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Hopf Cyclicity of a Class of Liénard-Type Systems∗
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Abstract The Hopf cyclicities of some smooth polynomial, rational poly-
nomial and piecewise smooth Liénard systems are studied. For two Liénard
systems with the same damping term and different restoring (or potential)
terms, we provide sufficient conditions that the two systems have the same
Hopf cyclicity. Then, some examples are given to illustrate the efficiency and
applicability of our results.
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1. Introduction

Consider the following Liénard equation

ẍ+ f(x)ẋ+ g(x) = 0, (1.1)

which appears in many models of classical Newtonian mechanics. Usually, we call
f(x) a damping term and g(x) a restoring term (or potential term). Historically,
Liénard equation is not only closely related to a large number of practical applica-
tions (see e.g., [8,20]), but also plays an important role in the theoretical studies of
qualitative theory (see e.g., [1, 6, 10,14,16,19,21,23,26–29]).

The above equation (1.1) is equivalent to the following planar differential system
(called Liénard system)

ẋ = y − F (x), ẏ = −g(x), (1.2)

where F (x) =
∫ x

0
f(x)dx. Here, we assume that g(0) = 0, g′(0) > 0, so that the

origin is a center or focus.
In the qualitative theory of differential systems, an important open problem is

to determine the maximum number of limit cycles bifurcating from a center or a
focus, which is related to the local version of Hilbert’s 16th problem. One way
to study the limit cycles of the system (1.2) is the Hopf bifurcation, that is, to
study the small-amplitude limit cycles. Usually, the maximum number of small
limit cycles obtained by Hopf bifurcation is called Hopf cyclicity. When f(x) and
g(x) are polynomials of degree n and m respectively, we denote the Hopf cyclicity
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of system (1.1) by Hs
L(m,n). Many results on Hs

L(m,n) are obtained by computing
Lyapunov coefficients. However, due to the difficulty of the problem, most of the
results are obtained under the strict assumptions of F (x) or g(x), for example, the
degrees and coefficients in F (x) or G(x) are fixed, etc. The results of Hs

L(m,n) are
rarely reported for arbitrary values of m or n.

For m = 2, g(x) is a quadratic polynomial. Without loss of generality, we can
assume system (1.2) has the form

ẋ = y − F (x), ẏ = −x(x+ 1), (1.3)

where

F (x) = F1(x) =

n+1∑
i=1

aix
i.

Han [11, 12], Christopher and Lynch [4] independently investigated system (1.3),
and obtained respectively that the Hopf cyclicity Hs

L(2, n) =
[
2n+1

3

]
at the origin

for n ≥ 1. Moreover, it was verified in [4] that Hs
L(2, n) = Hs

L(n, 2). When the
damping term

F (x) = F2(x) =


∑n+1

i=1 a
+
i x

i, x > 0,∑l+1
i=1 a

−
i x

i, x ≤ 0

in system (1.3) is a piecewise smooth polynomial in x of degree l and n, Tian and
Han [24] obtained the cyclicity

[
3l+2n+4

3

]
(resp.,

[
3n+2l+4

3

]
) for n ≤ l (resp., n ≥ l)

of the origin.
In the case of m = 3, according to the conditions g(0) = 0 and g′(0) > 0, let us

assume that g(x) = x + b1x
2 + b2x

3. Christopher and Lynch [4] also obtained the
following results, when F (x) = F1(x):

(i) if b1 = 0, the cyclicity Hs
L(3, n) = Hs

L(n, 3) =
[
n
2

]
, n ≥ 1;

(ii) if b1 6= 0, by scaling x and y simultaneously, g(x) = x+x2+bx3, the cyclicity

Hs
L(3, n) = Hs

L(n, 3) = 2
[
3(n+2)

8

]
, 1 ≤ n ≤ 50.

Tian, Han and Xu [25] studied the system with a special cubic restoring term

ẋ = y − F (x), ẏ = −1

2
x(x+ 1)(x+ 2). (1.4)

It was proved that the Hopf cyclicity is Hs
L(3, n) =

[
3n+2

4

]
(resp.,

[
2l+n+2

2

]
as l ≥ n

or
[
2n+l+2

2

]
as l ≤ n), if F (x) = F1(x) (resp., F2(x)), n ≥ 1.

