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Abstract. We study continuous data assimilation (CDA) applied to projection
and penalty methods for the Navier-Stokes (NS) equations. Penalty and pro-
jection methods are more efficient than consistent NS discretizations, however
are less accurate due to modeling error (penalty) and splitting error (projec-
tion). We show analytically and numerically that with measurement data and
properly chosen parameters, CDA can effectively remove these splitting and
modeling errors and provide long time optimally accurate solutions.
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1 Introduction

Data assimilation has become a critical tool to improve simulations of many phys-
ical phenomena, from climate science to weather prediction to environmental
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forecasting and beyond [17, 38, 40]. While there are many types of data assim-
ilation, one with perhaps the strongest mathematical foundation for use with
PDEs that predict physical behavior is called continuous data assimilation (CDA).
CDA was developed by Azouani, Olson, and Titi in 2014 [1], and has since been
successfully used on a wide variety of problems including Navier-Stokes equa-
tions [1], Benard convection [20], planetary geostrophic models [22], turbulence
[9, 13, 23, 42], Cahn-Hilliard [18] and many others. Many improvements to CDA
itself have also been made, through techniques for parameter recovery [10], pa-
rameter estimation [11, 21, 44, 45, 48] sensitivity analysis with CDA [14], numeri-
cal analysis [18, 28, 30, 36, 37, 39, 51], and efficient nudging methods [51], to name
just a few. You can also find various extensions of CDA of Azouani, Olson, Titi
in [3–7, 12, 26].

CDA is typically applied in the following manner. Suppose the following PDE
is the correct model for a particular physical phenomenon with solution u(x,t):

ut+F(u)= f ,

u(x,t)|∂Ω =0,

u(x,0)=u0(x).

Suppose further that part of the true solution is known from measurements or ob-
servables, so that IH(u) is known at all times, with IH representing an appropriate
interpolant with max point spacing H. Then the CDA model takes the form

vt+F(v)+µIH(v−u)= f ,

v(x,t)|∂Ω =0,

v(x,0)=v0(x),

where µ>0 is a user selected nudging parameter. For many such systems, given
enough measurement values it can be proven that the solution v is long time
accurate regardless of the accuracy of the initial condition v0 (often CDA anal-
yses assume v0 = 0 6= u0). In numerical analyses, accuracy results of CDA en-
hanced discretizations can often avoid error growth in time since application of
the Gronwall inequality can be avoided, leading to long time optimal accuracy
results [27, 28, 51].

The purpose of this paper is to study CDA together with two commonly used
discretizations of the Navier-Stokes equations (NSE), the projection method and
the penalty method. The projection method is a classical splitting method for the
NSE developed independently by Chorin and Temam [15, 60], and is based on
a Hodge decomposition. The penalty method removes the divergence constraint
but replaces it with a divergence penalty in the momentum equation. Both of
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these methods are more efficient than consistent discretizations, however they
are not as accurate: projection methods have splitting error that reduces accuracy
below optimal, and penalty methods have a consistency error on the order of the
penalty coefficient. We will show through analysis and numerical tests that CDA
removes the splitting error in projection method and consistency error in penalty
method.

To begin our introductory explanation, we start with the NSE system, which
is given by

wt+w·∇w+∇q−ν∆w= f , (1.1)

∇·w=0, (1.2)

w|∂Ω =0, (1.3)

w(0)=w0, (1.4)

where f represents external forcing, ν the kinematic viscosity, and with w and q
representing the unknown velocity and pressure. A consistent linearized back-
ward Euler temporal discretization takes the form

un+1−un

∆t
+un ·∇un+1+∇pn+1−ν∆un+1= f n+1,

∇·un+1=0,

un+1|∂Ω =0.

(1.5)

For simplicity, we consider the linearized backward Euler time stepping for our
analysis, but we note that the same ideas can be applied to the analogous BDF2-
type methods as well (e.g. those from [33]), although with additional technical
details. Our numerical tests use both time backward Euler and BDF2.

The linear systems associated with coupled discretizations such as those aris-
ing from (1.5), which are often called nonsymmetric saddle point systems, can
be very difficult to solve. While significant progress has been made in recent
years [2, 16, 19, 24], solving these systems when ν is small can be slow and some-
times not completely robust. Projection and penalty methods both avoid the need
to solve such linear systems, as we see below, and thus with these methods it is
typically much easier to get numbers.

The linearized backward Euler projection method is formulated as the follow-
ing two step solve process:

Proj Step 1: Find un+1:

un+1− ũn

∆t
+ ũn ·∇un+1−ν∆un+1= f n+1,
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un+1|∂Ω =0.

Proj Step 2: Project un+1 into the divergence-free space

ũn+1−un+1

∆t
+∇pn+1=0,

∇·ũn+1=0,

ũn+1 ·n|∂Ω =0.

The projection method is much more efficient and robust than solving the saddle
point system above. Proj Step 1 is a convection-diffusion solve, and while not
simple when ν is small it is still well studied. Proj Step 2 is the same at each time
step and symmetric, but also can be formulated as a pressure Poisson problem.
Hence, solving the linear systems is a much simpler process with the projection
method. However, there are downsides to projection methods. Since their de-
velopment in the late 1960s there have been many improvements to projection
methods [8, 31–33, 43, 49], but still there is a trade-off of accuracy vs. efficiency.
This lack of accuracy is evidenced in numerous ways. First, as mentioned in [56],
while the coupled backward Euler method (1.5) has O(∆t) velocity accuracy in
the L2(0,T;H1) natural energy norm, the projection method above cannot attain
first order accuracy in this norm. While it can achieve first order temporal ac-
curacy in other norms, additional restrictions on the domain (e.g. Ω has the H2

elliptic regularity property) are required that are not required for first order accu-
racy of the coupled scheme. Analogous issues occur in second order analogues
of the projection method above. In addition to suboptimal accuracy, other im-
portant drawbacks are the O(h−2) computational complexity in Proj Step 2, and
solutions that are not completely physical (either not divergence-free, or do not
satisfy the boundary conditions) [31, 33].

