
Advances in Applied Mathematics and Mechanics
Adv. Appl. Math. Mech., Vol. 16, No. 1, pp. 1-23

DOI: 10.4208/aamm.OA-2021-0193
February 2024

A Hessian Recovery Based Linear Finite Element
Method for Molecular Beam Epitaxy Growth
Model with Slope Selection

Minqiang Xu1,2 and Qingsong Zou3,∗

1 College of Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310023,
China
2 School of Computer Science and Engineering, Sun Yat-Sen University, Guangzhou,
Guangdong 510275, China
3 School of Computer Science and Engineering, and Guangdong Province Key Laboratory
of Computational Science, Sun Yat-Sen University, Guangzhou, Guangdong 510275,
China

Received 3 June 2021; Accepted (in revised version) 19 May 2022

Abstract. In this paper, we present a Hessian recovery based linear finite element
method to simulate the molecular beam epitaxy growth model with slope selection.
For the time discretization, we apply a first-order convex splitting method and second-
order Crank-Nicolson scheme. For the space discretization, we utilize the Hessian
recovery operator to approximate second-order derivatives of a C0 linear finite ele-
ment function and hence the weak formulation of the fourth-order differential oper-
ator can be discretized in the linear finite element space. The energy-decay property
of our proposed fully discrete schemes is rigorously proved. The robustness and the
optimal-order convergence of the proposed algorithm are numerically verified. In a
large spatial domain for a long period, we simulate coarsening dynamics, where 1/3-
power-law is observed.
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1 Introduction

In recent years, the molecular beam epitaxy (MBE) growth approach has become a pow-
erful tool for thin-film deposition of single crystal [15,43]. So MBE growth technique has
been widely applied in material science, especially in semi-conductor manufacture and
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nano-technology industry. In previous works, there are mainly three types of mathemat-
ical modelings to study dynamics of the MBE growth process: atomistic models [2, 19],
continuum models [23, 31, 42] and hybrid models [6, 14].

We are interested in the continuum model with slope selection introduced by Moldovan
and Golubovic [29]. It describes the evolution of the MBE growth with isotropic symme-
try current, of which the governing equation takes the form [22]:{

∂tu=−ε∆2u+∇·(|∇u|2∇u−∇u) in Ω×[0,T],
u(·,0)=u0(·) in Ω,

(1.1)

where Ω is a smooth domain, ε is a positive constant, and the unknown function u rep-
resents the epitaxy surface height of the thin film. Moreover, we suppose u satisfies a
certain periodic boundary condition or Neumann boundary conditions ∂nu|∂Ω = 0 and
∂n∆u|∂Ω = 0, where n is the outward normal on the boundary. The MBE equation (1.1)
can be derived via an L2-gradient flow of the effective free energy functional [11, 20]

E(u) :=
∫

Ω

(
ε

2
|∆u|2+ 1

4
(|∇u|2−1)2

)
dΩ, (1.2)

of which the first term represents the surface diffusion effect [11] and the second term de-
scribes the Ehrlich-Schwoebel effect [22]. Thanks to the flux free condition at the bound-
ary, it is trivial to show that the energy decay property

dE(u)
dt

=−‖ut‖2
0≤0, ∀t>0,

and the total mass conservation property

d
dt

∫
Ω

udΩ=0,

always hold for the solution of the MBE equation (1.1).
During the past several decades, the numerical solution for (1.1) (see e.g., [4, 6, 8–10,

12–14, 18, 21, 24, 25, 27, 28, 32–35, 37, 38, 41, 44, 47, 48, 51]) has been intensively investigated
based on variants of temporal discretization and spatial discretization techniques.

On temporal-discretization, two popular approaches can guarantee the energy decay
property of the numerical solution. The basic idea of the first approach is so-called convex
splitting which splits the nonlinear term to the convex part which will be treated implic-
itly and the concave part which will be treated explicitly, see [5, 41, 44, 47]. The uncondi-
tional energy decay property and the unique solvability of the numerical solution of this
approach could be easily derived. However, such methods lead to a nonlinear algebraic
system that requires high computational cost. The second approach is the so-called linear
stabilization approach which treats the nonlinear term only explicitly and guarantees the
energy stability by adding a linear artificial penalty term, see [38–40, 49]. Such a method
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is linear and simple to implement. However, no theory guarantees the corresponding
energy decay property. Recently, there have been some new developments regarding
this method, for example, Qiao et al. in [35] proposed a second-order Crank–Nicolson
time-stepping scheme without adding artificial terms and a corresponding adaptive time
step strategy based on the energy variation for the MBE model (1.1), making the phase
field simulation more efficient, Li et al. in [24] removed the Lipschitz assumption on
the nonlinearity and proved unconditional energy decay for the stabilized time-stepping
methods.

