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On Some SEIRS Epidemic Models∗

Valery G. Romanovski1,2,3,†

Abstract We discuss a few variations of the SEIRS epidemic model. How
basic dynamical properties of the models can be derived by using some tools
of the computer algebra system Mathematica is shown, and how invariant
surfaces of the system can be found by using computer algebra system Singular
is explained. Some numerical simulations are presented as well.
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1 Introduction

The first applications of mathematical methods to the analysis of epidemics are
associated with the works of D. Bernoulli, I. Lambert and P. S. Laplace. It appears
that modern mathematical models of epidemiology go back to the work of R. Ross,
published in 1911, on the study of the spread of malaria [12], and to the SIR model
proposed in 1927 by W. Kermack and A. McKendrick [10]. The SIR model is based
on the division of the entire population into three groups of susceptible, infected and
recovered individuals, and describes the transition of individuals from the group of
susceptible to the group of infected and then recovered. Mathematically, it is given
as a system of differential equations that describe the change in the size of each
of these population groups over time. However, the SIR model does not take into
account the presence of the incubation period of the disease, i.e., it is assumed
that a person who has had contact with a sick person immediately falls ill. This
shortcoming is overcome in the SEIR model, which incorporates a group of contacts
(exposed) (see, for example, [8, 9]). Thus, in the process of infection, a person
susceptible to the disease first becomes exposed, and only after some time becomes
infected.

A further development of the model is the SEIRS (Susceptible–Exposed–Infecti-
ous–Recovered–Susceptible) model (see e.g., [1]). The model considers the popula-
tion divided in four groups: susceptible (S), exposed (E), infectious (I) and recovered
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c. 160, 2000 Maribor, Slovenia
∗The author was supported by Slovenian Research Agency (Program P1-0306)
and “Development of an intelligent system for assessing the development of
COVID-19 epidemics and other infections in Kazakhstan” of al-Farabi Kazakh
National University (Grant No. AP09260317).

http://dx.doi.org/10.12150/jnma.2023.753


754 V. G. Romanovski

(R). However, it is assumed that recovered people may become susceptible again.
Mathematically, the simplest SEIRS model is described by the following system of
differential equations:

Ṡ =− βSI/N + ωR,

Ė =βSI/N − σE,
İ =σE − γI,
Ṙ =γI − ωR.

(1.1)

In the model, the infectious rate β is the rate of spread which represents the proba-
bility of transmitting the disease between a susceptible and an infectious individual.
The incubation rate σ is the rate of latent individuals becoming infectious. Recov-
ery rate γ = 1/d is determined by the average duration d of the infection, and ω
is the rate the recovered individuals return to the susceptible state due to a loss of
immunity. N = S + I + E + R is the total population and since in model (1.1),
it is assumed that the population is closed with no births and deaths, and N is a
constant.

Some recent extensions of the model taking into account vaccination or time-
delay are presented (e.g., in [2, 6, 13]), and works are referenced there.

In this paper, we review some main dynamical properties of a few variations
of the model, and show how they can be easily derived by using certain tools of
the computer algebra system Mathematica. We also clarify the behavior of the
model with the vital dynamics comparing our computational results with the ones
obtained in [1].

2 Singular points and invariant surfaces in the
SEIRS model

Introducing the notation

S = x1, E = x2, I = x3, R = x4, (2.1)

we write system (1.1) as

ẋ1 =− (βx1x3)/N + x4ω,

ẋ2 =− σx2 + (βx1x3)/N,

ẋ3 =σx2 − γx3,
ẋ4 =γx3 − x4ω.

(2.2)

System (2.2) has a line filled with steady states

x1 =
γN

β
, x2 =

γx3
σ
, x4 =

γx3
ω

and the first integral
Ψ = x1 + x2 + x3 + x4. (2.3)

After rescaling of the phase variables

x1 =
x1
N
, x2 =

x2
N
, x3 =

x3
N
, x4 =

x4
N
,
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we obtain a system of the same form as (2.2), but with N = 1, so now x1, x1, x3, x4
represent the fractions of susceptible, exposed, infectious and recovered people in
the population.