In addition to projection methods, we also consider penalty methods in this
paper. The linearized backward Euler penalty method takes the following form:

un+1−un

∆t
+ B̃
(

un,un+1
)

−ν∆un+1+∇pn+1= f n+1,

∇·un+1+εpn+1=0,

un+1|∂Ω =0,

where

B̃(u,v)=(u·∇)v+
1

2
(∇·u)v

is the modified bilinear form introduced by Temam [59] to guarantee the stability
of such systems.
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By solving for pn+1 in the conservation of mass equation and inserting it into
the momentum equation, we get a system in terms of velocity only

un+1−un

∆t
+ B̃
(

un,un+1
)

−ν∆un+1−ε−1∇(∇·un+1)= f n+1,

un+1|∂Ω=0.

Hence, this system is also more efficient than the consistent discretization of (1.5),
but carries a O(ε) consistency error [57]. Since the matrix arising from the grad-
div term −ε−1∇(∇·un+1) is singular, numerical issues arise if ε is taken too small
and often this consistency/modeling error can be a dominant error source [46].
For ε not too small, however, linear system solves are quite efficient, even with
direct solvers [46].

The purpose of this paper is to improve both projection and penalty methods
by incorporating CDA into their respective schemes. The CDA enhanced Proj
scheme uses nudging in Proj Step 1, and is given by

CDA Proj Step 1: Find un+1:

un+1− ũn

∆t
+ ũn ·∇un+1−ν∆un+1+µIH

(

un+1−wn+1
)

= f n+1,

un+1|∂Ω =0.

CDA Proj Step 2: Project un+1 into the divergence-free space

ũn+1−un+1

∆t
+∇pn+1=0,

∇·ũn+1=0,

ũn+1 ·n|∂Ω =0.

Nudging could also be applied to velocity projection in Proj Step 2, it does not
make any significant change in analysis or numerical results.

The CDA enhanced penalty method, in velocity-only form, can be written as

un+1−un

∆t
+ B̃
(

un,un+1
)

−ν∆un+1−ε−1∇(∇·un+1)

+µIH

(

un+1−wn+1
)

= f n+1,

un+1|∂Ω=0.

(1.6)
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We prove that under assumption that NSE solution is globally well-posed,
and under certain parameter choices found in our analysis, with CDA both pro-
jection and penalty methods recover optimal accuracy in the L2(0,T;H1) energy
norm and yield long time accuracy in L2(Ω). Our numerical tests illustrate these
results for both the first order schemes we analyze, and for their BDF2 analogues
with similar improvement from CDA. Interestingly, our numerical tests show that
CDA penalty appears to give better numerical results than CDA projection, and
moreover CDA penalty can be very accurate even with ε=1.

This paper is organized as follows. In Section 2, we introduce the necessary
notation and preliminary results required in the following sections. In Section 3,
we establish stability and convergence analysis of the CDA projection method
globally in time in L2 and prove the rate of convergence of our scheme is O(∆t) in
L2(0,T;H1). In Section 4, we study the convergence of the CDA penalty scheme.
Lastly, Section 5 contains two numerical tests that illustrate the optimal conver-
gence rates and efficiency of the CDA projection and CDA penalty methods, re-
spectively, on the benchmark problem of the channel flow past a cylinder.

2 Notation and preliminaries

We consider Ω⊂R
d, d= 2,3, to be open bounded Lipschitz domain. The L2(Ω)

norm and inner product will be denoted by ‖·‖ and (·,·) respectively, while all
other norms will be labeled with subscripts. Additionally, 〈·,·〉 is used to denote
the duality pairing between H−s and Hs

0(Ω) for all s>0.
We denote the natural function spaces for velocity and pressure, respectively,

by

X :=H1
0(Ω)d,

Q :=L2
0(Ω),

which satisfy the inf-sup stability condition given by

inf
q∈Q

sup
v∈X

(q,∇·v)

‖q‖‖∇v‖
≥β>0,

where β is a constant bounded away from zero [29, 41]. While this paper deals
with infinite dimensional spaces X and Q, we note that the inf-sup condition is
also necessary when discretizing. Finite element subspaces X ⊂ Xh and Q⊂ Qh

must be compatible spaces satisfying an inf-sup condition as well [33].



H. Hawkins, L.G. Rebholz and D. Vargun / Commun. Math. Res., 40 (2024), pp. 1-29 7

The dual norm of X will be denoted by ‖·‖−1. In addition to the spaces X and
Q, we define

Y=
{

u∈
(

L2(Ω)
)d

:∇·u=0, u·n|∂Ω =0
}

,

V={u∈X :∇·u=0},

and PY is the orthogonal projector in (L2(Ω))d onto Y. The tilde notation will be
used to denote this operator, e.g.

ũn+1=PYun+1.

The Stokes operator is defined by

Au=−PY∆u, ∀u∈D(A)=V∩
(

H2(Ω)
)d

,

which is an unbounded positive self-adjoint closed operator in Y with domain
D(A), and its inverse A−1 is compact in Y.

Given u∈Y, by definition of A, v=A−1u is the solution of the following Stokes
equations:

−∆v+∇p=u,

∇·v=0,

v|∂Ω =0.

(2.1)

In [55], the regularity results for (2.1) give

‖A−1u‖Hs =‖v‖Hs ≤ c1‖u‖Hs−2 for s=1,2,

and
(A−1u,u)=(v,u)=−(∆v,v)+(∇p,v)=‖∇v‖2 ≤ c2

1‖u‖2
−1.

