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Abstract By the definition of the higher-order fractional derivative, we ex-
plore the central properties of the higher-order Caputo-Fabrizio fractional
derivative and integral with a weighted term. Furthermore, by dint of Schae-
fer’s fixed point theorem, a-1-Contraction theorem, etc., we establish the ex-
istence of solutions for nonlinear equations. We also give three examples to
make our main conclusion clear.
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1. Introduction

During the past decades, the Caputo fractional derivative (CFD) has been investi-
gated by many scholars (see [13,18]). In the last few years, a large number of essays
about a novel fractional derivative, Caputo-Fabrizio fractional derivative (CFFD),
have emerged, and this kind of derivative has a better nature than the usual frac-
tional derivative (see [1-3,5,7,9,12,15,16,19]). For instance, in 2020, Eiman et al.,
dealt with the nether class of fractional differential equations involving the CFFD
and obtained the existence theory

{CgDzum flau(@),CF Dlu(z)), =€ 0,T]=1,

u(0) = up, ug €R,

where 6 € (0,1], f: JxR xR — R (see [9]). In 2021, Abbas et al., investigated the
existence of solutions for the following Cauchy problem of Caputo-Fabrzio impulsive
fractional differential equations

u(t ))te[k,k:O~-~ m,

(“FDju)(t) = f(t,
k) Li(u(ty))ik =1,---,m,

u(ty) = ult
u(0) = uyp,
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where Iy = [O,tl], I, = (tk,tk+1}, k= Lo om; 0=ty <t < <ty < tin41 =
T, upeR,and f: [ xR—-R, k=0,---,m, Ly :R—R; k=1,---,m are given
continuous functions, “¥' D} is the Caputo-Fabrizio fractional derivative of order

€ (0,1) (see [2]). In 2022, Abbas et al., investigated the existence of solutions
for the Cauchy problem of Caputo-Fabrzio fractional differential equations without

instantaneous impulses

(“F D, )():f(tu())'tefk7k:0-~- m,
(t)—gk(t u( ))ifte Jy, k=1, m,
u(0) = up € R,

where Iy := [0, t1], Jk := (t, Sk}, I := (Spyter1]; E=1,--- ;m,and f: [ xR = R,
gr : Jg X R = R are given continuous functions, 0 = sg < t1 <51 <ty <s9<---<
Sm—1 < tm < Sm < tms1 =T (see [3]).

Abreast of the times, in 2022, Fernandez et al., conducted a formal study of
weighted fractional calculus, and emphasized the importance of the conjugation
relationships with the classical Riemann-Liouville fractional calculus (see [11]). For
the study of Caputo-Fabrizio fractional derivative (CFFD) in the weighted field, in
2019, Al-Refai and Jarrah first proposed the weighted Caputo-Fabrizio fractional
derivative (WCFFD) of order 0 to 1, and demonstrated the existence and uniqueness
of the nonlinear fractional initial value problem

(Dg 2wy @) = g(t, f),t > 0,0 <a <1,
fla) = fo €R,

where D¢ 1 is the WCFFD (see [4]). In 2020, Wu, Chen and Deng studied the
existence and stability of solutions for the WCFFED type differential equations of
order 0 to 1 (see [20]). However, fewer papers are on the higher-order WCFFD.

In this paper, we are concerned with the existence of solutions for the following

nonlinear equations
(DL,[Z W) () =&t y(t)),
y®(a) =0, k=0,1,2,---,n—1, (1.1)
y"™(a) =1,
wherel < n <r <n+l, DZ’[Zﬁw] is the higher order WCFFD, and y € AC™([a, T],R),

& are binary continuous functions

Dy 1w (W) —@(t,y(t) = £, y(t)),
(y—w)®(a)=0, k=01,2,---,n—1, (1.2)
(y —=)"™(T) =0,

where y — w € AC™([a,T],R), and w are binary continuous functions

DL s = £t y(1),

yP(a)=0, k=012 ,n—1, (1.3)
y"(a) =1,
Where € AC™([a,T],R), and ¢ are binary continuous functions. Here, AC([a, T}, R)

is Banach space, which contains all absolutely continuous functions from [a, T] in-
to R, provided with the usual maximum norm. AC"([a,T]|,R) = {z : [a,T] —
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R,and =Y € AC([a,T],R)}.