Using the first integral (2.3) and the fact that

x1 + x2 + x3 + x4 = 1, (2.4)

we can reduce the dimension of the system. Namely, after the change of variables

y = x1 + x2 + x3 + x4,

we obtain from (2.2) the system

ẋ1 = −βx1x3 − (x1 + x2 + x3 − y)ω,

ẋ2 = −σx2 + βx1x3,

ẋ3 = σx2 − γx3,
ẏ = 0.

Since by (2.4), y = 1, system (2.2) is reduced to the three dimensional system

ẋ1 = −βx1x3 − (x1 + x2 + x3 − 1)ω,

ẋ2 = −σx2 + βx1x3,

ẋ3 = σx2 − γx3,
(2.5)

which has the steady states A with the coordinates

x1 = 1, x2 = 0, x3 = 0

and B with the coordinates

x̃1 =
γ

β
, x̃2 =

γω(β − γ)

β(γ(σ + ω) + σω)
, x̃3 =

σω(β − γ)

β(γ(σ + ω) + σω)
. (2.6)

Point A is the so-called disease-free equilibrium, and B is the endemic equilibrium.
Computing the Jacobi matrix of (2.5) at B, we find that its characteristic poly-

nomial is
p(y) = y3 + a2y

2 + a1y + a0 (2.7)

with

a2 =(γ2(σ + ω) + γ(σ + ω)2 + σω(β + σ + ω))/(σω + γ(σ + ω)),

a1 =(ω((γ2 + γσ + σ2)ω + βσ(γ + σ + ω)))/(σω + γ(σ + ω)),

a0 =(β − γ)σω.

(2.8)

According to the Routh-Hurwitz criterion the polynomial p(y) has all roots with
negative real parts, if and only if

a2 > 0 ∧ a0 > 0 ∧ a2a1 − a0 > 0.

Solving the semialgebraic system

a2 > 0 ∧ a0 > 0 ∧ a1a2 − a0 > 0 ∧ γ > 0 ∧ β > 0 ∧ σ > 0 ∧ ω > 0 (2.9)
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with the routine Cylindrical Decomposition (based on the algorithm of [3]) of Math-
ematica, we obtain the result

σ > 0 ∧ ω > 0 ∧ β > γ > 0. (2.10)

Thus, observing from (2.6) that the coordinates of point B are non-negative only
if β ≥ γ, we conclude that point B is asymptotically stable, if and only if the
condition (2.10) is fulfilled. If condition (2.10) not holding the system has only the
disease-free equilibrium A in the first octant. From this observation, it follows that
system (2.5) cannot have Hopf bifurcations at B.

From the point of view of applications, the first integrals of a system of au-
tonomous differential equations represent strong conservation laws and invariant
surfaces represent weak conservation laws. To finish this section, we describe how
to find invariant surfaces in system (2.5) by using the computer algebra system
Singular.

For the differential system

ẋ = P (x1, x2, x3), ẏ = Q(x1, x2, x3), ż = R(x1, x2, x3), (2.11)

where P, Q, and R a polynomials of degree at most n, we denote by X the associated
vector field. A polynomial F (x1, x2, x3) satisfying the equation

X (F ) =
∂F

∂x1
P +

∂F

∂x2
Q+

∂F

∂x3
R = KF (2.12)

for some polynomial K is called a Darboux polynomial of (2.11). In this case, K is
called the cofactor of F , and has the degree at most n− 1. It is not difficult to see
that the equation F = 0 defines an invariant algebraic surface of system (2.11).

We look for invariant surfaces of degree two in system (2.5) in the form

F = h000 + h100x1 + h200x
2
1 + h010x2 + h110x1x2 + (2.13)

h020x
2
2 + h001x3 + h101x1x3 + h011x2x3 + h002x

2
3 (2.14)

with the cofactor
K = k0 + k1x1 + k2x2 + k3x3.