Additionally, since u=Av, by the inf-sup condition we obtain

‖u‖−1≤ csup
w∈X

〈u,w〉

‖∇w‖
= csup

w∈X

〈Av,w〉

‖∇w‖
≤ c‖∇v‖,

which implies that (A−1u,u)1/2 can be used as an equivalent norm of H−1 for all
u∈Y.

We now to introduce some operators which will be used in our analysis. For
u,v,w∈X,

B̃(u,v)=(u·∇)v+
1

2
(∇·u)v,

b̃(u,v,w)=
(

B̃(u,v),w
)

.
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Equivalently, this last term can be written as

b̃(u,v,w)=
1

2

((

(u·∇)v,w
)

−
(

(u·∇)w,v
))

, ∀u,v,w∈X,

which is the skew symmetric form of the nonlinear term. Hence,

b̃(u,v,v)=0, ∀u,v∈X. (2.2)

The following lemma is proven in [39] and used to obtain the long time accu-
racy result.

Lemma 2.1. For constant α>1 and B>0 if a sequence of real numbers {xn}∞
n=0 satisfies

αxn+1≤ xn+B,

then

xn+1≤ x0
1

αn+1
+

B

α−1
.

2.1 Discretization preliminaries

A function space for measurement data interpolation is also needed. Hence, we
require a regular conforming mesh τH and define XH = Pr(τH)

2 for some poly-
nomial degree r. We require that the linear coarse mesh interpolation operator
IH : X → XH used for data assimilation satisfies the following bounds: for any
φ∈X,

‖IH(φ)−φ‖≤CI H‖∇φ‖, (2.3)

‖IH(φ)‖≤CI‖φ‖. (2.4)

3 CDA projection method error analysis

We now consider the error resulting from the CDA projection method, which we
write as the following semi-discrete algorithm. While this is only semi-discrete,
no additional difficulties would arise from a finite element spatial discretization
(other than accuracy being limited by the spatial approximation accuracy) and
thus we suppress the spatial discretization. Our analysis assumes that NSE solu-
tion is globally well-posed in 2D and 3D.
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Algorithm 1 Semi-Discrete CDA Projection Algorithm

Let w be the solution of (1.1)-(1.2) for a given divergence-free w0 ∈X and forcing

f ∈ L∞(0,∞;H−1(Ω)). The for ũ0 =w0 and given nudging parameter µ≥ 0, find

{un, ũn} for n=1,2,3,. . . via the time stepping algorithm

CDA Proj Step 1: Find un+1∈X satisfying

1

∆t

(

ũn+1− ũn,v
)

+
(

ũn ·∇ũn+1,v
)

+ν
(

∇ũn+1,∇v
)

+µ
(

IH(u
n+1−wn+1),v

)

=( f n+1,v), ∀v∈X. (3.1)

CDA Proj Step 2: Find ũn+1∈Y and pn+1∈Q satisfying

1

∆t

(

ũn+1−un+1,v
)

−
(

pn+1,∇·v
)

=0, ∀v∈Y, (3.2)
(

∇·ũn+1,q
)

=0, ∀q∈Q. (3.3)

Remark 3.1. Although the CDA projection method algorithm applies nudging to

Step 1 only, it could also be applied to Step 2. However, the resulting analysis

requires more effort but without any improvement in the result, and moreover

numerical tests (omitted herein) showed no significant improvement over nudg-

ing with Step 1 only.

We first prove that Algorithm 1 is long time stable, without any restriction on
the time step size ∆t.

Lemma 3.1. Let f ∈ L∞(0,∞;L2) and w∈ L∞(0,∞;L2). Then, for any ∆t> 0 and any

integer n>0, the velocity solution to Algorithm 1 satisfies

‖un‖2≤
‖u0‖2

(1+∆t(µ+λC−2
P ))n

+
ν−1

µ+λC−2
P

‖ f‖2
L∞(0,∞;H−1)

+
2µ

µ+λC−2
P

‖w‖2
L∞(0,∞;L2) (3.4)

with µH2
<ν/(2C2

I ).

Proof. Choose v = ũn+1 and q = pn+1 in (3.2)-(3.3), which vanishes the pressure

term, and gives

‖ũn+1‖2=
(

un+1,ũn+1
)

.
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Then by the Cauchy-Schwarz inequality, we obtain

‖ũn+1‖≤‖un+1‖. (3.5)

Next, choose v= un+1 in (3.1) which vanishes the nonlinear term, and provides

us with

1

2∆t

(

‖un+1‖2−‖ũn‖2+‖un+1− ũn‖2
)

+ν‖∇un+1‖2

+µ
(

IH(u
n+1−wn+1),un+1

)

=
(

f n+1,un+1
)

.

Next, we add and subtract un+1 in the first component of the nudging term and

multiply both sides by 2∆t, which yields

‖un+1‖2+2∆tν‖∇un+1‖2+2∆tµ‖un+1‖2

=‖ũn‖2+2∆t
(

f n+1,un+1
)

+2∆tµ
(

IH(w
n+1),un+1

)

−2∆tµ
(

IH(u
n+1)−un+1,un+1

)

,

after dropping the positive term ‖un+1− ũn‖2 on the left-hand side.

The second term on the right-hand side is bounded using the dual norm of X

and Young’s inequality, which yields

2∆t
(

f n+1,un+1
)

=2∆t
( f n+1,un+1)

‖∇un+1‖
‖∇un+1‖

≤2∆t‖ f n+1‖−1‖∇un+1‖

≤∆tν−1‖ f n+1‖2
−1+∆tν‖∇un+1‖2.