The main components of this article are as follows. First, the definitions and
properties of the higher-order WCFFD are introduced. Then, the existence results
of the nonlinear equations are obtained. Finally, we give three examples to make
our main conclusion clear.

2. Preliminary results

In this segment, we introduce preliminary results related to this dissertation.

Definition 2.1 ( [4]). Let 0 < r < 1, and y € AC([a,T],R). The weighted Caputo-
Fabrizio fractional derivative (WCFFD) of y of order r is defined by

M(@r) 1 ' ()~ 2(s)) & w
rF) RS d t<T.
T—r (t)/a e ds( y)(s)ds,a <t <

(Dg,[z,w]y) (t) =

Here, p, = 1=, M(r) is a normalization function, which satisfies M (0) = M (1) = 1,

o

w,z € ACYa, T], and w,w’, 2’ > 0 on [a, T].

Definition 2.2 ( [4]). For 0 < r < 1, the weighted Caputo-Fabrizio fractional
integral (WCFFTI) of y of order r is defined by

(o)) = 3775 (@ =000 + 15 [ Gl )

r

Definition 2.3. Let n < r <n+1, and y € AC"([a,T],R), we define the WCFFD
of y of order r as follows:

(D 1o ) (D)= (DL ™) (1)

M(r—n) 1 [ o=, m
_ e (2(t)—2(s n 2.1
1—r+nwt) /a ¢ ds (wy™)(s)ds,  (2.1)

rT—n

1—r+n"

where p,_, =
Definition 2.4. For n < r <n + 1, the WCFFTI of y of order r as follows:
(I o) () = ("I ) (1)

-5 /. (- S ((1 —rene) + 8 z’(u)w(u)y(u)du) ds

n+1l—1r

- F(n)]\/[(r—n)/a (t—9)" Ty(s)ds
r—n ' n—1 1 s ’
+W/a (=) w(s) /a 2 (Ww(u)y(u)duds.

Definition 2.5 ( [6]). For n < 7 < n + 1, we call the usual Caputo-Fabrizio
fractional derivative (CFFD) as follows:

D}

M (r — K .
y(t) = T Err +n12 / e Hr=n(t=s)y (n+1) gq. (2.2)
a
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Let us consider the difference between the WCFFD and the usual CFFD in the

interval [—25, 25].

(i) As y(t) = sint, we choose z(t) = w(t) =t, a = —25, and M = 1. We observe
the following simulations of the WCFFD and the usual CFFD with » = 0.8 (see

Figures 1-2):

11

t
(D 12w ¥)(t) = **/ eV (sin s + s - cos s)ds,
[zl 021 | o

VAAARA A
TRATRYLATATRY

Figure 1. Simulation of WCFFD (2.3)

-20 10 ¥

&)

Figure 2. Simulation of the usual CFFD (2.4)

(ii) As y(t) = sint, we choose z(t) = w(t) = t, a = —25, M = 1. We observe
the following simulations of the WCFFD and the usual CFFD with r = 1.8 (see

Figures 3-4):

11
(D3 2w ¥)(t) = 77/ e (cos s — 5 - sin s)ds,
[zw] 037 /

(2.5)
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(Day)(t) = 0% /_25 e*5=t) (—sin s)ds. (2.6)

(]

Figure 3. Simulation of WCFFD( 2.5)

05

2
T
S
o
=]
o

tn

Figure 4. Simulation of the usual CFFD (2.6)

From the above simulations we can observe different actions between the WCFFD
and the usual CFFD. There is a difference between Figure 1 and Figure 2. Other-
wise, it appears less different in the other two images (see Figures 3-4).

Now, we consider the relations between the differential and integral operators.
Theorem 2.1. Lettingn <r <n+1, andy € AC"([a,T],R), then

() (D5 g0 ) (1) = (1) — (e
.. r r n—1 %) (q w(a)y™ (a ; .
(1) (I 10 Do) (0) = y(0) = 5 (1 =) — S0yt [ (0= 0)" gy

Proof. Letting 3 =1 —n, then 8 € (0,1).
(i) Since

(o 12 9) ™ ()

) [I" (th((l S Uft) /at Z'(S)w(S)y(s)ds))] "
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we have

1

Tt = 1755 (0= B F (O + B0

Thus,

(Da 2w Lo, f2,0)9) (1)
—ppz(t) t
= [ (g e ) ds

1 e Hpz)