More recently, two novel approaches known as IEQ and SAV are developed to solve
the phase field models. Both of these algorithms use the energy quadratization approach
to convert the primitive system into a new equivalent system. The modified energy is
proven to be unconditionally stable. Yang et al. in [48] and Chen et al. in [9] pro-
posed second-order Crank–Nicolson and Adam–Bashforth time-stepping schemes based
on IEQ for MBE model (1.1). By using the SAV technique, Ji et al. in [18] designed
an adaptive second-order Crank–Nicolson time-stepping scheme for the time-fractional
molecular beam epitaxial models. There are also some other energy decay preserving
numerical algorithms, for example, Chen et al. in [8] presented a new multi-step Crank–
Nicolson, which is proved to possess properties of total mass conservation and uncon-
ditionally energy stability. Lu et al. in [27] developed a second- and third- order fully
discrete scheme for (1.1) based on the local structure-preserving algorithm. Cheng and
Wang in [7] gave a error estimate of second order accurate SAV numerical method for the
epitaxial thin film equation.

As for spatial discretization of MBE model (1.1) with periodic boundary condition,
classic numerical methods including finite difference methods [33, 41, 44, 48], spectral
methods [8, 24, 25], and finite element methods [4, 32] have been studied. In [33], Zhang
et al. applied a finite difference scheme for solving the MBE model (1.1), and the stability
and optimal convergence order of the proposed method were discussed. In [32], Qiao et
al. established the error estimation of the mixed element method for (1.1). For the MBE
model (1.1) with the Neumann boundary condition, Xia [45] developed a fully discrete
stable discontinuous Galerkin method, and Lu et al. in [27] proposed a finite difference
scheme.

We focus on finite element methods for the MBE equation (1.1). Recently, a non-
conforming finite element method called gradient recovery based linear finite element
method (GRBL–FEM) has been presented to solve high order differential equations in [3,
17, 26]. The key idea of the GRBL–FEM is using gradient recovery operators [50, 52, 53]
“lift” discontinuous piecewise constant function to a continuous piecewise linear func-
tion, and hence second-order differentiation derivatives are possible. The GRBL–FEM
uses the least degree of freedom, therefore it is simple and straightforward to implement.

In our previous work [46], we developed a Hessian recovery based linear finite el-
ement method (HRBL–FEM) for solving the Cahn–Hilliard (C–H) equation. The main
purpose of this work is to design some HRBL–FEMs combining convex splitting meth-
ods presented in [5, 47] to solve the MBE equation (1.1) with periodic boundary condi-
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tions or Neumann boundary conditions. We prove that the fully discrete scheme of the
MBE equation with periodic boundary condition preserves the energy decay and mass
conservation properties. Comparing to other existing numerical methods for spatial dis-
cretization of the MBE model, our HRBL–FEMs enjoy some advantages. First, linear ele-
ments induce smaller degrees of freedom in comparison to C1 or mixed elements, which
hence leads to easier implementation and less computational cost. Second, the recovery
operators can be defined on a general unstructured grid, and our algorithms thus work
naturally for arbitrary geometries in comparison with regular domains used by finite dif-
ference methods or spectral methods. Although our schemes are simple and straightfor-
ward, they have very nice convergence properties. The optimal-order convergence under
L2- and H1- error norm are numerically observed both on a square domain and a circular
domain. We also discover that there is a phenomenon of superconvergence between the
recovered Hessian and the exact one. By utilizing the adaptive time-stepping algorithm
proposed in [35], we simulate the MBE equation on a large area during a long period,
where the height grows like O(t1/3) and the energy decays like O(t−1/3) are observed.

The rest of the paper is organized as follows: In Section 2, some notations and a vari-
ational formulation of the (1.1) are given. In Section 3, we first introduce the recovery
technique based on a least-square fitting; then, we apply the recovery based finite ele-
ment method to discrete the MBE equation (1.1). Energy decay and mass conservation
properties of the fully discrete scheme are discussed as well. In Section 4, we numerically
demonstrate the accuracy of the proposed scheme and simulate the coarsening dynamics
through some benchmark examples. Finally, we end the paper with a brief conclusion in
Section 5.

2 The variational formulations of the MBE model (1.1)

We shall use the standard notation for Sobolev spaces Hi and their associated norms ‖·‖i
and seminorms |·|i (see, e.g., [1]). In particular, (·,·) is the L2-inner product. Let

Hi
per(Ω)={u|u∈Hi(Ω) with periodic boundary condition}, i=1,2,

and

L2(0,T;X)=

{
v : (0,T)→X, ‖v‖L2(0,T;X)=

(∫ T

0
‖v‖2

Xdt
) 1

2

<∞

}
.

For the periodic boundary conditions, the variational formulation of the MBE equa-
tion is to find u∈L2(0,T;H2

per) such that(∂u
∂t

,v
)
+ε(∆u,∆v)+((|∇u|2−1)∇u,∇v)=0, ∀v∈H2

per. (2.1)

To deal the Neumann boundary conditions ∂nu= ∂n∆u=0, we apply Nitsche’s tech-
nique [30] to impose the Neumann boundary condition ∂nu=0 weakly on the variational
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formulation. We introduce a bilinear form

a(w,v)=
∫

Ω
∆w∆vdz−

∫
∂Ω

∆w∂nvds−
∫

∂Ω
∂nw∆vds

+γ
∫

∂Ω
∂nw∂nvds, ∀v,w∈H2(Ω), (2.2)

with γ is a positive stability parameter.
Now we claim that the weak solution of (1.1) is a function u∈H2(Ω) that satisfies the

variational equation(
∂u
∂t

,v
)
+εa(u,v)+(|∇u|2−1)∇u,∇v)=0, ∀v∈H2(Ω). (2.3)

