ

+
∫ t

0

∫

R+

∣∣(θ̃x, θ̃xx, θ̃tx

)∣∣2|(φ,ψ,ξ)|2dxdτ, (4.79)

∫ t

0
|φtxψx|(0,τ)dτ.

∫ t

0
φ2

tx(0,τ)dτ+
∫ t

0
ψ2

x(0,τ)dτ

.

∫ t

0
φ2

tx(0,τ)dτ+
∫ t

0
‖ψx(τ)‖

2
∞

dτ

.
∫ t

0
φ2

tx(0,τ)dτ+
1

8

∫ t

0
‖ψxx(τ)‖

2dτ+
∫ t

0
‖ψx(τ)‖

2dτ. (4.80)

Using (4.76), we obtain (4.77). This completes the proof.

At last, (4.6d) yields

ξtx =O(1)|(H3,ξxx,ψxx,wxx)|, (4.81)

wt=O(1)|(h̃4 ,ξtx,wtxx)|. (4.82)

Combining the results in Lemmas 4.1-4.6, we get

‖(φ,ψ,ξ)(t)‖2
2+
∫ t

0
|(φx,ψx,wx,wxx,ψxx,φtx,wtx,wtxx)|

2(0,τ)dτ

+
∫ t

0

(
‖(φx,ψx,ξx)(τ)‖

2
1+‖ξtx(τ)‖

2+‖w(τ)‖2
3+‖wt(τ)‖

2
2

)
dτ

.‖(φ0,ψ0,ξ0)‖
2
2+ǫ

1
8 . (4.83)

5 Energy estimates on radiative perturbation w

In this section, we will establish the estimates on the radiative perturbation
‖w(t)‖3 and ‖wt(t)‖2 as follows.

Lemma 5.1. Under the same assumptions listed in Proposition 4.1, if ǫ, N(t) are suitably

small, it holds

sup
τ∈[0,t]

{
‖w(t)‖2

3+‖wt(t)‖
2
2

}
.‖(φ0,ψ0,ξ0)‖

2
2+ǫ

1
8 . (5.1)
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Proof. The proof is divided into three steps as follows.

Step 1. Multiplying (2.12d) by w, we get

−(wxw)x+aw2+w2
x+4bθ3ξxw+4bθ̃xwξ

(
θ2+θθ̃+ θ̃2

)
= q̃xxw. (5.2)

Integrating (5.2) over R
+, choosing ǫ, N(t) suitable small, we have

∫

R+

(
aw2+w2

x

)
(x,t)dx.

∫

R+

(
ξ2

x+ θ̃2
xξ2+ q̃2

xx

)
(x,t)dx+|wxw|(0,t), (5.3)

and

|wxw|(0,t).
∣∣θ̃xwx

∣∣(0,t).
∥∥θ̃x(t)

∥∥
∞
‖wx(t)‖∞

.ǫ
1
8 (1+t)−

7
8 ‖wx(t)‖

1
2‖wxx(t)‖

1
2

.ǫ
1
8
(
‖wxx(t)‖

2+‖wx(t)‖
2
)
+ǫ

1
8 .

Thus, we obtain

‖w(t)‖2
1 .ǫ

1
8‖wxx(t)‖

2+‖ξ(t)‖2
1+ǫ

1
8 . (5.4)

Step 2. Multiplying (4.6d) by −wxxx, we get

w2
xxx+aw2

xx−(awxwxx)x−4bθ3ξxxwxxx =H4xwxx. (5.5)

Integrating (5.5) over R
+, choosing ǫ, N(t) suitable small, we obtain

∫

R+

(
aw2

xx+w2
xxx

)
(x,t)dx.

∫

R+

(
ξ2

xx+H2
4

)
(x,t)dx+|wxwxx|(0,t). (5.6)

Furthermore, by Hölder inequality, Agmon inequality and Young inequality, one

has

|wxwxx|(0,t).‖wx(τ)‖∞‖wxx(τ)‖∞

.‖wx(τ)‖
1
2‖wxx(τ)‖‖wxxx(τ)‖

1
2

.
1

8
‖wxxx(τ)‖

2+8‖wx(τ)‖
2
3‖wxx(τ)‖

4
3

.
1

8
‖wxxx(τ)‖

2+
1

8
‖wxx(τ)‖

2+‖wx(τ)‖
2. (5.7)

Therefore, combining (5.4), (5.6) with (4.83), we obtain

‖w(t)‖2
3 .‖(φ0,ψ0,ξ0)‖

2
2+ǫ

1
8 . (5.8)
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Step 3. Multiplying (4.35d) by wt and −wtxx respectively, we get

−(wtwtx)x+w2
tx+aw2

t +4bθ3wtξtx = h̃4wt, (5.9)

w2
txx+aw2

tx−(awtwtx)x−4bθ3wtxxξtx =−wtxxh̃4. (5.10)

Integrating (5.9) and (5.10) over R
+ respectively, choosing ǫ and N(t) suitable

small, one has by (4.83)

‖wt(t)‖
2
2.

∫

R+

(
ξ2

tx+ h̃2
4

)
dx+|wtwtx|(0,t). (5.11)

Similar to (5.7), it holds

|wtwtx(0,t)|. |wt(0,t)|‖wtx(t)‖∞

.ǫ
1
8 (1+t)−

7
8‖wtx(t)‖

1
2‖wtxx(t)‖

1
2

.ǫ
1
8‖wtxx(t)‖

2+ǫ
1
8 (1+t)−

7
6‖wtx(t)‖

4
3

.ǫ
1
8‖wtxx(t)‖

2+ǫ
1
8‖wtx(t)‖

2+ǫ
1
8 . (5.12)

Thus, we get

‖wt(t)‖
2
2.‖(φ0,ψ0,ξ0)‖

2
2+ǫ

1
8 . (5.13)

Combining (5.6) with (5.13), one has (5.1). This completes the proof of Lem-

ma 5.1.

Combining (5.1) and (4.83), we can get (4.2). This completes the proof of
Proposition 4.1.
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