T1-8 w()
+ﬂ/ e“ﬁz(s)(z’wy)(s)ds). (2.7)

(=) [ e 2 )

Integrating by parts, we have
" unse)
1— npz(s) 4
(1=8) [ e ) (s)as
t
= (1= 0) (50 ) () = P ) — s | O (51
= (1= B)er*Du(t)y(t) — (1 = B)e'** Dw(a)y(a)
t
—6/ e"8%0) (2 wy) (s)ds. (2.8)
Substituting the result of (2.8) into (2.7),
(DZ,[z,w] Ig,[z,w]y) (t)

e—hpz(t)
: (1= 3O Guy)(t) — (1 = Bt (uy)(a)

T1-8 w()
o5 (=(@) () (@)y/(a

- Lty
If we consider y(a) = 0, we get (D 15 . y)(t) = y(t).
(i)
(Ig,[z,w]DZ,[z,w]y)(t) = F(Tll)_ﬂfﬁ(ﬂ)/a (t — S)n_l(D;’[Z’w]y)(s)ds

6 ¢ n—1 1 * /, r
O] / (=5 / Awyw(u) (D7 ) (w)duds.

Let ky(t) = f: ets%() (wy(™ (s5))'ds. Then

/
K (t) = ehos®) (wym) (t))
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and

(D)) = S0,
Hence,

uwDamwxw:f@@zeuwwk@)

Integrating by parts, we have

t

(Z/ng,[z,w]y)(S)dS

:M(B)/tz(s) —hs(s) L ,(5)ds

) [ oy L i

_ 75 _ L nszs) ‘ /tl ~ns(s) 4
- [ R T

s~

1
e—uBZ(t)ky@) + 76—%2(«1);%(@)
Hp

1 d
n %e—ums) ol >d (wym))ds}
a

_MB) [ e A d
= 15[ Hﬁe » tky(t)+#/3/,1 ds(wy )(s)ds

_ M(B) ppa(t - . )
== 7 RO — )0 + ™) o)
= 7@ [ewﬂz(t)ky(t) ~ (wy™)(t) + (wy("))(a)} '

Substituting the result into (2.9), we have

(Ig,[z,w} Dtrz,[z,w]y) (t)
. t —ppz(s)
e N

I(n)M( 1—-8 w(s)

. B t (t—s)n—l M(B) 155 L (6) — (wu™)(s wr ™ ()] ds

F(n)M(ﬂ)/a w(s) B [ key(s) — (wy'™)(s) + (wy™™)( )}d
L e
- I(n) /a t=3) w(s) y(s)d

:L t —Sn71 (n)s S_M ! _snfl 1 s
F(n)/a(t )"y (s)d ) /a(t ek
B 7n—1 y(k)(a) 7ak7U)(a)y7(n)@ t 75n,1L .
=y(1) o (t—a) () /a(t ) w<s>d .
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n—1

If we consider y(™ (a) = 0, we get (L5 ) P oo ¥) () = w() — kz %(f —a)k.
=0

O

3. Existence results for the nonlinear equation

In the following segment, we will investigate the existence results for nonlinear
equations in Section 1. Several lemmas related are given first.

Definition 3.1 ( [14,17]). Let ¥ be the family of nondecreasing function v :
[0,00) — [0, 00) satisfying > ¢"(t) < oo for t > 0. Let (X, d) be a metric space,

n=1
and @: X X X — [0,00) be a map and ¢ € ¥. A mapping T : X — X is called an
a-p-contraction, if oz, y)d(Tx, Ty) < ¥(d(z,y)) for all z,y € X.

Definition 3.2 ( [14,17]). T : X — X is said to be a-admissible, if a(z,y) > 1 =
a(Tz,Ty) > 1, for z,y € X, where a: X x X — [0, 0).

Lemma 3.1 ( [10]). Let M be a Banach space, and P : M — M be completely
continuous, if A(P) ={y € M : y = APy, for some A € [0,1]} is bounded. Then, P
has a fized point.

Lemma 3.2 ( [14,17]). (a--Contraction theorem)

Let (M, d) be a complete metric space and T : M — M be an a-ip contraction
mapping. Further,
(i) T is a-admissible;
(i) there exists xo € M such that a(xo, Txg) > 1;
(i) if x,, s a sequence in M such that a(xy, xni1) > 1 for all n and x,, > x € M
as n — oo, then a(x,,x) > 1 for all n.