Then, for the interpolation terms, we use Cauchy-Schwarz and Young’s inequal-

ities to obtain

2∆tµ
(

IH(w
n+1),un+1

)

≤2∆tµ‖wn+1‖2+∆t
µ

2
‖un+1‖2,

thanks to the interpolation property (2.3), and

∣

∣

∣
−2∆tµ

(

IH(u
n+1)−un+1,un+1

)∣

∣

∣
≤2∆tµC2

I H2‖∇un+1‖2+∆t
µ

2
‖un+1‖2,

thanks to the interpolation property (2.4).
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Combining the above estimates produces the bound

‖un+1‖2+∆t
(

ν−2µC2
I H2

)

‖∇un+1‖2+∆tµ‖un+1‖2

≤‖ũn‖2+∆tν−1‖ f n+1‖2
−1+2∆tµ‖wn+1‖2.

Assuming λ= ν−2µC2
I H2

> 0 and applying the Poincaré inequality on the left-

hand side gives
(

1+∆t
(

µ+λC−2
P

)

)

‖un+1‖2≤‖un‖2+∆tν−1‖ f n+1‖2
−1+2∆tµ‖wn+1‖2,

thanks to the (3.5). Next, we apply Lemma 2.1 which reveals (3.4) with regularity

assumptions on f and true solution w.

Lemma 3.2. Under the same assumptions as the previous lemma, Algorithm 1 is well-

posed.

Proof. At each time step, Algorithm 1 is a type of linear Oseen problem with an

additional nudging term. With the regularity assumptions and with the long time

L2 stability of un established, analysis from the proof for the nudging term can be

combined with standard theory for Oseen equations to achieve well-posedness

of each time step and thus also the entire algorithm.

We now prove that CDA can remove the splitting error of the projection me-
thod. More specifically, with properly chosen parameters, the solution to Algo-
rithm 1 is long-time first order accurate in the velocity, and finite time first order
accurate in the L2(0,T;H1) norm. We found no improvement in accuracy for the
CDA Proj pressure, since the CDA term will change the Hodge decomposition in
a way that p will still represent a Lagrange multiplier corresponding to the di-
vergence constraint in the projection step, but can no longer be interpreted as the
pressure. Instead, the pressure can be recovered by post-processing, [33, 55].

Theorem 3.1. Suppose (w,q) is the solution to the NSE with sufficient regularity so that

all manipulations in the theorem are justified: w∈L∞(0,∞;H3), wt,wtt∈L∞(0,∞;H1),
q∈L∞(0,∞;H1), and denote

Cw =‖wtt‖
2
L∞(0,∞;H−1)+‖wt‖

2
L∞(0,∞;L2)‖w‖2

L∞(0,∞;H3)+‖∇w‖L∞(0,∞;L∞),

Cq=‖q‖2
L∞(0,∞;H1).

Let {un,ũn}, n=1,2,3,.. . denote the solution to Algorithm 1, with ∆t≤1, µ≥ν∆t−2 ,

µ≥Cw, and µH2≤ν/(2C2
I ). Then the following bounds hold for any positive n:

‖ũn−wn‖≤‖un−wn‖≤C∆t,

where C depends on problem data and the NSE solution but is independent of ∆t and µ.
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Remark 3.2. Based on the assumed regularity, for consistency f ∈W1,∞(0,∞;L2).
Analytical results exist, at least in the periodic setting, that shows the quantities

assumed finite in Theorem 3.1 are indeed finite, such as if f is analytic in the

spatial variables and independent of time [25].

Remark 3.3. Following usual CDA theory and analysis (see e.g. [39]), if the initial

condition to Algorithm 1 were inaccurate, Theorem 3.1 would still hold for n large

enough.

Remark 3.4. The assumption µ ≥ ν∆t−2 may require µ to be quite large. Our

tests indicate this is not an issue for moderately large µ, but for very large µ it

is possible that numerical roundoff issues may occur. This assumption seems to

require H small enough in general (although this seems pessimistic and not an

issue in our tests), if IH is the projection method onto XH , or we do nudging

as in [51], the analysis can be improved so that there is no upper bound on µ,

see [27].

Proof. Subtracting the NSE at t= tn+1 after testing with v∈X from (3.1) and de-

noting en=wn−un and ẽn=wn− ũn yields

1

∆t

(

en+1− ẽn,v
)

+
(

ũn ·∇ũn+1−wn ·∇wn+1,v
)

−
(

∇qn+1,v
)

+ν
(

∇en+1,∇v
)

+µ
(

IH(e
n+1),v

)

=∆t
(

wtt(t
∗)+wt(t

∗∗)·∇wn+1,v
)

,

for some t∗, t∗∗ ∈ (tn,tn+1), thanks to Taylor series approximations in the NSE.

Writing the nonlinear terms as

ũn ·∇ũn+1−wn ·∇wn+1= ẽn ·∇wn+1+ ũn ·∇en+1

and taking v= en+1 vanishes the second nonlinear term and produces

1

2∆t

(

‖en+1‖2−‖ẽn‖2+‖en+1− ẽn‖2
)

+ν‖∇en+1‖2+µ‖en+1‖2

=−
(

∇q,en+1
)

−
(

ẽn ·∇wn+1,en+1
)

+∆t
(

wtt(t
∗)+wt(t

∗∗)·∇wn+1,en+1
)

+µ
(

en+1− IH(e
n+1),en+1

)

, (3.6)

after adding and subtracting en+1 to the first argument in the inner product of the

nudging term. We bound the pressure term using Cauchy-Schwarz and Young’s

inequalities via

−
(

∇q,en+1
)

≤‖∇q‖‖en+1‖≤
µ

4
‖en+1‖2+

Cq

µ
.
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For the right-hand side nonlinear term, we use Hölder’s inequality and regularity

of the NSE solution to get

−
(

ẽn ·∇wn+1,en+1
)

≤‖ẽn‖‖∇wn+1‖L∞‖en+1‖≤C1/2
w ‖ẽn‖‖en+1‖.