Recently, Sun and Yu [22] have considered a Liénard system with a quintic
restoring term, which is equivalent to the following form

ẋ = y − F (x), ẏ = x

(
x+

1

2

)
(x− 1)3, (1.5)

where F (x) = F1(x) or F2(x). The Hopf cyclicity of system (1.5) at the origin is
Hs

L(5, n) =
[
2n+1

3

]
(resp.,

[
3l+2n+4

3

]
, if n ≤ l or

[
3n+2l+4

3

]
, if n ≥ l) for F (x) =

F1(x) (resp., = F2(x)), n ≥ 1.
Notice that systems (1.3) and (1.5) have the same Hopf cyclicity at the origin

for F (x) = F1(x) or F2(x). Is this a coincidence or does it contain some structural
rules?
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Inspired by the above observation, we investigate the following two Liénard
systems

ẋ = y − F (x,a), ẏ = −g1(x) (1.6)

and

ẋ = y − F (x,a), ẏ = −g2(x), (1.7)

where a is a parameter vector, and F, g1, g2 are polynomials satisfying F (x,a) =
F1(x) or F2(x), gi(0) = 0, and g′i(0) > 0 for i = 1, 2. Thus, the origin is either an
elementary center or an elementary focus point of the above two systems.

In addition, if the restoring terms g1(x) and g2(x) are piecewise smooth, such
cases also deserve our attention. At this point, we consider the following two systems

ẋ = y − F (x,a), ẏ = −g̃1(x) (1.8)

and

ẋ = y − F (x,a), ẏ = −g̃2(x), (1.9)

where F (x,a) = F1(x) or F2(x) with

F1(x) = F±1 (x) =

n+1∑
i=1

aix
i

or

F2(x) =

F+
2 (x) =

∑n+1
i=1 a

+
i x

i, x > 0,

F−2 (x) =
∑l+1

i=1 a
−
i x

i, x ≤ 0.

g̃i(x) =

 g+i (x), x > 0,

g−i (x), x ≤ 0,
for i = 1, 2. g±1 and g±2 are polynomials and satisfy

g±i (0) = 0, (g±i )′(0) > 0,
(
(F±i )x (0,a0)

)2 − 4
(
g±i
)′

(0) < 0, for i = 1, 2. Then,
the origins of systems (1.8) and (1.9) are FF type singularities, where “F” means
“focus” (see [5, 9, 13]). That is, for any one of the systems, subsystem x > 0 and
subsystem x ≤ 0 are the focus at the origin, and they have the same orientation.

Recently, there has been a growing interest in the cyclicity of rational Liénard
systems (see e.g., [2, 15, 17, 24]). Jiang and Han [15] considered a rational Liénard
system,

ẋ = y − qn(x)

pm(x)
, ẏ = −g(x), (1.10)

where pm(x) = 1 +
∑m

i=1 bix
i, qn(x) =

∑n
i=0 aix

i, while g(x) is an odd function
with any degree. It was proved that the cyclicity is

[
m+n−1

2

]
at the singular point

(0, a0). Li and Han [17] obtained that the cyclicity of system (1.10) with an odd
function g(x) at the point (0, a0) is min{n,

[
m+n−1

2

]
} (resp.,

[
n+1
2

]
as α+ β 6= 0 or[

n−1
2

]
as α+β = 0 ) if pm(x) = (1−x)m (resp., pm(x) = (1−αx)(1−βx), αβ 6= 0).

It is worth noting that as for the results of cyclicity of rational Liénard systems,
there are always some conditions imposed on the restoring term g(x) such as the
odd function condition in [15, 17]. The question is why the cyclicity of the system
does not change for any odd function g(x). Therefrom, we consider the following
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two rational Liénard systems and provide the condition so that they have the same
cyclicity at the singular point (0, a0)

ẋ = y − qn(x)

pm(x)
, ẏ = −g1(x) (1.11)

and

ẋ = y − qn(x)

pm(x)
, ẏ = −g2(x), (1.12)

where pm(x) = 1 +
∑m

i=1 bix
i and qn(x) =

∑n
i=0 aix

i. g1 and g2 are polynomials
satisfying gi(0) = 0 and g′0(0) > 0.