Then, there exists y € M such that Ty=y.

Lemma 3.3 ( [8]). Let S be a non-empty, bounded and closed convex subset of
Banach algebra Q. Fy : Q — Q and F5 : S — Q satisfy
(i) Fy is Lipschitzian, and the lipschitz constant is written as o;
(ii) Fy is completely continuous;
(iii) y1 = Fry1Foys = y1 € S for all ys € S;
(iv) aM < 1, where M = sup{||Fa(y1)|| : y1 € S},
then Fiy1 Foy1 = y1 has a solution in S.

By means of Theorem 2.1, the following conclusion can be reached.

Lemma 3.4. Let y € AC"[a,T], £ be a binary continuous function, and y be a
solution to the nonlinear fractional equation (1.1), if it satisfies the integral equation

)~ Fd [t
= a,/ (t — )" E(s,y(s))ds + br/ (t—s) 7t

where a, = %, br = Fyai(r=n) -

Theorem 3.1. Letl <n<r<n+1landa <t <T. & is a binary continuous
function which satisfies |€(t,y(t))| < L1(1+|y(t)|), and here Ly > 0. If (01+602)L1 <
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1, then boundary value problem (1.1) has at least one solution, where 61 = M,
and 0y = brT=a)"w(D)(T)—2(a))

nw(a)

Proof. Define P: AC™([a,T],R) — AC"([a,T],R) as follows.

(Po= 3 [=srsdsan [0t
t o1 1 sz’uwu u, y(u))duds
b [ = s [ e ) duds

Letting y, — y in [a, T, for all ¢ € [a,T],
[(Pyn)(t) = (Py)(1)]
<ar [ (=9 e s un(s) € .00 |ds

+br/(tfs) -1 (13) /S 2 (w)yw(u) [€ (u, yn (1) — € (u,y(u)) |duds

w

< e 1m0 = €uO) | [ (0 s

b 1 €Con0) = 60D | [ =7 [ s

From z’,w’ > 0 and the mean value theorem for integrals, for some a < o < T, we
have

[ # @i = w0):(6) - (@) < wT)EAT) - 2(@).
Thus,
(Pyn)(t) — (Py)()
< Ty () w0 |
Ben()(A(T) — )T — o I €C, () — €y I

nw(a)

Since £ is continuous, we can derive that P is continuous.
In the following, we will testify that P is a bounded operator. For

y € B,={y € AC"([a,T],R) : sup |y(t)| < p},

t€la,T]

we get

| Py(t)
w(a)

|
t n1_L t —8)" (s, y(s))ds
_ F(n)/(t—s) w(s)ds+ar/a(t )" E(s, y(s))d

a

+br/ (t—s)"! ! /S 2 (w)w(u)é(u, y(u))duds

' n—li ! —Sn_l s 5
P(n)/a“_s) w(g)d”“r/a(t )" LA (L Jy(s)])d
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o [ ot [+ )

(T —a)" L@ ar(T' —a)"Li(1 4 p) n by (T — a)"w(T)(2(T) — 2(a)) L1 (1 + p)
nl'(n n nw(a)

(T a)"

“TmED +601L1(1+ p) + 02L1 (1 + p)

— Foy L1 )6+ ) =

Thus,
sup |Py(t)| <L
t€(a,T]

Afterwards, the equicontinuity will be demonstrated. Let t1,ts € [a,T] be with
a<t <ty <T,ye€ B, Wehave

|Py(t1) — Py(ts))|
oA 1wzs>d5/;(“ I ]
/t2 (ta —9)" »y(s))ds — /atl(tl — 5)"_1§(S,y(s))ds]
r /tz t2—s)" wgs) /a 2 (ww(uw)é(u, y(u))duds

_/a = 1wgs> /asZl(u)w(“)f(u»y(U))duds]

(tz—a)"— (1 —a)" | a:Li(1+p)[(ta —a)" = (t1 —a)"]

- nl(n) n
a1 D)) — 2(0) (2~ @) = (1~ ']
nw(a)
L aL(tp) L e @)
= [nf‘(n) + n + nw(a) } [t —a)" = (t1 —0)"].

Applying the Lagrange mean value theorem, there exists ¢ € [t1,t2] such that
(ta —a) — (1 — a)F = k(¢ — a)F " (t2 — t1).
Thus,

[Py(t1) — Py(tz)|
= ﬁ +a,Li(1+p)+ iiLls p)wtf)z(:z)(Z(T) =0 (C—a)" Mtz —t1).