In fact, on one hand, we get immediately that u satisfies (2.3) provided that u∈H2(Ω) is
the solution of (1.1). On the other hand, if u∈C4(Ω) and ut∈C(Ω) satisfying (2.3), then
by applying the basic technology of integration by parts, we have(

∂u
∂t

+ε∆2u−∇·(|∇u|2−1)∇u),v
)
−ε
∫

∂Ω
∂nu∆vds

+εγ
∫

∂Ω
∂nu∂nv+

∫
∂Ω

(−ε∇∆u+(|∇u|2−1)∇u)·nvds=0. (2.4)

Choosing v∈C∞
0 (Ω) in (2.4), we deduce that

∂u
∂t

+ε∆2u−∇·(|∇u|2−1)∇u=0.

As a consequence, the Eq. (2.4) becomes

−ε
∫

∂Ω
∂nu∆vds+εγ

∫
∂Ω

∂nu∂nv+
∫

∂Ω

(
ε∂n∆u+(|∇u|2−1)∂nu

)
vds=0, v∈H2(Ω).

Due to the arbitrariness of v∈H2(Ω) in the above equation, we obtain that

∂nu=∂n∆u=0,

which implies that u is the strong solution of (1.1). Therefore, the weak formulation (2.3)
is a variational formulation of (1.1).

Remark 2.1. When using the penalty method or Lagrange multiplier method, one usu-
ally deals the Neumman boundary condition ∂nu = 0 by imposing it into the solution
space directly. Correspondingly, one also requires the function in the approximate space
“strongly” satisfy this Neumann boundary condition. Here, using the Nitsche’s tech-
nique, the Neuwmann boundary condition is ”weakly” imposed in the variational for-
mulation, so that the standard linear finite element space can be chosen as our discrete
solution space.
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3 A recovery based linear finite element method

In this section, we design a recovery-technique-based finite element method for the MBE
equation (1.1). We first give the recovery technique. Next, we explain how to discretize
(1.1) in a linear finite element space.

3.1 A Hessian recovery operator in linear finite element spaces

Let Th be a triangulation of the domain Ω with mesh-size h. We use Nh and Eh to denote
the set of vertices and edges of Th. We denote by Vh the standard P1 finite element space
according to Th

Vh :={vh∈H1(Ω), vh|K∈P1, ∀K∈Th},

and
Vper

h :={vh∈H1
per(Ω), vh|K∈P1, ∀K∈Th}.

As known to all, the gradient of a function vh∈Vh is not well-defined on an edge E∈Eh
and the second order derivative of a function vh∈Vh equals to 0 in each element T∈Th.
Denote V4

h ={(vi,j)2×2|vi,j∈Vh, i, j=1,2}. In the following, we propose the quadratic fitting
method to calculate the approximate second order derivatives of vh. In other words, we
will define a Hessian recovery operator Hh from Vh to V4

h which maps a function vh∈Vh
to Hhvh∈V4

h so that Hhvh can be regarded as an approximation of the Hessian matrix of
vh in some sense.

Obviously, Hhvh is completely determined by nodal values, consequently, it is suffi-
cient to define the value (Hhvh)(z) for all z∈Nh. For this purpose, we first construct a
local patch Lz associated with z. Given a vertex z∈Nh, the local patch Lz is a polygon
surrounding the node z. It is constructed by the following strategy. The patch Lz is first
composed of the elements ring surrounding the vertex z. To this ring of elements, enrich
another ring which is consisted of element neighbors (sharing at least a vertex) of the first
ring. Repeat the procedure until the patch contains at least six vertices. Over that patch
Lz, the sampling points are all vertices adjacent to elements of the patch Lz.

Using the sampling points in Lz, we fit a quadratic polynomial pz at the vertex z in
the following least-squares sense

pz =arg min
p∈P2(Lz)

∑
x∈Lz∩Nh

|p(x)−vh(x)|2.

Then, the value of recovered Hessian at the node z is defined by

(Hhvh)(z)=

(
Hxx

h vh(z) Hxy
h vh(z)

Hyx
h vh(z) Hyy

h vh(z)

)
=


∂2 pz

∂x2 (z)
∂2 pz

∂x∂y
(z)

∂2 pz

∂y∂x
(z)

∂2 pz

∂y2 (z)

. (3.1)
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By linear interpolation of nodal values, we have

Hhvh = ∑
z∈Nh

Hhvh(z)φz∈V4
h .

Clearly, the Hessian matrix function Hhvh satisfies the symmetric property Hxy
h = Hyx

h .
Based on Hh, we define a recovery Laplacian operator ∆h : Vh→Vh as

∆hvh =Hxx
h vh+Hyy

h vh. (3.2)

Note that in the same way, we can recover the gradient of vh by letting

(Ghvh)(z)=∇pz(z), ∀z∈Nh, (3.3)

and
Ghvh =(Gx

h vh,Gy
hvh)= ∑

z∈Nh

Ghvh(z)φz∈V2
h .

Remark 3.1. On regular pattern uniform meshes, the recovery Laplacian operator ∆h is
the well-known five-point-finite-difference stencil of the Laplace operator, see [16,46] for
the details.