Substituting this expressions into (2.12) (where P , Q and R are polynomials on the
right hand side of (2.5)) and equating coefficients of similar terms on both sides of
the obtained identity, we obtain the polynomial system

0 = −h200k1 = −h020k2 = −h020k1 − h110k2 = −h110k1 − h200k2 = −h002k3 =

− h002k2 − h011k3 = −h011k2 − h020k3 = βh011 − βh101 − h002k1 − h101k3 =

2βh020 − βh110 − h011k1 − h101k2 − h110k3 = βh110 − 2βh200 − h101k1 − h200k3 =

− h000k0 + h100ω = −2γh002 − h002k0 − h001k3 − h101ω = −γh001 − h001k0
− h000k3 − h100ω + h101ω = −h200k0 − h100k1 − 2h200ω = βh010 − βh100−
γh101 − h101k0 − h001k1 − h100k3 − h101ω − 2h200ω = −h100k0 − h000k1 − h100ω+

2h200ω = −h010k0 − h000k2 − h100ω + h110ω + h001σ − h010σ = −γh011 − h011k0−
h001k2 − h010k3 − h101ω − h110ω + 2h002σ − h011σ = −h020k0 − h010k2 − h110ω+

h011σ − 2h020σ = −h110k0 − h010k1 − h100k2 − h110ω − 2h200ω + h101σ − h110σ
(2.15)
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To find Darboux polynomials of system (2.5) of degree two, we have to eliminate
from this system the variables h000, h001, h002, h010, h011, h020, h100, h101, h110, h200,
k0, k1, k2, k3. However, it is necessary to add to system (2.15) the condition, and
one of the coefficients of monomials of degree two in (2.15) is not zero (otherwise,
the elimination is always possible, since system (2.15) always has the trivial solu-
tion). We first set in (2.15) h200 = 1, and perform the elimination by using the
routine eliminate of Singular and then solve the obtained system with the routine
minAssGTZ [5] (the routine performs irreducible decomposition of the variety of a
polynomial ideal, and it is based on the algorithm of [7]) by obtaining the following
five solutions:

1) γ = 0,

2) ω = 0,

3) σ − ω + γ = βω − 2ω2 − βγ − ωγ + γ2 = 0,

4) β = 0,

5) σ = 0.

Obviously, only the third solution is relevant to the epidemiological point of
view. Performing similar computations with h110 = 1, h101 = 1, etc, we do not
obtain any other relevant solutions (for some cases, it was impossible to compute
decomposition over the field of rational numbers, so modular computations were
used as it is described in [11]).

In the case when condition 3 is satisfied, the system has an invariant surface

F =
2γ(x2 + 3x3)

3(γ − 2ω)
+

4γx2
3(γ + ω)

+
γx23
ω − γ

+ (x1 + x2 + x3 − 1)2 = 0.

Simple computations show that both steady states A and B are on the surface.

3 SEIRS model with vital dynamics

In this section, we consider a generalization of the SEIRS model from the previous
section, where the birth rate and mortality rate are taken into account. The model
is described by the system of differential equations

Ṡ =µN − νS − βSI/N + ωR,

Ė =βSI/N − νE − σE,
İ =σE − γI − (ν + α)I,

Ṙ =γI − ωR− νR,

(3.1)

where µ is the birth rate, ν is the background mortality rate and α is the death rate
due to the infection. In a stable population, the mortality rate is approximately
the same as the birth rate µ = ν, and if the disease is not severe, then α can be
assumed equal to zero.

3.1 The case of a stable population

In the case when µ = ν and α = 0 the total population N = S + E + I + R is a
constant. Therefore, we can rescale variables S,E, I,R by N , or equivalently, we
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set N = 1 in (3.1) by obtaining (using notation (2.1)) the system

ẋ1 =ν − νx1 − βx1x3 + ωx4,

ẋ2 =− νx2 − σx2 + βx1x3,

ẋ3 =σx2 − γx3 − νx3,
ẋ4 =γx3 − νx4 − ωx4.

(3.2)

Since H = x1 + x2 + x3 + x4 − 1 is an invariant subspace of (3.2), using the
substitution z = 1− x1− x2− x3− x3 on the invariant space z = 0, we obtain from
system (3.2),

ẋ1 =ν − νx1 − βx1x3 + ω(1− x1 − x2 − x3),

ẋ2 =− νx2 − σx2 + βx1x3,

ẋ3 =σx2 − γx3 − νx3.
(3.3)

For system (3.3), the reproduction number is (see e.g., [1])

r0 =
βσ

(γ + nu)(ν + σ)
.