Then, P is equicontinuous.

Combining the above steps with the Arzela-Ascoli theorem, we can conclude
that P is completely continuous.

Eventually, we consider the boundedness of the set A(P) = {y € AC"([a,T],R) :
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y = APy, for some A € [0, 1]}. Letting y € A(P), for every t € [a,T], we are able to
derive that

ly()| = [APy(t)]

(T —a)"
< NCES)) + L1 (1 + [[y[)) (61 + 62)
(T —a)"

< Ty Tl )+ Lullyl(6 + 62).

Using the condition (61 4+ 62)L; < 1, we obtain

(rqu)n + Li(01 + 62)

1—L1(91+92) ’

which means the set A(P) is bounded.
By dint of Lemma 3.1, we derive that P has a fixed point, which is a solution
o (1.1). The proof is completed. O
Now, we consider the nonlinear boundary value problem (1.2).

Iyl <

Lemma 3.5. Let y € AC"([a,T],R). £ and w are binary continuous functions,
y—w € AC™([a,T),R) and y is a solution to the nonlinear fractional boundary
value problem (1.2), if it satisfies the equation

t

1) = =(t.9(0) + ar (DT (D)) [ (=9 s
r ! ! n—1 1
+br/a z (u)w(u)g(u,y(u))du/a (t—s) w(s)ds
1

=, [ syt uteis b [ -9

Proof. By means of Theorem 2.1, we have

—w :n_lc _ o)k w(a)e, [* AU 1
o0 = = (y(0) = 3 et~ 0 + 105 [a—ars

+ar/ (t —8)" " ¢(s,y(s))ds
t _— 1 s ,
+br/a (t—-s) w/a 2" (uw)w(u)é(u, y(u))duds.

According to (y — @)™ (a) = 0, we know that ¢ = 0. That is,

ol0) = et = 100 [ (e s

t t —s n—1 S
—a [(— sy elsyonas o [T [ () duds.

(s)
Then,

w(a)ey,

n _ 1 ! /
(y—=)™(t) = o) T aI'(n)€(t,y(t)) + brF(n)m /a 2 (s)w(s)§(s, y(s))ds,
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w(a)cy,
w(T)
For (y — w)™(T) = 0, we get

1 T
(y—w)™(T) = +mTOUﬂTnATD+bJXn%——*/1ZKQUK@ﬂ&yGDd&

w(T)

T

M@%z—wwﬂﬁmkﬁwﬁw—MNM/‘%®w@ﬂamw®-

a

Thus,
t

mw—wwmm+mw@x@w@»/a—$“1

a

ds

w(s)

T t
+b, z’(u)w(u)f(u,y(u))du/ (t — s)"‘lids
—ar [ (6= ey 1 [ (-5

1 S
5 | e y)dus,
which completes the proof. O
Denote V = {y : y € AC"([a,T],R)}, and d(y1,y2) = ||ly1 — y2||. Obviously,
(V,d) is a complete metric space.
Define operator T: V — V,

(Ty)(t)
t—s)n !

- —eu(DTy1) [ s

w(s)

—br/ z’(u)w(u)f(u,y(u))du/ (t—s)"_lﬁds—i—ar/ (t—s)""1¢(s,y(s))ds

D
—&—b,n/a W/a 2 (ww(uw)é(u, y(u))duds + w(t, y(t)).

By dint of Lemma 3.5, we derive that the boundary value problem (1.2) has
solutions, if T" has fixed points.

We define function ¢ : R? — R, and make the following conditions hold.
(H;) There exists a map 1) € ¥ and a constant m > 0 satisfying

1€t y1) — &t v2)| < Y(lyr — yel)s [w(t,y1) — @ (t, y2)| < map(jyr — ya|).

(Hz) There exists zg € V such that ¢(zg, Tzg(t)) >0 fora <t < T.

(Hs) For Vt € [a, T, ¢(x(t),y(t)) > 0 implies s(Tz(t), Ty(t)) >0 .

(Hy) For{zp,} CV, 2, = x €V, foreacht € [a,T] and every n, ¢(z,(t), Tnt1(t)) >
0, we have ¢(z,(t), z(t)) > 0.