3.2 Time discretization for problem (1.1)

In this section, we utilize a first-order convex splitting scheme and a second-order Crank-
Nicolson (CN) scheme to carry out the time discretization. The application of these two
presented schemes to discrete MBE-type equations can be found in [5, 47]. Let the time
step size be ∆t= T

N , u0(x)=u(x,0), and un(x)≈u(x,tn) with tn =n∆t, n=1,2,··· ,N.
The first-order convex splitting scheme for the MBE model (1.1) is of the form

un+1−un

∆t
=−ε∆2un+1+∇·(|∇un+1|2∇un+1−∇un), (3.4)

and the second-order CN scheme for the MBE model (1.1) reads as:

un+1−un

∆t
=−ε

∆2(un+1+un)

2
+∇· |∇un+1|2+|∇un|2

2
∇un+1+∇un

2
−∆un+1+∆un

2
. (3.5)

3.3 Fully discrete schemes for problem (1.1) with periodic boundary
conditions

In this subsection, we present and discuss two schemes for problem (1.1) with periodic
boundary conditions by using (3.4), (3.5), and (2.1).

The combination of (3.4) and Hessian recovery based linear element method lead to
the following fully discretized scheme for (1.1).
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Scheme 1: The Hessian recovery based linear element scheme with respect to Eq. (2.1)
reads as: finding {un

h}n≥1∈Vper
h such that for n=0,1,··· ,N,

1
∆t

(un+1
h ,vh)+ε(∆hun+1

h ,∆hvh)+(|∇un+1
h |2∇un+1

h ,∇vh)

=
1

∆t
(un

h ,vh)+(∇un
h ,∇vh),∀ vh∈Vper

h , (3.6)

where u0
h =Phu0 and Pn is the L2 projection operator on Vh.

The combination of CN approximation and Hessian recovery based linear element
method lead to the following fully discretized scheme for (1.1).
Scheme 2: The Hessian recovery based linear element scheme with respect to (2.1) reads
as: finding {un

h}n≥1∈Vper
h such that for n=0,1··· ,N,

1
∆t

(
un+1

h −un
h ,vh

)
+ε

(
∆hun+1

h +∆hun
h

2
,∆hvh

)

+

(
|∇un+1

h |2+|∇un
h |2

2
∇(un+1

h +un
h)

2
,∇vh

)
−
(
∇

un+1
h +un

h
2

,∇vh

)
=0, ∀vh∈Vper

h , (3.7)

where u0
h =Phu0 and Pn is the L2 projection operator on Vh.

Remark 3.2. Note that both the Schemes 1 and 2 are nonlinear, it is not trivial to show
their unique solvability. However, this unique solvability can be proved by the same
arguments proposed in [4, 33].

In practice, the Schemes 1 and 2 should be calculated by using the Newton’s iterative
method. Note that in each iteration step of the Newton’s method, the coefficient matrix
of the resulting linear system is symmetric and positive definite, so the iteration solution
in each Newton’s iterative step is uniquely determined.

Next we will discuss the mass and energy law of the presented fully discrete schemes
(3.6) and (3.7). We will first define discrete mass Mn and energy En of numerical solution
uh at tn as follows:

Mn :=(un
h ,1), En :=

ε

2
‖∆run

h‖2
0+

1
4
‖|∇un

h |2−1‖2
0.

Theorem 3.1. The fully discrete scheme (3.6) is unconditionally energy-stable.

Proof. Choosing vh =un+1
h −un

h in Eq. (3.6) leads to

1
∆t
‖un+1

h −un
h‖2

0+ε‖∆hun+1
h ‖2−ε(∆hun+1

h ,∆hun
h)

+(|∇un+1
h |2∇un+1

h ,∇un+1
h −∇un

h)−(∇un
h ,∇(un+1

h −un
h))=0. (3.8)
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Using the identity −ab=(a−b)2/2−(a2+b2)/2, we have

−(∆hun+1
h ,∆hun

h)=
‖∆hun+1

h −∆hun
h‖2

2
−
‖∆hun+1

h ‖2+‖∆hun
h‖2

2
. (3.9)

Denote
F+(u)=

1
4
|∇u|4 and F−(u)=−

1
2
|∇u|2.

By Taylor expansion and the fact that F′′+(u)≥0 and F′′−(u)≤0, there exist ξ1 and ξ2 such
that

F+(un
h)−F+(un+1

h )=F′+(u
n+1
h )◦(un

h−un+1
h )+

F′′+(ξ1)

2
◦(un+1

h −un
h)

2

≥F′+(u
n+1
h )◦(un

h−un+1
h )

and

F−(un+1
h )−F−(un

h)=F′−(u
n
h)◦(un+1

h −un
h)+

F′′−(ξ2)

2
◦(un+1

h −un
h)

2

≤F′−(u
n
h)◦(un+1

h −un
h).