In this paper, we will provide sufficient conditions that two systems have the
same Hopf cyclicity at the singular point. Our result is stated in the following
theorem.

Theorem 1.1. Assume that gi(0) = 0 and g′i(0) > 0 for i = 1, 2. For systems
(1.6) and (1.7) with F (x,a) = F1(x) or F2(x), if there exists some polynomial
A(x) with A′(0) = 0, A′′(0) 6= 0 and polynomial functions fi(·) (i=1,2) such that
gi(x) = A′(x)fi(A(x)), then (1.6) and (1.7) have the same Hopf cyclicity at the
origin.

For the systems with discontinuous polynomial restoring terms, the result is as
follows.

Theorem 1.2. Suppose that g±i (0) = 0 and (g±i )′(0) > 0 for i = 1, 2. Consider
piecewise smooth systems (1.8) and (1.9) with F (x,a) = F1(x) or F2(x). If there
exist polynomials A(x) and B(x) with A′(0) = B′(0) = 0, A′′(0)B′′(0) 6= 0 and poly-

nomial functions f̃i(·) such that g+i (x) = A′(x)f̃i(A(x)) and g−i (x) = B′(x)f̃i(B(x))
for i = 1, 2, then the two systems have the same Hopf cyclicity at the origin.

For rational Liénard systems, we have the following theorem.

Theorem 1.3. Suppose that gi(0) = 0 and g′i(0) > 0 for i = 1, 2. For ratio-
nal Liénard systems (1.11) and (1.12), if there exists some polynomial A(x) with
A′(0) = 0, A′′(0) 6= 0 and polynomial functions fi(·) (i=1,2) such that gi(x) =
A′(x)fi(A(x)), then (1.11) and (1.12) have the same Hopf cyclicity at the singular
point (0, a0).

Let Gi(x) =
∫ x

0
gi(s)ds and G±i (x) =

∫ x

0
g±i (s)ds for i = 1, 2.

Remark 1.1. The conclusion is also valid, if the conditions gi(x) = A′(x)fi(A(x)),

g+i (x) = A′(x)f̃i(A(x)) and g−i (x) = B′(x)f̃i(B(x)) in Theorems 1.1-1.3 are replaced

by the integral forms Gi(x) = fi(A(x)), G+
i (x) = f̃i(A(x)) and G−i (x) = f̃i(B(x))

respectively. In fact, there are the same displacement functions near the singular
point.

This paper is organized as follows. In section 2, we will introduce some prelim-
inaries and basic lemmas about the calculation of Lyapunov coefficients of smooth
and piecewise smooth polynomial Liénard systems. We will prove our main result-
s: Theorems 1.1-1.3 in section 3. The last section will provide two examples to
illustrate the efficiency and sufficiency of our results.
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2. Preliminaries and basic lemmas

One classical method to solve center-focus problems is based on computing Lya-
punov constants. Due to the difficulty of calculating Lyapunov coefficients, many
researchers try to explore new calculation methods. For simplicity, we only intro-
duce some methods of studying Liénard systems involved in this paper.

Christopher [3] obtained a condition that the origin of system (1.2) is the center
by the following algebraic method. Let us consider a field F , which is the subfield
of R(x) generated by the polynomials G1 and G2. The following lemma in [3] shows
that F shares an important algebraic property with G1 and G2.

Lemma 2.1 ( [3]). Suppose that there exists an analytic function z(x) with z(0) =
0, z′(0) < 0, such that both G1(z(x)) = G1(x) and G2(z(x)) = G2(x) are in a
neighborhood of x = 0. Then, for all elements H of the field F generated by G1 and
G2, we have H(z(x)) = H(x), which is considered as meromorphic functions of x
about x = 0. Furthermore, G1 and G2 are polynomials of some polynomial A ∈ F .