It is convenient to use r0 instead of the parameter β. Straightforward computa-
tions show that system (3.3) has the disease-free steady state A with the coordinates

x1 = 1, x2 = 0, x3 = 0

and the epidemic equilibrium B(x̃1, x̃2, x̃3), where

x̃1 =
1

r0
,

x̃2 =
(r0 − 1)(γ + ν)(ν + ω)

r0(γ(ν + ω + σ) + (ν + ω)(ν + σ))
,

x̃3 =
(r0 − 1)σ(ν + ω)

r0(γ(ν + ω + σ) + (ν + ω)(ν + σ))
.

(3.4)

Thus, we see that point B is in the first octant, if and only if r0 ≥ 1.
Since for system (3.2) x1 +x2 +x3 +x4 = 1, in the case of system (3.3), we have

the condition
x̃1 + x̃2 + x̃3 ≤ 1. (3.5)

From (3.4), we have

x̃1 + x̃2 + x̃3 =
γ(r0(ν + ω) + σ) + r0(ν + ω)(ν + σ)

γr0(ν + ω + σ) + r0(ν + ω)(ν + σ)
.

From this expression, we see that condition (3.5) is satisfied, if r0 ≥ 1.
For system (3.3) with condition (3.5) fulfills the endemic equilibrium, B is always

asymptotically stable. To see this, one simply needs to compute the Jacobi matrix
of system (3.3) at point B and then its characteristic polynomial

p(y) = y3 + a2y
2 + a1y + a0. (3.6)

Solving with Cylindrical Decomposition, the semi-algebraic system

a2 > 0 ∧ a0 > 0 ∧ a1a2 − a0 > 0 ∧ r0 ≥ 0 ∧ γ > 0 ∧ σ > 0 ∧ ν > 0 ∧ ω > 0, (3.7)
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we obtain the result

r0 > 1 ∧ γ > 0 ∧ σ > 0 ∧ ν > 0 ∧ ω > 0. (3.8)

By the Routh-Hurwitz criterion, it means that all roots of the characteristic
polynomial p(y) have negative real parts, unless r0 ≤ 1. However, in the latter case,
the system has only point A (B collides with A for r0 = 1).

Thus, point B is always asymptotically stable. Observing that all eigenvalues
of the Jacobian of system (3.3) at A are always real, we conclude that a Hopf
bifurcation cannot occur in system (3.3).

As we have seen, if condition (3.8) holds, then all roots of the characteristic
polynomial at point B have negative real parts. However, there are two possibilities:
(i) all roots of the characteristic polynomial are real;
(ii) there is a pair of complex conjugate roots.

In the second case, the trajectories exhibit damped oscillations approaching the
steady state B. If solutions to (3.3) exhibit oscillatory behavior, we refer to them
as epidemic waves (see e.g., [1]).

As it is known, a cubic polynomial has a pair of complex conjugate roots, if
its discriminant is negative. Thus, to detect the values of parameters for which
damping oscillations exists, one can add to system (3.7) the condition D < 0, where
D is the discriminant of polynomial (3.6) (in Mathematica, it can be computed
with the command Discriminant) and apply the routine Cylindrical Decomposition
to the obtained system. That is, we can use the routine in order to determine the
values of parameters of system (3.3), for which the system has epidemic waves and
for which the waves most likely do not exist. It is possible to perform computations,
only if we fix a few parameters in system (3.3).

As an example, we consider the case, when

γ =
1

14
, σ =

1

7
, ω =

1

365
, ν =

1

76× 365
. (3.9)

Adding to system (3.7) the condition D < 0 and solving the obtained system
with the Cylindrical Decomposition, we obtain the result

1.01489 < r0 < 460.421.

Thus, for r0, in this interval, the Jacobian of the linearized system has a pair of
complex conjugate eigenvalues, and we can observe periodic waves (Figure 2). For
r0 < 1.01489, the trajectories fast approach the steady state (Figure 1).