Substituting the above two inequalitties into (3.8), we have that

(|∇un+1
h |2∇un+1

h ,∇un+1
h −∇un

h)≥
∫

Ω
(F+(un+1

h )−F+(un
h))dx, (3.10)

and
−(∇un

h ,∇(un+1
h −un

h))≥
∫

Ω
(F−(un

h)−F−(un+1
h ))dx. (3.11)

The identity (3.8) together with (3.9), (3.10) and (3.11) yields that

ε

2
‖∆hun+1

h ‖2+
1
4
‖|∇un+1

h |2−1‖2

≤ε

2
‖∆hun

h‖2+
1
4
‖|∇un

h |2−1‖2− 1
∆t
‖un+1

h −un
h‖2

0−
ε‖∆hun+1

h −∆hun
h‖2

2

≤ε

2
‖∆hun

h‖2+
1
4
‖|∇un

h |2−1‖2,

which derives the desired result En+1≤En.

Theorem 3.2. The fully discrete scheme (3.7) is unconditionally energy-stable.

Proof. Choosing vh =un+1
h −un

h in Eq. (3.7), we have

1
∆t
‖un+1

h −un
h‖2

0+
ε

2
‖∆hun+1

h ‖2− ε

2
‖∆hun

h‖2

+
1
4
(|∇un+1

h |4−|∇un
h |4,1)− 1

2
‖∇un+1

h ‖2
0+

1
2
‖∇un

h‖2
0=0,



10 M. Xu and Q. Zou / Adv. Appl. Math. Mech., 16 (2024), pp. 1-23

which implies that

ε

2
‖∆hun+1

h ‖2
0+

1
4

(
(|∇un+1

h |2−1)2,1
)

=
ε

2
‖∆hun

h‖2
0+

1
4
(
(|∇un

h |2−1)2,1
)
− 1

∆t
‖un+1

h −un
h‖2

0

≤ε

2
‖∆hun

h‖2
0+

1
4
(
(|∇un

h |2−1)2,1
)

,

namely, En+1≤En.

Theorem 3.3. The fully discrete schemes (3.6) and (3.7) are mass conservative in the discrete
sense, i.e., (un+1

h −un
h ,1)=0.

Proof. Choosing vh≡1 in (3.6) and (3.7), and applying the properties ∆hvh=0 and∇vh=0,
we obtain the desired result.

3.4 Fully discrete schemes for problem (1.1) with Neumann boundary
conditions

In this subsection, we present and discuss two schemes for (1.1) with Neumann boundary
conditions by using (3.4), (3.5), and (2.3).

Recalling the bilinear form ah(·,·) defined in (2.2), we first introduce the discrete bi-
linear form ah(·,·) of a(·,·) in the linear finite element space Vh as follows:

ah(wh,vh)=
∫

Ω
∆hwh∆hvhdz−

∫
∂Ω

∆hwh(Ghvh ·n)ds−
∫

∂Ω
(Ghwh ·n)∆hvhds

+γ
∫

∂Ω
(Ghwh ·n)(Ghvh ·n)ds, ∀wh,vh∈Vh. (3.12)

Based on the discrete bilinear form (3.12), we design a fully discrete scheme by combining
the formulation (2.3) and the convex splitting method (3.4) for the MBE equation (1.1) as
follow:

Scheme 3: The Hessian recovery based linear element scheme with respect to (2.2) reads
as: finding {un

h}n≥1∈Vh such that for n=0,1··· ,N,

1
∆t

(
un+1

h ,vh

)
+εah(un+1

h ,vh)+(|∇un+1
h |2∇un+1

h ,∇vh)

=
1

∆t
(un

h ,vh)+(∇un
h ,∇vh), ∀vh∈Vh, (3.13)

where u0
h =Phu0 and Ph is the L2 projection operator on Vh.

The combination of CN approximation and the formulation (2.3) lead to the following
fully discretized scheme for (1.1).
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Scheme 4: The Hessian recovery based linear element scheme with respect to (2.2) reads
as: finding {un

h}n≥1∈Vh such that for n=0,1··· ,N,

1
∆t

(
un+1

h −un
h ,vh

)
+

ε

2
ah(un+1

h ,vh)+
ε

2
ah(un

h ,vh)

+

(
|∇un+1

h |2+|∇un
h |2

2
∇(un+1

h +un
h)

2
,∇vh

)
−
(
∇

un+1
h +un

h
2

,∇vh

)
=0, ∀vh∈Vh, (3.14)

where u0
h =Phu0 and Ph is the L2 projection operator on Vh.

Theorem 3.4. The fully discrete schemes (3.13) and (3.14) are mass conservative in the discrete
sense, i.e., (un+1

h −un
h ,1)=0.

Proof. Choosing vh ≡ 1 in (3.13) and (3.14), and applying the properties ∆hvh = 0 and
∇vh =0, we obtain the desired result.

Remark 3.3. Our numerical results indicate that Schemes 3 and 4 preserve the energy de-
cay property and have nice convergence properties. Unfortunately, we have not figured
out a rigorous proof for the energy decay property of Schemes 3 and 4. The difficulty
preventing us from giving a proof similar to Theorems 3.2 and 3.3 resides in the fact that
Ghvh ·n 6=0 for any vh∈Vh, and thus we couldn’t bound the last three terms in the formula
(3.12).

Remark 3.4. One can also use the penalty method and Lagrange multiplier method to
deal with the Neumann boundary conditions. Unfortunately, our numerical results show
that both these two methods are unstable.