For the second right-hand side term in (3.6), we again use Cauchy-Schwarz and

Young’s inequalities as well as regularity of the NSE solution to find that

∆t
(

wtt(t
∗)+wt(t

∗∗)·∇wn+1,en+1
)

≤∆t‖wtt(t
∗)+wt(t

∗∗)·∇wn+1‖−1‖∇en+1‖

≤
ν

4
‖∇en+1‖2+Cwν−1∆t2.

To bound the last term in (3.6), we first apply the Cauchy-Schwarz inequality,

then the interpolation estimate (2.3), and finally Young’s inequality to obtain

µ
(

en+1− IH(e
n+1),en+1

)

≤µ‖en+1− IH(e
n+1)‖‖en+1‖

≤µCI H‖∇en+1‖‖en+1‖

≤
µ

4
‖en+1‖2+µC2

I H2‖∇en+1‖2.

Collecting the bounds above together with (3.6) provides the estimate

1

2∆t

(

‖en+1‖2−‖ẽn‖2+‖en+1− ẽn‖2
)

+
(

ν−µC2
I H2

)

‖∇en+1‖2+
µ

2
‖en+1‖2

≤µ−1Cq+C1/2
w ‖ẽn‖‖en+1‖+Cwν−1∆t2. (3.7)

Using the assumption on the parameter ν>2µC2
I H2 and dropping a positive left-

hand side term reduces the bound to

1

2∆t

(

‖en+1‖2−‖ẽn‖2
)

+
ν

2
‖∇en+1‖2+

µ

2
‖en+1‖2

≤µ−1Cq+C1/2
w ‖ẽn‖‖en+1‖+Cwν−1∆t2. (3.8)

Next, we subtract (wn+1,v)/∆t from both sides of the projection equation to get

for v∈Y that
1

∆t

(

ẽn+1,v
)

−
(

pn+1,∇·v
)

=
1

∆t

(

en+1,v
)

,

which implies L2-projection onto the space Y, resulting ‖ẽn+1‖≤‖en+1‖.
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Using this in (3.8) provides the bound

1

2∆t

(

‖en+1‖2−‖en‖2
)

+
ν

2
‖∇en+1‖2+

µ

2
‖en+1‖2

≤µ−1Cq+C1/2
w ‖en‖‖en+1‖+Cwν−1∆t2

≤ (Cw+Cq)∆t2ν−1+
Cw

2
‖en‖2+

Cw

2
‖en+1‖2,

thanks to the assumption µ≥ν∆t−2.

Reducing now gives us

1+νC−2
p ∆t+µ∆t−Cw∆t/2

1+Cw∆t/2
‖en+1‖2≤‖en‖2+

(Cw+Cq)ν−1

1+Cw∆t/2
∆t3, (3.9)

and hence we obtain the bound

α‖en+1‖2≤‖en‖2+
(Cw+Cq)ν−1

1+Cw∆t/2
∆t3, (3.10)

where

α :=
1+νC−2

q ∆t+(µ/2)∆t

1+Cw∆t/2
>1

since µ>Cw. Now applying Lemma 2.1, and using e0 = 0 and that ∆t≤ 1, after

with some simplification we obtain the bound

‖en‖2≤
1

α−1

(Cw+Cq)ν−1

1+Cw∆t/2
∆t3

≤
1+Cw∆t/2

∆t(νC−2
p +µ/2)

(Cw+Cq)ν−1

1+Cw∆t/2
∆t3

≤
(Cw+Cq)ν−1

νC−2
p +µ/2

∆t2≤
Cw+Cq

ν2C−2
p

∆t2≤C∆t2.

Taking square roots finishes the proof for en. For ẽn, this result together with

‖ẽn‖≤‖en‖ gives the result.

Now that L2 long time first order accuracy of u and ũ from Algorithm 1 has
been established, we can analyze error in other norms as well as the pressure.
The remaining results are for a finite end time T, and due to the complicated
expressions of constants, C will represent any constant that is independent of ∆t
and µ.
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Theorem 3.2. Under the assumptions of Theorem 3.1 but with finite end time T and

number of time steps M=T/(∆t), we have the error bound

(

∆t
M

∑
n=1

‖∇en+1‖2

)1/2

≤C∆t. (3.11)

Proof. We begin this proof from (3.7) in the previous theorem’s proof

1

2∆t

(

‖en+1‖2−‖ẽn‖2+‖en+1− ẽn‖2
)

+
(

ν−µC2
I H2

)

‖∇en+1‖2+
µ

2
‖en+1‖2

≤µ−1Cq+C1/2
w ‖ẽn‖‖en+1‖+Cwν−1∆t2. (3.12)

Using long time first order accuracy of ũn and un along with ν > 2µC2
I H2 and

µ≥C(∆t−2), we obtain

1

2∆t

(

‖en+1‖2−‖ẽn‖2
)

+
ν

2
‖∇en+1‖2+

µ

2
‖en+1‖2

≤∆t2Cq+C1/2
w ∆t2+Cwν−1∆t2.

Dropping positive left-hand side terms and noting ∆t−1‖ẽn‖2 ≤ C∆t we get the

bound
ν

2
‖∇en+1‖2≤C∆t+C∆t2 ≤C∆t. (3.13)

Finally, multiplying both sides by 2∆t and summing over time steps produces

ν∆t
M

∑
n=1

‖∇en+1‖2≤C∆t2, (3.14)

which finishes the proof.