Theorem 3.2. Assume that(Hy)-(Hy) are satisfied. If

ar(T = a)"(w(T) + w(a)) + 2b,w(T)(2(T) — 2(a))(T — a)"
nw(a)

+m < 1,

then equation (1.2) has a solution.

Proof. Let a:V xV — [0,00) by

M%w:{L s((t). y(1)) > 0, 51)

0, else.
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We explain that T is a-admissible. Choosing z,y € V, for Vt € [a,T], a(x,y) > 1
implies ¢(x(t),y(t)) > 0, then ¢(T'z(t), Ty(t)) > 0. We have o(Tz,Ty) > 1. Hence,
T is a-admissible.

Next, according to hypothesis (Hs), there exists g € V such that ¢(xg, Txo(t)) >
0. That is, a(xg, Txg) > 1.

The following shows that 7" is an a-t-contraction.

Letting y1,y2 € V, for each t € [a,T], we have

(Ty1)(8) = (Ty2) (®)]

arw(T)(E(T, 10 (T)) — £(T, ya(T))) / (t— s

T t
b [ ) (6 ) — G vaa))du [ (¢ -9 s

ta / (t— )" (E(5,91(5)) — E(, 9a(s))) ds

b [ s [ ) (€ () - € au)duds

o (t, 31 (1)) — @ (ty2 ()|
! n—1 1
/a (t—9) () ds

+b, /aT z’(u)w(u)‘f(u,m(U)) - g(uij(u))‘du /at(t g

< a,u(T)[§(T,51(T)) — €(Ty2(T)

1
w(s)ds
+ar/a (t— s)”_l‘f(s,yl(s)) —&(s,92(5)) ‘ds

+b, /at(t - s)”ﬂﬁ /as Z’(u)w(u)‘f(U,yl(u)) — &(u, Yo (u)) ’duds

+|w(t> hn (t)) - w(tv y2(t))|

Applying the mean value theorem for integrals,

|Ty1 — Tya||
< @w@)(T = a)"Y(llys = gel) | brw(@)(=(T) = 2(a))(T = a)"¢llys — 2|
- nw(a) nw(a)
A a)"?i(ﬂyl — el | brw(@)(=(T) — Z(ng)l}(é)— a)" ¥ ([lyr — y2ll)
+mip([lyr — y2l)
<Yy = w2l))-

Thus, we get
d(Tyy, Ty2) < Y(d(y1,92)),

which implies
a(y1, y2)d(Ty1, Ty2) < P(d(y1, y2))-

Then, We obtain that T is a-1-contraction.
Lastly, from hypothesis (Hy), letting {x,,} be a sequence in V' with ¢(x,,(t), z(t))
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> 0, we are able to derive a(z,,z) > 1.
Based on Lemma 3.2, there exists u such that v = Tw, which completes the
proof. O
In the following, we consider the nonlinear boundary value problem (1.3). Sim-
ilar to the proof of Lemma 3.5, we have the conclusion as below.

Lemma 3.6. Assume that y € AC™([a,T],R), £ and ¢ are binary continuous
functions, ¢ € C([a,T] x R,R\ {0}), and & € AC"([a,T],R). y is a solution
to the nonlinear equation (1.3), if it satisfies

y(t) w(a)( (1 (1—T+n)§(a70))/t(t_8)n_1
2 a

p(t,y(t)  T(n) w(s)
(

t t 1 S
= ar/ (t —s)"1e(s, y(s))ds + br/ (t— s)”l()/ 2 (w)w(u)é(u, y(u))duds.
a a wis a
We suppose that neither of the assumptions holds.
(Hs) For ¢ € C([a, T] x R,R\ {0}), the inequality |¢(t, y1) — (¢, y2)| < Lalyr — y2|
holds, where Ly > 0.
(Hg) There exists n € AC™([a, T],R") satisfying [£(¢, y(t))| < n(t).