Remark 3.5. In [17], Guo et al. proposed a gradient recovery based GRBL–FEM to solve
biharmonic problems. This GRBL–FEM can be applied to solve the MBE model (1.1).
In fact, we can first use the gradient recovery operator to obtain a new discrete Laplace
operator ∆̃r as

∆̃ruh =∂xGx
h uh+∂yGy

huh.

Then by utilizing ∆̃r to replace ∆r in schemes (3.6), (3.13), (3.7) and (3.14), we obtain the
GRBL finite element method for MBE model (1.1). Similar to the proofs of Theorems 3.2-
3.4, we can also prove that GRBL–FEM method satsifies the properties of energy decay
and mass conservation unconditionally. From our numerical experiments, we observe
that the GRBL-FEM method also works. However, the GRBL–FEM usually requires a
smaller temporal step than the HRBL–FEM.

4 Numerical experiments

In this section, we present several numerical examples to illustrate the robustness and
accuracy of the presented numerical schemes. Here we adopt Newton’s method to solve
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the nonlinear equations at each time step. The tolerance for Newton’s method is taken as
10−8.

For convenience, we denote different types of numerical errors by

e0=‖u−uh‖0,Ω, e1=‖∇u−∇uh‖0,Ω,

e1,r =‖∇u−Ghuh‖0,Ω, e2=‖D2u−Hhuh‖0,Ω, e∆ =‖∆u−∆huh‖0,Ω,

and use

r=
log
(
eh/e h

2

)
log(2)

to demonstrate the convergence orders.

4.1 Test of the accuracy

Example 4.1. In this example, we consider the following MBE problem

ut =−ε∆2u+∇·
(
(|∇u|2−1)∇u

)
+ f , (x,t)∈Ω×(0,T), (4.1a)

u(x,0)=u0(x), x∈Ω, (4.1b)

with Ω=[0,2]×[0,2], T=1, ε=0.1. Here the initial solution u0 and the source term f are
chosen such that the exact solution is u(x,y,t)=0.1exp(−t)cos(πx)cos(πy).

In order to test the accuracy in space, we fix the time step size ∆t= 10−4 in (3.6) for
periodic boundary condition to compute the numerical solution at T = 1, and ∆t= 10−6

in (3.13) for Neumann boundary conditions at T=0.01. Numerical errors with different
spacial sizes are depicted in Tables 1-2, respectively. From these two tables, we observe
that for both schemes, the L2-norm errors converge with order 2 while the H1-seminorm
errors converge with order 1 which are both optimal for a linear finite element method.
and the recovered H1-seminorm error is superconvergent of O(h2). We also observe that
the recovered Laplace and Hessian obtained by (3.6) converge to exact ones with orders 2
and 1.5 respectively, while the convergence orders of both recovered operators obtained
by (3.13) are reduced to 1.1. These numerical convergence orders are similar to those
obtained in [46] for Cahn-Hilliard equations.

Besides, we also study the performance of the scheme (3.13) on a circular domain
Ω={(x,y)|x2+y2≤1}. We choose the exact solution u(x,y,t)= e−t(x2+y2−1)4 and f is
computed accordingly. Numerical results are demonstrated in Table 3, in which shows
that our method using linear elements captures optimal rates of O(h2), without any loss
of accuracy from the inexact approximation of curved boundaries.

Finally, we also test the convergence rate of the schemes (3.6) and (3.7) with respect
to the time discretization in this example. We fix the spacial mesh size h=0.01 and 0.005,
respectively. The L2-norm errors at T = 1 with different time steps are shown in Table
5. As expected, the scheme (3.6) gives the accuracy O(∆t) and (3.7) gives the accuracy
O(∆t2).
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Table 1: Spatial errors and convergence rates of scheme (3.6) for Test 4.1 with ∆t=10−5 at T=1.

h e0 e1 e1,r e2 e∆
2/16 4.01×10−3 4.08×10−2 1.42×10−2 7.80×10−1 1.42×10−1

2/32 9.18×10−4 1.72×10−2 3.11×10−3 2.65×10−1 3.21×10−2

2/64 2.32×10−4 8.23×10−3 7.62×10−4 9.18×10−2 7.78×10−3

2/128 5.59×10−5 4.01×10−3 1.91×10−4 3.22×10−2 1.91×10−3

2/256 1.41×10−5 2.01×10−3 4.68×10−5 1.11×10−2 4.92×10−4

r 2.00 1.00 2.00 1.50 2.00

Table 2: Spatial errors and convergence rates of the scheme (3.13) for Test 4.1 with ∆t=10−6 at T=0.01.

h e0 e1 e1,r e2 e∆
2/16 3.56×10−2 9.56×10−1 1.84×10−1 2.39×10−0 1.60×10−0

2/32 8.54×10−3 4.45×10−1 4.63×10−2 9.89×10−1 6.30×10−1

2/64 2.04×10−3 2.18×10−1 1.15×10−2 4.12×10−1 2.67×10−1

2/128 4.96×10−4 1.08×10−1 2.86×10−3 1.80×10−1 1.22×10−1

2/256 1.21×10−4 5.40×10−2 7.16×10−4 8.25×10−2 5.90×10−2

r 2.00 1.00 2.00 1.10 1.10

Table 3: Spatial errors and convergence rates of scheme (3.13) for Test 4.1 on a circular domain with ∆t=10−6

at T=0.01.