4 CDA penalty method error analysis

In this section, we show the long-time accuracy of the CDA penalty method. As
we do in the previous section, we consider the semi-discrete CDA penalty algo-
rithm, and assume that NSE solution is globally well-posed in 2D and 3D.
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Algorithm 2 Semi-Discrete CDA Penalty Algorithm

Let w be the solution of (1.1)-(1.2) and forcing f ∈ L∞(0,∞;H−1(Ω)). Then for

ũ0 = w0 and given nudging parameter µ ≥ 0, find un for n=1,2,3,. . . via the time

stepping algorithm

1

∆t

(

un+1−un,v
)

+ b̃
(

un,un+1,v
)

+ν
(

∇un+1,∇v
)

+ε−1
(

∇·un+1,∇·v
)

+µ
(

IH(u
n+1−wn+1),v

)

=
(

f n+1,v
)

, ∀v∈X. (4.1)

Theorem 4.1. Suppose (w,q) is the solution to the NSE with sufficient regularity so that

all manipulations in the theorem are justified: w∈L∞(0,∞;H3), wt,wtt∈L∞(0,∞;H1),
q∈L∞(0,∞;H1), and denote

Cw=‖wtt‖
2
L∞(0,∞;H−1)+‖wt‖

2
L∞(0,∞;L2)‖w‖2

L∞(0,∞;H3)+‖∇w‖L∞(0,∞;L∞),

Cq=‖q‖2
L∞(0,∞;H1).

Let {un,ũn}, n=1,2,3,.. . denote the solution to Algorithm 1, with ∆t≤1, µ≥ν∆t−2 ,

µ > Cν−1C2
w−C−2

p ν/2 and µH2 ≤ ν/(2C2
I ). Then the following bounds hold for any

positive n:

‖un−wn‖≤C∆t,

where C depends on problem data and the NSE solution but is independent of ∆t and µ.

Remark 4.1. Based on the assumed regularity, for consistency f ∈W1,∞(0,∞;L2).
Analytical results exist, at least in the periodic setting, that shows the quantities

assumed finite in Theorem 3.1 are indeed finite, such as if f is analytic in the

spatial variables and independent of time.

Remark 4.2. The assumption µ ≥ ν∆t−2 may require µ to be quite large. Our

tests indicate this is not an issue for moderately large µ, but for very large µ it

is possible that numerical roundoff issues may occur. This assumption seems to

require H small enough in general (although this seems pessimistic and not an

issue in our tests), if IH is the projection method onto XH , or we do nudging

as in [51], the analysis can be improved so that there is no upper bound on µ,

see [27].
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Remark 4.3. From the theorem above, we observe that long time L2 accuracy

holds for Algorithm 2 and thus so does long time L2 stability. Thus, under the

assumptions of the theorem, these results immediately can be combined with the

Lax-Milgram theorem to establish well-posedness of Algorithm 2.

Proof. Subtracting the NSE at t = tn+1 from (4.1), testing with v ∈ X and letting

en=wn−un provides

1

∆t

(

en+1−en,v
)

+ b̃
(

un,en+1,v
)

+ b̃
(

en,wn+1,v
)

+ν
(

∇en+1,∇v
)

+ε−1
(

∇·en+1,∇·v
)

+µ
(

IH(e
n+1),v

)

=−
(

∇qn+1,v
)

+∆t
(

wtt(t
∗)+wt(t

∗∗)·∇wn+1,v
)

,

for some t∗, t∗∗∈ (tn,tn+1), thanks to Taylor series approximations in the NSE.

Setting v= en+1, we derive

1

2∆t

(

‖en+1‖2−‖en‖2+‖en+1−en‖2
)

+ b̃
(

en,wn+1,en+1
)

+ν‖∇en+1‖2+ε−1‖∇·en+1‖2+µ
(

IH(e
n+1),v

)

=−
(

∇qn+1,en+1
)

+∆t
(

wtt(t
∗)+∆twt(t

∗∗)·∇wn+1,v
)

,

thanks to the polarization identity. Then, by adding and subtracting en+1 in the

first component of the nudging term and dropping positive terms ‖en+1−en‖2

and ε−1‖∇·en+1‖2, we get that

1

2∆t
‖en+1‖2+ν‖∇en+1‖2+µ‖en+1‖2

=
1

2∆t
‖en‖2− b̃

(

en,wn+1,en+1
)

−
(

∇qn+1,en+1
)

−µ
(

IH(e
n+1)−en+1,en+1

)

+∆t
(

wtt(t
∗)+∆twt(t

∗∗)·∇wn+1,v
)

.

Using Hölder’s and Young’s inequality and regularity of the NSE solution, we

obtain

∣

∣− b̃
(

en,wn+1,en+1
)∣

∣=
1

2

(

(

(en ·∇)wn+1,en+1
)

−
(

(en ·∇)en+1,wn+1
)

)

≤‖en‖‖∇wn+1‖L3‖en+1‖L6+‖en‖‖∇en+1‖‖wn+1‖L∞

≤‖en‖‖wn+1‖H3‖∇en+1‖+‖en‖‖∇en+1‖‖wn+1‖L∞

≤
ν

2
‖en+1‖2+Cν−1C2

w‖en‖2.
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The rest of the left-hand side terms are bounded by following the same analysis

as in the proof of Theorem 3.1. Combining all those bound and multiply both

sides by 2∆t provides

‖en+1‖2+∆t
ν

2
‖∇en+1‖2+∆t

(

ν−2µC2
I H2

)

‖∇en+1‖2+∆tµ‖en+1‖2

≤
(

1+C∆tν−1C2
w

)

‖en‖2+2∆tµ−1Cq+2Cwν−1∆t3.