In the following lemma, we obtain an algebraic equivalent characterization that
two systems (1.6) and (1.7) have the same analytic function at the origin.

Lemma 2.2. Suppose that gi(0) = 0 and g′i(0) > 0 for i = 1, 2. Systems (1.6)
and (1.7) have the same analytic function z(x) defined by Gi(z(x)) ≡ Gi(x) with
z(0) = 0, z′(0) < 0, if and only if G1 and G2 are polynomials of some polynomial
A ∈ F with A′(0) = 0, and A′′(0) 6= 0.

Proof. On one hand, if there is an analytic function z(x) with z(0) = 0, z′(0) < 0
such that G1(z(x)) ≡ G1(x) and G2(z(x)) ≡ G2(x), then by Lemma 2.1, G1 and G2

are polynomials of some polynomial A ∈ F satisfying A(z) = A(x). Since gi(0) = 0
and g′i(0) > 0, it is clear that A′(0) = 0 and A′′(0) 6= 0 because of G′i(0) = 0 and
G′′i (0) > 0.

On the other hand, if we have G1(x) =
∑l1

i=1 ciA
i(x) and G2(x) =

∑l2
i=1 c̃iA

i(x),
where ci and c̃i are real constants, then from the conditions g(0) = 0 and g′(0) > 0,
it follows that c1c̃1 6= 0. Hence,

Gi(zi)−Gi(x) = (A(zi)−A(x))Qi(x, zi), i = 1, 2,

where Qi(x, zi) =
∑li

r=1

∑r−1
s=0 crA

r−1−s(x)As(zi) 6= 0, i = 1, 2 for 0 < x � 1. It
is apparent that Gi(z) ≡ Gi(x). Since A′(0) = 0 and A′′(0) 6= 0, there exists an
analytic function z(x) such that A(z) = A(x) with z(0) = 0 and z′(0) < 0.

Furthermore, we provide a sufficient condition, which can determine that sys-
tems (1.8) and (1.9) have the same analytic function at the origin, and let G±i (x) =∫ x

0
g±i (s)ds.

Lemma 2.3. Suppose that gi(0) = 0 and g′i(0) > 0 for i = 1, 2. If there exist poly-
nomials A(x) and B(x) with A′(0) = B′(0) = 0, A′′(0)B′′(0) 6= 0 and polynomial

functions f̃i(·) such that g+i (x) = A′(x)f̃i(A(x)) and g−i (x) = B′(x)f̃i(B(x)) for
i = 1, 2, then one can find an analytic function z(x) with z(0) = 0 and z′(0) < 0
satisfying G−i (z) ≡ G+

i (x) for i = 1, 2. However, the reverse does not hold.

Proof. If there exist polynomials A(x) and B(x) satisfying A′(0) = B′(0) =

0, A′′(0)B′′(0) 6= 0, such that G+
1 (x) =

∑l1
i=1 diA

i(x), G−1 (x) =
∑l1

i=1 diB
i(x),
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G+
2 (x) =

∑l2
i=1 d̃iA

i(x) and G−2 (x) =
∑l2

i=1 d̃iB
i(x), where di and d̃i are real con-

stants. Obviously, d1d̃1 6= 0. Note that

G−i (zi)−G+
i (x) = (B(zi)−A(x)) Q̃i(x, zi), i = 1, 2,

where Q̃i(x, zi) =
∑li

r=1

∑r−1
s=0 drA

r−1−s(x)Bs(zi) 6= 0, i = 1, 2 for 0 < x � 1. By
A′(0) = B′(0) = 0 and A′′(0) = B′′(0) 6= 0, we can get an analytic function z(x)
satisfying B(z) = A(x) with z(0) = 0 and z′(0) < 0. Hence, G−i (z) ≡ G+

i (x), for
i = 1, 2.