Dof e0 e1 e1,r e2 e∆
545 5.73×10−3 2.46×10−1 5.21×10−2 1.69×10−0 1.81×10−0

2113 1.66×10−3 1.02×10−1 1.82×10−2 9.09×10−1 9.11×10−1

8231 4.13×10−4 4.66×10−2 5.27×10−3 4.50×10−1 4.56×10−1

33025 1.02×10−4 2.26×10−2 1.47×10−3 2.23×10−1 2.27×10−1

131585 2.52×10−5 1.12×10−2 4.00×10−4 1.11×10−1 1.13×10−1

r 2.00 1.00 1.85 1.00 1.00

Table 4: Spatial errors and convergence rates of scheme (3.7) for Test 4.1 with ∆t=10−3 at T=1.

h e0 e1 e1,r e2 e∆
2/16 5.48×10−3 3.28×10−2 4.42×10−2 7.80×10−1 1.38×10−1

2/32 1.34×10−4 1.61×10−2 1.11×10−2 2.65×10−1 3.45×10−2

2/64 3.28×10−4 8.03×10−3 2.78×10−3 9.18×10−2 8.34×10−3

2/128 8.36×10−5 4.02×10−3 6.93×10−4 3.22×10−2 2.09×10−3

2/256 2.09×10−5 2.01×10−3 1.73×10−4 1.11×10−2 5.21×10−4

r 2.00 1.00 2.00 1.50 2.00

Table 5: Temporal errors and convergence rate by schemes (3.6) and (3.7) for Test 4.1 at T=1.

∆t 10−1/2 10−1/22 10−1/23 10−1/24 r
scheme (3.6) 5.5×10−3 2.7×10−3 1.4×10−3 6.9×10−4 1.0
scheme (3.7) 4.8×10−3 1.1×10−3 2.6×10−4 6.8×10−5 2.0
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4.2 Coarsen process

In this subsection, we apply the numerical scheme (3.6) and (3.7) to simulate the MBE
equation to show the coarsen process. Since the numerical results computed by the
scheme (3.7) are similar to those by (3.6), we only report the numerical results obtained
by (4.2). In the following examples, a reasonable time step ∆t should be controlled as
order O(ε).

Example 4.2. We consider the following one-dimensional epitaxial growth model sug-
gested in [22, 25]:

ut =(u3
x)x−uxx−εuxxxx, (x,t)∈ [0,12]×(0,T), (4.2a)

u(·,t) is 12-periodic, t∈ (0,T), (4.2b)

u(x,0)=0.1
(

sin
πx
2

+sin
(2πx

3

)
+sin(πx)

)
, x∈ [0,12]. (4.2c)

In this example, we present some numerical results with vary ε to show the robustness
and accuracy of the proposed algorithm. We set ∆t= ε/10 and the numerical results in-
cluding height uh(x,t), gradient ∂xuh(x,t) and evolution of the energy are demonstrated
in Figs. 1-3.

We set ε= 0.1 and T = 200, the numerical results obtained by (h,∆t)= (12/128,0.01)
and (h,∆t)=(12/256,0.005) are presented in Fig. 1. Then we set ε=0.01 and T=500 and
Fig. 2 gives the results of (h,∆t)= (12/256,0.001) and (h,∆t)= (12/512,0.0005). Finally,
we take ε=0.001 and T=1000 and Fig. 3 presents the results of (h,∆t)=(12/512,0.0001)
and (h,∆t) = (12/1024,0.00005). The little difference between the two lines in Figs. 1-3
indicates that the proposed methods are stable and credible. As we can see from Fig. 1(c),
Fig. 2(c) and Fig. 3(c), the energy decays. From Fig. 1(b), Fig. 2(b) and Fig. 3(b), we also
observe that the gradient is controlled in the interval [−1,1] and steady states present
more waves with a decrease of ε, which are in good agreement with [25].

(a) (b) (c)

Figure 1: Example 4.2: the results of (a) height: t=200, (b) gradient: t=200 (c) energy: 0< t<200 in the
case ε=0.1 obtained with (h,∆t)=(12/128,0.01) (solid line) and (h,∆t)=(12/256,0.005) (dashed line).
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(a) (b) (c)

Figure 2: Example 4.2: the results of (a) height: t=500, (b) gradient: t=500 (c) energy: 0< t<500 in the
case ε=0.01 obtained with (h,∆t)=(12/256,0.001) (solid line) and (h,∆t)=(12/512,0.0005) (dashed line).

(a) (b) (c)

Figure 3: Example 4.2: the results of (a) height: t=1000, (b) gradient: t=1000, (c) energy: 0< t<1000 in
the case ε=0.001 obtained with (h,∆t)=(12/512,0.0001) (solid line) and (h,∆t)=(12/1024,0.00005) (dashed
line).

Example 4.3. We consider the two-dimensional MBE model (1.1) with 2π-periodic bound-
ary condition and parameter ε=0.1. The initial condition is given by

u0(x,y)=0.1sin(3x)sin(2y)+sin(5x)sin(5y).