Since ν>2µC2
I H2, we drop the positive term ∆t(ν−2µC2

I H2)‖∇en+1‖2. Then, by

using the Poincaré inequality on the left-hand side and assuming µ≥ ν∆t−2, we

obtain
(

1+∆tC−2
p

ν

2
+∆tµ

)

‖en+1‖2

≤
(

1+C∆tν−1C2
w

)

‖en‖2+2(Cq+Cw)ν
−1∆t3.

Dividing both side by (1+C∆tν−1C2
w) provides

α‖en+1‖2≤‖en‖2+
2(Cq+Cw)ν−1

1+C∆tν−1C2
w

∆t3,

where

α :=
1+∆tC−2

p ν/2+∆tµ

1+C∆tν−1C2
w

>1,

since µ>Cν−1C2
w−C−2

p ν/2.

Finally, by Lemma 2.1, we obtain

‖en+1‖2≤
1

α−1

2(Cq+Cw)ν−1

1+C∆tν−1C2
w

∆t3

≤
2(Cq+Cw)ν−1

∆t(C−2
p ν/2+µ−Cν−1C2

w)
∆t3

≤C∆t2,

since ∆t<1. Taking the square of both sides finishes the proof.

5 Numerical results

In this section, we illustrate the above theory with two numerical tests, an ana-
lytical test with known true solution and channel flow past a block (a.k.a. square
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cylinder [54]). For these tests we compute with both projection and penalty meth-
ods. In all results, we observe that CDA improves solution accuracy, and with
enough measurement data it effectively removes the splitting error of the projec-
tion method and the consistency error of the penalty method. As long as µ is not
significantly larger than 1/∆t, we can increase µ without observing any adverse
effect of it on the condition number of the linear system.

For the spatial discretization, we use a regular, conforming triangulation of the
domain Ω which is denoted by τh. Let Xh⊂X and Qh⊂Q be an inf-sup stable pair
of discrete velocity-pressure spaces. We take Xh =X∩P2(τh) and Qh =Q∩P1(τh)
Taylor-Hood or Scott-Vogelius elements in our tests, however our results in the
previous sections are extendable to most other inf-sup stable element choices.

For all our penalty method tests, we use ε=1. While this is a very large penalty
and smaller penalty values would lead to less consistency error and thus better
accuracy, smaller penalty values also lead to linear systems that are very difficult
to solve for large scale problems since the matrix arising from the grad-div term
is singular. With ε = 1, however, solving these systems can still be reasonably
efficient [2, 34, 47].

5.1 Known analytical solution

For our first experiment, we illustrate the accuracy theory above for Algorithms 1
and 2 to a chosen analytical solution

u(x,y,t)=
(

etcos(y),et sin(x)
)

,

p(x,y,t)=(x−y)(1+t),

on the unit square domain. We consider (P2,P1) Taylor-Hood elements for veloc-
ity and pressure. The initial velocity is taken as u(0)= 0 in the CDA tests. The
source term f is calculated from the chosen solution and the NSE.

We first test Algorithm 1 (CDA projection method) on [0,2] with ∆t=0.05 on
an h= 1/128 uniform triangular mesh, with H= 1/32 grid for the measurement
data. Fig. 1 shows L2(Ω) error versus time for varying µ, and for comparison
also with the usual backward Euler (BE) FEM using the nodal interpolant of u(0)
as the initial condition. We observe that as µ increases, the error approaches that
of BE (which is known to be first order in ∆t), with it reaching the same level of
accuracy when µ=105 despite having a very inaccurate initial condition.

We repeat this test for Algorithm 2 (CDA penalty method), and results are
shown in Fig. 2 as L2 error versus time. Results are similar to that of CDA projec-
tion, with improvement in accuracy as µ increases and finally achieving the same
accuracy as BE once µ=105.
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time
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=10k

BE

Figure 1: Shown above is the L2 difference to the true solution versus time, for finite element solution of
NSE with backward Euler time discretization and Algorithm 1 with varying µ for zero initial velocities.

0 0.5 1 1.5 2

time

10-5

100

Proj
=100
=1000
=10k

BE

Figure 2: Shown above is the L2 difference to the true solution versus time, for finite element solution
of NSE with backward Euler time discretization and Algorithm 2 with ε=1 and varying µ for zero initial
velocities.

5.2 Channel flow past a block

The second experiment tests the proposed data assimilation methods on the prob-
lem of channel flow past a block. Many experimental and numerical studies can
be found in the literature [52, 58, 61]. The domain of the problem consists of
a 2.2×0.41 rectangular channel, and a block having a side length of 0.1 centered
at (0.2,0.2) from the bottom left corner of the rectangle. See Fig. 3 for a diagram
of the domain.

No-slip velocity boundary and homogeneous normal boundary conditions
are enforced on the block and walls for Step 1 and Step 2 of the projection scheme
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2.2

0.410.1

0.1
0.2

0.2

Figure 3: The domain for the channel flow past a cylinder numerical experiment.

with CDA respectively. The inflow and outflow flow profiles are given by

u1(0,y,t)=u1(2.2,y,t)=
6

0.412
y(0.41−y),

u2(0,y,t)=u2(2.2,y,t)=0. (5.1)

The kinematic viscosity is taken to be ν=10−3 and external force f =0. Quantities
of interest for this flow are lift and drag coefficients. We use (P2,Pdisc

1 ) Scott-
Vogelius elements on a barycenter refined Delaunay mesh that provides 19.4k
velocity and 14.3k pressure degrees of freedom. We take T = 10 as the end time
in our computations. The BDF2-FEM scheme with ∆t=0.002 sufficiently resolves
the solution on this mesh, and we use this as the resolved solution from which to
draw measurements from and make comparisons to. Below, we give lift cl(t) and
drag cd(t) calculations from tests with and without CDA

cd(t)=
2

ρLU2
max

∫

S

(

ρν
∂uts

∂n
ny−p(t)nx

)

dS,

cl(t)=−
2

ρLU2
max

∫

S

(

ρν
∂uts

∂n
nx−p(t)ny

)

dS,

where Umax is the maximum mean flow, L is the diameter of the cylinder, n =
(nx;ny)T is the normal vector on surface S and uts is the tangential velocity, [54].