In order to show that the reverse is incorrect, G+
1 (x) = G−1 (x) = x2, G+

2 (x) =
x2 − x3 and G−2 (x) = x2 + x3 are set. It follows that there is an analytic function
z(x) = −x with z(0) = 0 and z′(0) < 0 satisfying G−i (z) ≡ G+

i (x), for i = 1, 2.
However, there does not exist polynomials A(x) or B(x) such that G+

i (x) (resp.
G−i (x)) is generated by A(x) (resp. B(x)).

For smooth Liénard type systems, one equivalent method to computing the
Lyapunov coefficients was developed in [11, 12]. Consider the generalized Liénard
system

ẋ = p(y)− F (x, µ), ẏ = −g(x), (2.1)

where µ is a parameter vector. p(y), g(x) and F (x, µ) are analytic functions. In
order to ensure that the origin is a center or focus of system (2.1), it is necessary
to assume that the following conditions hold,

p(0) = F (0, µ) = g(0) = 0, p′(0) > 0, g′(0) > 0 and Fx (0, µ∗) = 0. (2.2)

From [11,12], one can construct the displacement function of system (2.1) locally
around the origin, which has the expansion as follows,

d(r, µ) =

∞∑
i=1

di(µ)ri, for |r| � 1 and |µ− µ∗| � 1,

where di(µ) ∈ C∞. Let G(x) =
∫ x

0
g(s)ds and suppose that

F (z(x), µ)− F (x, µ) =

∞∑
i=1

Bi(µ)xi, |x| � 1, (2.3)

where z(x) = −x + O(x2) is the analytic function defined by G(z(x)) ≡ G(x). It
was proved in [11,12] that the following result holds.

Lemma 2.4 ( [11, 12]). Let (2.2) hold. Assume that (2.3) holds formally. Then,
we have

d(r, µ) =

∞∑
i=1

di(µ)ri,

where
d1 = N1 (B1)B1,

d2j = O (|B1, B3, · · · , B2j−1|) ,
d2j+1 = Nj (B1)B2j+1 +O (|B1, B3, · · · , B2j−1|) ,

with Nj ∈ C∞ and Nj(0) > 0.
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The above expression relationship shows that we only need to calculate Bi and
analyze its algebraic variety {Bi = 0} (i ≥ 1) to obtain the cyclicity. The corre-
sponding results can be seen in [11,12].

For non-smooth Liénard system, Liu and Han [18] extended the method in
[11,12] to study the Hopf bifurcation of the following system

(ẋ, ẏ) =

 (p(y)− F+(x, µ),−g+(x)) , x ≥ 0,

(p(y)− F−(x, µ),−g−(x)) , x ≤ 0,
(2.4)

where µ ∈ Rn is an n-dimensional parameter vector. p(y), g±(x) and F±(x) are
analytic functions satisfying

p(0) = F±(0, µ) = g±(0) = 0, p′(0) > 0, (2.5)

(g±)′(0) > 0 and
(
F±x (0, µ∗)

)2 − 4p′(0)
(
g±
)′

(0) < 0.

Let (2.4) satisfy (2.5). It is proved that the origin is a fine or weak focus for µ = µ∗,
if and only if √

(g−)′(0)F+
x (0, µ∗) +

√
(g+)′(0)F−x (0, µ∗) = 0. (2.6)

It should be noted that the displacement function d(r, µ) is still analytic, which can
be obtained as

d(r, µ) =

∞∑
i=1

d̃i(µ)ri,

for some |r| � 1 and |µ− µ∗| � 1. Let G±(x) =
∫ x

0
g±(s)ds. Assume that

F−(z(x), µ)− F+(x, µ) =

∞∑
j=1

Bj(µ)xj , 0 < x� 1, (2.7)

where z(x) = −
√

(g+)
′
(0)/ (g−)

′
(0)x + O

(
x2
)

is the analytic function defined by

G±(x) =
∫ x

0
g±(s)ds satisfying G−(z(x)) ≡ G+(x).

The following lemma establish a relationship between the coefficients Bj and d̃j .