This example has been discussed in [22, 32, 35, 47] to study the nonlinear instability
of the solution. Here we use the recovered finite linear element method to solve this
problem. We set h = 2π/100 and ∆t = 10−3, the solution contours obtained by scheme
(3.6) at t=0, t=0.05, t=2.5, t=5.5, t=8, and t=30 are plotted in Fig. 4, which agrees well
with the published ones presented in [22, 35] by using Galerkin spectral approximations
and mixed finite element method.

In this example, we also study the behavior of energy of the MBE growth model. We
observe the typical phenomenon in coarsen process. That is, the energy drops quickly
at the beginning, then it follows the rough-smooth-rough pattern, finally, it reaches the
steady-state. The corresponding numerical results are demonstrated in Fig. 5. In addi-
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(a) t=0 (b) t=0.05 (c) t=2.5

(d) t=5.5 (e) t=8 (f) t=30

Figure 4: Example 4.3: contour plots of the numerical solutions at t=0,0.05,2.5,5.5,8,30.

(a) (b)

Figure 5: Example 4.3: the evolution of the energy.

tion, we define the roughness of the function un
h by

Rn :=Rn(un
h)=

(
1
|Ω|

∫
Ω
(un

h−ūn
h)

2dx
) 1

2

, ūn
h =

1
|Ω|

∫
Ω

un
hdx.

and Fig. 6 gives the evolution of roughness, which is well consistent with the published
results in [22, 32, 35, 47].

Example 4.4. We consider the MBE model (1.1) with parameter ε = 0.1 on the domain
Ω = [0,200]×[0,200]. The initial data u0 is a random value by varying from −0.001 to
0.001.
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(a) (b)

Figure 6: Example 4.3: the development of the roughness.

This example has been studied to verify the power laws for the energy evolution and
the height growth during long time evolution in [25, 33]. In this work, the free energy
Ffree and height of the function un

h are defined by

Fn
free=

1
4
(
|∇un

h |2−1
)2
+

ε

2
|∆hun

h |2,

Hn =

(
1
|Ω|

∫
Ω
(un

h)
2dx
) 1

2

.

Since the evolution of rough requires a long time, we choose an adaptive algorithm pro-
posed in [35]. In each step, the time step in scheme (3.6) is updated by the variation of
energy. Let ∆t0=∆tmin, h=200/512 and

∆tn =max

{
∆tmin,

∆tmax√
1+α|(En)′|2

}
,

where α=104, ∆tmin=0.01, ∆tmax=0.5 and

(En)′=
En−En−1

∆tn−1 , n=1,2,··· ,N.

The contour lines of the free energy Ffree at time t = 2000,10000,100000 are presented
in Fig. 7. As expected, the free energy is concentrated on the edges of the pyramidal
structures. In Fig. 8, the decay of the energy is observed. In addition, we also present
the development of the height. The figures in Fig. 9 are plotted on a log-to-log scale. It is
observed that after the early stage of the rearrangement of the structure, the free energy
and height nearly satisfy the power law ctγ with γ=−1/3 and γ=1/3, which matches
the existing numerical results.

Example 4.5. In the last example, we consider the two-dimensional MBE model (1.1)
with the Neumann boundary condition on a circular domain Ω={(x,y)|x2+y2≤1}, and
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(a) t=2000 (b) t=10000 (c) t=100000

Figure 7: Example 4.4: contour plots of free energy at t=2000,10000,100000.

(a) (b)

Figure 8: Example 4.4: (a): the development of the energy, (b): the development of the height.

(a) (b)

Figure 9: Example 4.4: (a): − 1
3 -power low for the energy, (b): 1

3 -power low for the height.

parameter ε equals to 0.1. The initial condition is given by

u0(x,y)=(x2+y2−1)2.

We set ∆t=10−3, the solution contours obtained by the scheme (3.13) at t=0, t=0.1,
t= 0.5, t= 1, t= 10, and t= 30 are plotted in Fig. 10, and the evolution of the energy is
demonstrated in Fig. 11. We observe that the energy also drops very quickly at the be-
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(a) t=0 (b) t=0.1 (c) t=0.5

(d) t=1 (e) t=10 (f) t=30

Figure 10: Example 4.5: contour plots of the numerical solutions at t=0,0.1,0.5,1,10,30.

(a) (b)

Figure 11: Example 4.5: the evolution of the energy.

ginning, then follows a rough-smooth-rough pattern, and finally, reaches a steady state,
which is consistent with the typical phenomenon of coarsening.

5 Conclusions

In this work, we apply the Hessian recovery based linear element method to solve the
molecular beam epitaxy growth model with slope selection. We prove that the pro-
posed method can capture the physical properties of energy decay and mass conserva-
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tion. Meanwhile, numerical results reveal that our presented method is reliable and has
the optimal convergence orders. In addition, we also simulate the coarsening dynamics
process and observe the 1/3 power law.

It may worth mentioning that the recovered method proposed in this work is more
stable and efficient than the gradient recovered method presented in [17] to solve the
MBE model. Compared to the Hessian recovery based method in this work, the gradient
recovery based method requires a more strict condition on the time step to guarantee the
convergence of Newton’s iteration. Besides, numerical results indicate that our methods
also perform very well for problems on the domain with curved boundaries, without any
loss of accuracy from the inexact approximation of curved boundaries. Our methods can
be naturally extended to solve time-fractional molecular beam epitaxy models.
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