In addition to testing the first order methods in Algorithms 1 and 2, we also
test their BDF2 analogues, which are given in PDE form below.

CDA Proj Step 1 with BDF2: Find un+1

1

2∆t

(

3un+1−4ũn+ ũkn−1
)

+ ũn ·∇un+1−ν∆un+1

+∇pn+µIH

(

un+1−wn+1
)

= f n+1,

un+1|∂Ω=0.
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CDA Proj Step 2 with BDF2: Project un+1 into the divergence-free space

1

2∆t

(

3ũn+1−3un+1
)

+∇
(

pn+1−pn
)

=0,

∇·ũn+1=0,

ũn+1 ·n|∂Ω =0.

CDA penalty with BDF2: Find un+1

1

2∆t

(

3un+1−4un+uk−1
)

+ B̃
(

un,un+1
)

−ν∆un+1

−ε−1∇(∇·un+1)+µIH

(

un+1−wn+1
)

= f n+1,

un+1|∂Ω =0.

5.2.1 Projection method results

In this subsection, we test both BE and BDF2 projection methods. First, we test
with no CDA and varying time step sizes. Results are shown in Fig. 4, as drag and
lift coefficients versus time. For BE projection, results are bad for each choice of
∆t: although there is improvement as ∆t decreases, even with ∆t= 10−4, results
are quite inaccurate. With BDF2 projection, results are significantly better, and
with ∆t=10−4 the results match that of the resolved solution.

Next we consider the CDA projection methods, with nudging parameter µ=
1000 and time step size ∆t = 0.002 (far larger than what is needed to match the
resolved solution when no CDA is used), with varying number of data measure-
ment points N2. In Fig. 5, we observe that BE projection is nearly as accurate as
the resolved solution only when N = 61. BDF2 projection, on the other hand, is
accurate even when N=21. In all cases, CDA provides significant improvement
in accuracy, and with BDF2 can provide results as good as the resolved solution
with a more reasonable number of measurement points than BE projection re-
quires.

5.2.2 Penalty method with data assimilation using Backward Euler time

stepping

We now repeat the tests done with CDA projection for CDA penalty, now using
µ = 10 (larger µ did not improve results). Results for lift and drag are shown
in Fig. 6, and we observe similar results as for CDA projection: for BE penalty,
N = 61 is required to achieve accuracy near that of the resolved solution and for
BDF2 penalty N=41 is needed.
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BDF2 projection (no CDA)
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Figure 4: Shown above are the drag (left) and lift (right) coefficients versus time for backward Euler
projection method (top) and BDF2 projection method (bottom) with varying time step ∆t and no CDA.

6 Conclusions and future directions

We studied herein continuous data assimilation (CDA) applied to the projection
and penalty methods for the Navier-Stokes equations. We proved that CDA en-
ables long time optimally accurate solutions by removing the splitting error aris-
ing in projection methods and the modeling error in penalty methods. Numerical
tests illustrated the theory well, and major improvements in accuracy from CDA
were observed. These tests also showed that CDA can allow for larger time step
sizes and larger penalty parameters without harming accuracy.
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BE projection CDA
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Figure 5: Shown above are the drag (left) and lift (right) coefficients versus time for CDA projection
methods with varying N and µ=1000.

For future work, one may consider CDA applied to other types of splitting or
approximation methods such as Yosida or ACT algebraic splitting methods for
NSE [35, 50, 53, 62], to determine if their splitting errors can be reduced as well.
Another important topic for future consideration is how CDA affects the linear
solves and preconditioners at each time step. This is an important issue in CDA
implementation but to our knowledge has not been well studied. We plan to
consider this in a forthcoming paper.
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Figure 6: Shown above are the drag (left) and lift (right) coefficients versus time for CDA penalty
methods with varying N and µ=10 and ε=1.

References

[1] A. Azouani, E. Olson, and E. S. Titi, Continuous data assimilation using general inter-

polant observables, J. Nonlinear Sci. 24 (2014), 277–304.

[2] M. Benzi and M. Olshanskii, An augmented Lagrangian-based approach to the Oseen

problem, SIAM J. Sci. Comput. 28 (2006), 2095–2113.

[3] H. Bessaih, E. Olson, and E. S. Titi, Continuous data assimilation with stochastically

noisy data, Nonlinearity 28 (2015), 729.

[4] A. Biswas, Z. Bradshaw, M. S. Jolly, Data assimilation for the Navier-Stokes equations

using local observables, SIAM J. Appl. Dyn. Syst. 20 (2021), 2174–2203.

[5] A. Biswas, Z. Bradshaw, and M. Jolly, Convergence of a mobile data assimilation scheme



26 H. Hawkins, L.G. Rebholz and D. Vargun / Commun. Math. Res., 40 (2024), pp. 1-29

for the 2D Navier-Stokes equations, 2023.

[6] A. Biswas, K. R. Brown, and V. R. Martinez, Mesh-free interpolant observables for con-

tinuous data assimilation, Ann. Appl. Math. 38 (2022), 296–355.

[7] A. Biswas, C. Foias, C. F. Mondaini, and E. S. Titi, Downscaling data assimilation algo-

rithm with applications to statistical solutions of the Navier-Stokes equations, Annales de
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