Lemma 2.5 ( [18]). Suppose that (2.5) and (2.6) hold. Then, we have formally

d(r, µ) =

∞∑
i=1

d̃i(µ)ri,

where

d̃1 = N∗1 (µ)B1,

d̃j = N∗j (µ)Bj +O (|B1, B2, · · · , Bj−1|)

with N∗j ∈ C∞ and N∗j (0) > 0, for j ≥ 1.
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3. Proof of the main results

Proof of Theorem 1.1. Following the ideas of [7], we define an invertible analytic
transformation in a neighborhood of x = 0,

ui =
√

2Gi(x) sgn(x), ui(0) = 0, u′i(0) > 0, (3.1)

where Gi(x) =
∫ x

0
gi(s)ds for i = 1, 2. Denote by x = x(ui) the inverse of the

transformation (3.1). Then, we have

2Gi(x(ui)) = u2i = 2Gi(x(−ui)), x(ui) = x, i = 1, 2.

Let zi(x) = x(−ui). Hence,

Gi(x) ≡ Gi(zi(x)), i = 1, 2.

It follows that

0 = Gi(x)−Gi(zi) = (x− zi)
(

1

2
g′i(0)(x+ zi) + o(x, zi)

)
. (3.2)

Note that zi(0) = 0 and z′i(0) < 0. Combining the formula (3.2) and the
conditions on gi(x), we have the following unique analytic expressions for z1(x) and
z2(x) respectively

z1(x) = −x+ o(x) and z2(x) = −x+ o(x), |x| � 1.

One can see [11,12] for more details.
It can be seen that systems (1.6) and (1.7) have the same F (x) term. According

to Lemmas 2.4 and 2.5, if the two systems have the same analytical function satis-
fying (3.2), then they have the same Hopf cyclicity at the origin. In fact, according
to the conditions in Theorem 1.1 and Lemma 2.2, we can obtain that systems (1.6)
and (1.7) have the same analytical function z. The proof of Theorem 1.1 is com-
pleted.

Proof of Theorem 1.2. It is similar to the previous proof of Theorem 1.1. Moti-
vated by the idea of [18], we have the following transformation

ui =
√

2G±i (x) sgn(x), (3.3)

where G±i (x) =
∫ x

0
g±i (s)ds for i = 1, 2. Then,

2G+
i (x(ui)) = u2i = 2G−i (x(−ui)), x(ui) = x, i = 1, 2.

Let zi(x) = x(−ui), which implies that

G+
i (x) ≡ G−i (zi(x)), i = 1, 2.

As a result,

z1(x) = −

√
(g+1 )′(0)√
(g−1 )′(0)

x+ o(x) and z2(x) = −

√
(g+2 )′(0)√
(g−2 )′(0)

x+ o(x), |x| � 1.
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If there exist polynomials A(x) and B(x) with A′(0) = B′(0) = 0, A′′(0)B′′(0) 6=
0 and polynomial functions f̃i(·) such that g+i (x) = A′(x)f̃i(A(x)) and g−i (x) =

B′(x)f̃i(B(x)) for i = 1, 2, we obtain that systems (1.8) and (1.9) have the same
analytical function z = z1 = z2, by applying Lemma 2.3 for |x| � 1. According to
Lemma 2.5, if systems (1.8) and (1.9) have the same analytical function z = z1 = z2
for |x| � 1, they also have the same Hopf cyclicity at the origin. This completes
the proof of Theorem 1.2.

Considering F (x) =
∑n

i=0 aix
i

1+
∑m

i=1 bixi ∈ C∞ at the origin, the proof method of Theo-

rem 1.1 is also applicable for Theorem 1.3 (we omit the proof here).

4. Applications

In this section, we first analyze why the two systems (1.3) and (1.5) mentioned
in the introduction have the same Hopf cyclicity. Secondly, we explain that the
conditions of Theorems 1.1-1.3 are sufficient but not necessary.

From Lemma 2.2, one can see that if we want to find G1 and G2 with the same
analytical function z, we can equivalently find the A ∈ F with A′(0) = 0, A′′(0) 6= 0
such that G1 and G2 are polynomials of A.