Theorem 3.3. Assume that hypotheses (Hs)-(Hg) are satisfied. If

(T —a)" (1 —7r+n)é(a,0)(T — a)”
LQ(’F(H—F D(a,0) I(n+1)M(r —n) + (0 th92)”77”) <1, (3.2)

a,0) M(r—n)

a,(T—a)"

——, and

then the boundary value problem (1.3) has a solution, where 61 =
0, — br(T—a)”w(T()()Z(T)—Z(a)) _

Proof. Let A = (AC"([a,T],R),|| - ), where ||y|| = sup |y(t)]. Then, A is a
t€la,T]

Banach algebra with multiplication defined by (y1y2)(t) = y1(t)y2(t), y1,y2 € A,
t € [a,T)]. Define

(T—a)™ 1—r+n)é(a,0)(T—a)™
_ Mw<|r(n+1)<p(a,o) - F(nJrl)M(r(fn) + (61 + 92)H77H)
- T—a)™ 1—r+4+n)&(a,0)(T—a)™ ’
1- L2<| 1"(75+1)ga)(a,0) -4 r(n+)1)(M(3~(—n) 2+ (01 + 92)”77“)

where M, = sup |¢(t,0)]. From condition (3.2), we can derive @ > 0.
t€la,T]
Considering the set U = {y € A : ||y|]| < Q}, we can easily obtain that U is a
bounded subset of A, which is closed and convex.
Considering the operators Fy : A — A and Fy : U — A:

(F1y) () = o(t, y(1)),

_ w(a) 1 (1 —r+ n)f(cu()) ! n—1 1
(R”@‘dwn(ﬂmm‘ M{r—n) )L“‘@ Ok

+w/@-@“%@ﬂ%“

+ b,./ (t—s)"! L /S 2 (w)w(u)é(u, y(u))duds,

w(s)
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we can write the fractional integral equation of Lemma 3.6 as an equivalent
operator equation y = F1yFoy,y € A.

Now, we verify the conditions of Lemma 3.3.
(i) Fy is Lipschitz.

For any y1,y2 € A, t € [a,T],

[(Fry)(t) — (Fay)(t)] = le(t,51) — @t y2)| < Lalyy — yal-

We obtain
[Fry — Fay| < Lallyr — vl|-
(ii) Fy is completely continuous.
Letting y,, — y in [a, T, for all t € [a,T], we get

|(Fayn ) (1) — (F2y)(1)]

ar / (t— )" (€5, yn(5)) — E(s,y(s)) ds

s [ s [ e () ~ gl yl)duds|.

Similar to the first step of Theorem 3.1, we can derive that F5 is continuous.

[(Fy)(t)]

w(a)( 1 (1r+n)§(a,0))/t(ts)n1

I'(n) \¢(a,0) B M(r—n)
t

Yar / (
(T -

IN

ds

n—1

w(s)

nl ) Sz’uwu u,y(u))|duds

= o eCsaelas + b, [ [ ety dud
" (= r+ )0 —a)"

a (T —a)™
L ar(T=a)"n]

IN

nI'(n)e(a,0) nl'(n)M(r —n) n
L@ = )" w(T)((T) — 2(a))lln]
nw(a)
(T —a)™ (1—=r+4+n)é(a,0)(T —a)”
] TES VR ey R GO

which shows that F5 is uniformly bounded.
Choosing t1,ts € [a,T] with a < t; <9 < T, we get

|(Fay)(t2) — (Fay)(t1)]

o e [ a0 )

+ /:2 (ty —s)" ! wés) ds}

ar [/ ((t2 = )" 7" = (t1 = )" 7)&(s, y(s))ds + / "t - )" €5, y(s)ds|

t1

w(a) 1 o
= T(n) o)’
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[ 1 ‘ 1 (A=r+n)ge0)  arlill | bellllw(T)((T) 2(@)}
nI'(n)ly(a,0) M(r —n) n nw(a)

[(t2 — a)" = (t1 — a)"].

As t; approaches to, we have |(Fay)(t2) — (Fay)(t1)| < 0, then F; is equicontin-
uous. Combining the above steps with the Arzela-Ascoli theorem, we can conclude

that Fy is completely continuous.
(iii) Let any y» € U. For y; € A, we consider that the operator equation y; =

Fiyi Fays.
Our aim is to prove that y; € U,
ly1(2)]
|(Fryn) (O (F2y2) (2)]
ot 51(2)) — (£, 0) + @(t, 0)||(Fay2) (1)]

<
<

(T —a) (1 —r+n)é(a,0)(T —a)"
< (Lalyr(t)] + M, ‘ .
< (Lol (@] + “")< T(n + Dg(a,0) T(n 1 DM(r —n)
+ 01+ 0] )
This gives
(T—a)" _ (A—=r+n)é(a,0)(T—a)
‘ (t)| < M‘P<| I'(n+1)p(a,0) T'(n+1)M(r—n) | + 91 + 02)”77”)
Y1 =
(T—a)"  _ (1=r+n)é(a,0)(T—a)"
1= Lo | o — SRS | + (01 + 0l
Therefore,
‘yl(t)| S Qv
which proves y; € U.
(iv) Let
(T —a)" (I —7+n)f(a,0)(T —a)"
=Ly, M = — 0, +06
¢ . I'(n+1)¢(a,0) Fn+1)M(r—mn) + (01 + 62)nll

Thus, by condition (3.2),
oM = LM < 1.