3.2 The case of changing population

Now, we consider the case when in system (3.1) µ = ν and α > 0. That is, the
mortality due to infection is not negligible. In this case,

N = S + E + I +R (3.10)

is no longer a constant, but a function of time. From (3.1), we have

Ṅ = −ν(S + E + I +R−N)− αI.

Taking into account (3.10), we can use instead of the above equation the equation

Ṅ = −αI
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Figure 1: Solutions to (3.2) for r0 = 1.005 and
the initial values x1 = 0.9, x2 = 0.1, x3 = x4 = 0
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Figure 2: Solutions to (3.2) for r0 = 2.5 and the
initial values x1 = 0.9, x2 = 0.1, x3 = x4 = 0

by extending (3.1) to the five dimensional system

Ṡ =µN − νS − βSI/N + ωR,

Ė =βSI/N − νE − σE,
İ =σE − γI − (ν + α)I,

Ṙ =γI − ωR− νR,
Ṅ =− αI.

(3.11)

Letting x1 = S, x2 = E, x3 = I, x4 = R, x5 = N , performing the variable
change yk = xk/x5 (k = 1, 2, 3, 4) and keeping the notation xk instead of yk, we
obtain from system (3.11) that

ẋ1 =ν − νx1 + αx1x3 − βx1x3 + ωx4,

ẋ2 =− νx2 − σx2 + βx1x3 + αx2x3,

ẋ3 =σx2 − αx3 − γx3 − νx3 + αx23,

ẋ4 =γx3 − νx4 − ωx4 + αx3x4,

ẋ5 =− αx3x5.

(3.12)

Since the first four equations of the system do not depend on x5, it is sufficient
to consider instead of (3.13) the system

ẋ1 =ν − νx1 + αx1x3 − βx1x3 + ωx4,

ẋ2 =− νx2 − σx2 + βx1x3 + αx2x3,

ẋ3 =σx2 − αx3 − γx3 − νx3 + αx23,

ẋ4 =γx3 − νx4 − ωx4 + αx3x4.

(3.13)

The system has the invariant subspace (the Darboux factor)

H = x1 + x2 + x3 + x4 − 1

(which reflects the fact that the sum of the fractions of susceptible, exposed, in-
fectious and recovered in the population is one), and on this subspace the flow of
system (3.13) is defined by the equations

ẋ1 =ν + ω − νx1 + (α− β)x1x3 − ω(x1 + x2 + x3),

ẋ2 =− (nu+ σx2) + (βx1 + αx2)x3,

ẋ3 =σx2 − (α+ γ + nu)x3 + αx23.

(3.14)
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In [1], the authors presented calculations for the case µ = ν and α different from
zero. For the values of parameters defined by (3.9) and r0 = 2.5, α = 0.02, the
picture obtained in [1] looks as in Figure 3 (https://shiny.bcgsc.ca/posepi2/).
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Figure 3: α = 0.02, r0 = 2.5
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Figure 4: α = 0.02, r0 = 2.5

One can also obtain the graph given in Figure 3 by solving system (3.1) with
N = 1, the parameter values given by (3.9) and the initial conditions S = 0.999, E =
0.001, I = R = 0. However, for such solutions, the sum S + I + E + R = N is
decreasing (see Figure 4), which contradicts the assumption N = 1.

As is shown above, if α 6= 0, then instead of system (3.1) with N = 1 (equiva-
lently, (3.12)) we have to use system (3.13). In this case, the picture is in Figure 5.
Solving system (3.11) with the initial conditions N(0) = 1000000, S(0) = 999000,
E(0) = 1000, I(0) = R(0) = 0, we obtain the picture in Figure 6. Plotting the ra-
tios S/N,E/N, I/N,R/N , we obtain the same picture as shown in Figure 5. Thus,
we see that although the total population decreases (Figure 6), the fractions of
susceptible, exposed, infectious and recovered in the population stabilize (Figure
5).
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Figure 5: α = 0.02, r0 = 2.5
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Figure 6: α = 0.02, r0 = 2.5
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