For systems (1.3) and (1.5) at the origin, by a simultaneous scaling of the x-
and y- axes respectively, it is easy to change them into the following system

ẋ = y −
n+1∑
i=1

aix
i, ẏ = −x(1− x). (4.1)

We note that such a scaling respects the weights of the Liapunov quantities. There-
fore, it has no effect on the dynamics. Let

A(x) := G1(x) =

∫ x

0

s(1− s)ds =
1

2
x2 − 1

3
x3. (4.2)

Hence, A′(0) = 0 and A′′(0) 6= 0.
Reviewing system (1.5) in [22] with F = F1 or F2, we obtain

G2(x) =

∫ x

0

s

(
s+

1

2

)
(1− s)3ds =

1

4
x2 − 1

6
x3 − 3

8
x4 +

1

2
x5 − 1

6
x6 (4.3)

=
1

2
A(x)− 3

2
A2(x).

It is clearly seen from (4.2) and (4.3) that G1(x) and G2(x) have the same polyno-
mial factor A(x) with A(0) = 0 and A′′(0) 6= 0, which shows that systems (1.5) and
(4.1) have the same analytical function z, and they have the same cyclicity using
Theorem 1.1.

If A′(0) = 0, A′′(0) 6= 0 and degA(x) = 2 hold, it follows that

gi(−x) = −gi(x)⇐⇒ gi = A′(x)fi(A(x)), for i = 1, 2,

which implies that two rational Liénard systems have the same cyclicity by using
Theorem 1.1 or 1.3. When degA(x) ≥ 3, for the convenience of readers to under-
stand and apply Theorems 1.1-1.3, we present the following examples.
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Example 4.1. Consider

ẋ = y − F (x), ẏ = −A′(x)

k∑
i=0

biA
i(x), (4.4)

where A(x) = 1
2x

2 − 1
3x

3, F (x) = F1(x) or F2(x). bi are real constants, and
A′′(0)b0 > 0. If F (x) = F1(x), the Hopf cyclicity of the origin is

[
2n+1

3

]
. If

F (x) = F2(x), the Hopf cyclicity of the origin is
[
3l+2n+4

3

]
for l ≥ n, and

[
3n+2l+4

3

]
for n ≥ l.

In [24], Tian and Han investigated rational Liénard system (1.10) with a quadrat-
ic polynomial restoring g(x) = x(x + 1). It was obtained that an upper bound for
the cyclicity of the point (0, a0) is

[
4n+2m−4

3

]
−
[
n−m

3

]
(resp.,

[
4m+2n−4

3

]
−
[
m−n

3

]
)

if n ≥ m (resp., m > n) for arbitrary m and n.

Example 4.2. The system with restoring term of degree 3k + 2 is given by

ẋ = y − qn(x)

pm(x)
, ẏ = −A′(x)

k∑
i=0

biA
i(x), (4.5)

where qn(x) and pm(x) satisfy condition (1.2), A(x) = 1
2x

2 − 1
3x

3, and bi are real
constants, b0 6= 0. An upper bound for the cyclicity of the singular point (0, a0)
is
[
4n+2m−4

3

]
−
[
n−m

3

]
(resp.,

[
4m+2n−4

3

]
−
[
m−n

3

]
), if n ≥ m (resp., m > n) for

arbitrary m and n.

In particular, taking k = 1, b0 = 1
2 , b1 = −3 and bi≥2 = 0, the estimation of

cyclicity of the rational Liénard system with a quintic restoring term

g(x) = −x
(
x+

1

2

)
(x− 1)3 (4.6)

can be obtained immediately. The cyclicity of polynomial Liénard with this restor-
ing term (4.6) has been studied in [22] mentioned above.

By a simultaneous scaling of the x- and y- axes respectively, it is easy to change
g(x) = x(x + 1) into g(x) = x(x − 1), which has no effect on their dynamics. Let

g1(x) = x(x− 1) and g2(x) = A′(x)
∑k

i=0 biA
i(x). It follows that G1(x) and G2(x)

have the same polynomial factor A(x) with A(0) = 0 and A′′(0) 6= 0. According to
Theorem 1.3, we obtain that the rational Liénard system in [24] and system (4.5)
have the same cyclicity.