According to the above steps (i)-(iv), we are able to derive that all the conditions
of Lemma 3.3 are satisfied. Consequently, the operator equation y = FyyFbsy has a
fixed point in U, which is just a solution to boundary value problem (1.3). O

4. Examples

The results that we have obtained will be tested in this section.
For the sake of convenience, we suppose the normalization function M (r) = 1,
w(t) = et, and z(t) = t2.

Example 4.1. Consider
3 o2t )
(Do,[t’z,et]Z)(t) = @Lz(t)\, telo, 1],

2(0) =0, (4.1)
2(0) = 1.
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Setting r = 3, a =0, T = 1, and £(t, 2(t)) = £ |2(1)], then
l—r+n 1 b r—n 1
Ay = =3 r = =3
Fn)M(r—mn) 2 F(n)M(r—n) 2
and
a-(T—a)™ 1 b (T — a)"w(T)(2(T) — z(a)) 1
91 = = -, 02 = = ——€
n 8 nw(a) 128
We obtain
67215 67215 1 1
= — < < — < —
£t 2(1)) = 1 =] < Slel < 31l < 51+ |2

Letting L; = %, then

1 1
0, + 02)L1 = — 7~ (.07253144 1.
(01 + 62) L1 TR 0.07253144857 <

On the basis of Theorem 3.1, there exists a solution to (4.1).
Example 4.2. Consider
3 —t —2t
Dg 2, (2(0) =~ grer2(B)]) = i (O] + 1,
(= le)(0) =0, (4.2
(2 — grerl2l)(3) = 0.
: _3 . _
Setting r = 5, a =0,

1, then a, = %, and b, =
For every t € [0, i ,

T1= ow(t2() = gz ()], and €(¢, 2(1) = Soel=(0)]+
2

—2t —2t

e 1
1€(t, 21) — &(t, 22)| < ‘1+et |Z1—Z2|S§\21—Z2|7

|21 — 22| S‘

—t —t

1
| (t, z1) — w(t, 22)| < - |21 — 22| < —lz1 — 2a].
9+ et 0

(&
|21 — 22| < | —— =7

10

Letting ¥ (t) = %t, m = %, and for z,y € V, putting ¢(z,y) = 1, then (Hy)—(Hy)
are satisfied. Further, we are able to get
ar (T — a)"(w(T) + w(a)) + 2b,w(T)(2(T) — z(a))(T — a)™ m
nw(a)

T 40 64

On the basis of Theorem 3.2, there exists a solution of (4.2).

1
309 04 £ 0.5055660743 < 1.

Example 4.3. Consider

3 y(t) _ et 1
D§ 2 o) O crlsiny(t)], tel0,4],
y(0) =0, (4.3)

Y (0) = 1.
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Setting r =

then a, = %, brz%791 =

—t —2t
, @ = 07 T = %7 @(t?y) = 13.7|y‘ + 17 and €(t7y) = ﬁ|smy|,
1 1
8

For every ¢ € [0, 1],

Thus, L2 =

ly1 — y2| < 5\1/1 — Y2l

(&
4 — (T <|——=
oltom) = olt)| < | T

1
o

Letting n(t) = 3(t + 1), then

The condition (Hg) is satisfied, and |||l = sup |n(t)| = §.
1

—2t —2t

e . e
£t y)| = mlsmyl < 5

. 1 . 1
|siny| < §|Smy\ <5< n(t).

5

te[OaZ]

We can also easily get £(0,0) = 0, ¢(0,0) = 1. Therefore,

2(‘“ (T—-a)"  (A-r+n)(a,0)(T —a)" + (0, +92)||77|>

n + 1)p(a,0) F'n+1)M(r—mn)
13 5 1
= — 64
128 2048

~ 0.1046973277 < 1.

On the basis of Theorem 3.3, there exists a solution of (4.3).
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