Note that the the reverse of Lemma 2.3 is not true. Consequently, the conditions
in Theorem 1.2 are sufficient rather than necessary. To illustrate that the conditions
in Theorem 1.1 are sufficient rather than necessary, we consider the Hopf cyclicity
of the following two Liénard systems at the origin, in which the degree of damping
terms are fixed and restoring terms with degree 11 respectively.

Example 4.3. Consider the two systems below

ẋ = y − F (x), ẏ = − 1

54
x(x− 1)(8x9 − 36x8 + 54x7 − 27x6 − 54) (4.7)

and

ẋ = y − F (x), ẏ = − 1

384
x(x+ 1)(x+ 2)(3x4 + 12x3 + 12x2 − 8)2, (4.8)
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where F (x) = F1(x) or F2(x) with

F1(x) =
∑5

i=1 αix
i,

F2(x) =


∑3

i=1 α
+
i x

i, x ≥ 0,∑4
i=1 α

−
i x

i, x ≤ 0.

We claim that at the origin that systems (4.7) and (4.8) have the same Hopf cyclicity
3 (resp., 5), if F = F1 (resp., F = F2).

In fact, the following relationship

− 1

54
x(x− 1)(8x9 − 36x8 + 54x7 − 27x6 − 54) = −A′(x)

3∑
i=0

biA
i(x)

is satisfied, where b0 = 1, b1 = b2 = 0, b3 = 4 and A(x) = 1
2x

2 − 1
3x

3. According to
Example 4.1, we get that the cyclicity of system (4.7) at the origin is 3 (resp., 5),
if F (x) = F1(x) (resp., F (x) = F2(x)).

Reviewing system (1.4) in the introduction, we obtain G(x) =
∫ x

0
g(s)ds =

1
2x

2 + 1
2x

3 + 1
8x

4. Let

g̃(x) = G′(x)

(
1

3
− 2G(x) + 3G2(x)

)
(4.9)

=
1

384
x(x+ 1)(x+ 2)(3x4 + 12x3 + 12x2 − 8)2.

Furthermore, we get the form of system (4.8). Using Theorem 1.1, systems (1.4)
and (4.8) have the same cyclicity with F = F1 or F2 at the origin. Next, it is only
necessary to state that although systems (4.7) and (4.8) have the same cyclicity, we
cannot find the same analytical function z with z(0) = 0 and z′(0) < 0, such that
G1(x) ≡ G1(z) and G2(x) ≡ G2(z) hold, where

G1(x) =

∫ x

0

1

384
s(s+ 1)(s+ 2)(3s4 + 12s3 + 12s2 − 8)2ds

=
1

1536
x2(3x8 + 24x7 + 72x6 + 96x5 + 24x4 − 96x3 − 96x2 + 64)(x+ 2)2

and

G2(x) =

∫ x

0

1

54
s(s− 1)(8s9 − 36s8 + 54s7 − 27s6 − 54)ds

=
1

1296
x2(2x− 3)(2x3 − 3x2 − 6)(4x6 − 12x5 + 9x4 + 12x3 − 18x2 + 36).

It follows that

0 = G1(z1)−G1(x) = (z1 − x)(x2 + z21 + 2x+ 2z1)h1(x)

and

0 = G2(z2)−G2(x) = (z2 − x)(2x2 + 2xz2 + 2z22 − 3x− 3z2)h2(x),
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where h1(x)h2(x) 6= 0 for 0 < x� 1. Hence,

z1 = −1 +
√

1− 2x− x2 = −x− x2 − x3 +O(x4)

6=

z2 =
1

4
(3− 2x−

√
3
√

3 + 4x− 4x2) = −x+
2

3
x2 − 4

9
x3 +O(x4).

Note that if F (x) is replaced by qn(x)
pm(x) , the corresponding two systems still have

the same cyclicity at the singular point (0, a0), which shows that the conditions of
Theorem 1.3 are also sufficient.
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