
Advances in Applied Mathematics and Mechanics
Adv. Appl. Math. Mech., Vol. 16, No. 1, pp. 181-207

DOI: 10.4208/aamm.OA-2022-0085
February 2024

A Vertex-Centered Arbitrary Lagrangian-Eulerian
Finite Volume Method with Sub-Cells for
Two-Dimensional Compressible Flow

Xiaolong Zhao1, Xijun Yu2, Zupeng Jia5,∗, Shijun Zou3,∗

and Meilan Qiu4

1 School of Mathematics and Statistics, Zhengzhou University, Zhengzhou,
Henan 450001, China
2 Laboratory of Computational Physics, Institute of Applied Physics and
Computational Mathematics, Beijing 100088, China
3 School of Mathematical Sciences, Capital Normal University, Beijing 100048, China
4 School of Mathematics and Statistics, Huizhou University, Huizhou,
Guangdong 516007, China
5 Institute of Applied Physics and Computational Mathematics, Beijing 100088, China

Received 23 March 2022; Accepted (in revised version) 14 October 2022

Abstract. In this paper, we present a new vertex-centered arbitrary Lagrangian-
Eulerian (ALE) finite volume scheme for two-dimensional compressible flow. In our
scheme, the momentum equation is discretized on the vertex control volume, while
the mass equation and the energy equation are discretized on the sub-cells which are
included in the vertex control volume. We attain the average of the fluid velocity
on the vertex control volume directly by solving the conservation equations. Then
we can obtain the fluid velocity at vertex with the reconstructed polynomial of the
velocity. This fluid velocity is chosen as the mesh velocity, which makes the mesh
move in a Lagrangian manner. Two WENO (Weighted Essentially Non-Oscillatory)
reconstructions for the density (the total energy) and the velocity are used to make
our scheme achieve the anticipated accuracy. Compared with the general vertex-
centered schemes, our scheme with the new approach for the space discretization
can simulate some multi-material flows which do not involve large deformations.
In addition, our scheme has good robustness, and some numerical examples are
presented to demonstrate the anticipated accuracy and the good properties of our
scheme.
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1 Introduction

Simulations of the compressible multi-material fluid flows can be classified into two
computational frameworks, each with its own advantages and disadvantages. The first
one is Lagrangian [1–4] in which the mesh is embedded in fluid and moves with it;
the second, known as Eulerian [5, 6] treats the mesh as a fixed reference frame through
which the fluid moves. In order to combine the advantages of the Lagrangian method
and the Eulerian method, Hirt et al. [7] proposed an Arbitrary Lagrangian-Eulerian
(ALE) method in which the grid points may move in some arbitrarily specified ways.
The ALE method is a powerful tool to solve fluid dynamic problems with large defor-
mation. It was primarily developed from the finite difference method for fluid flows
and later extended in the context of the finite element method and the finite volume
method for both fluid and structure dynamics. Since the computational mesh of the
ALE method can move with arbitrary velocity which is independent of the fluid veloc-
ity, the best features from the traditional Lagrangian method and the Eulerian method
can be combined and embodied in the ALE method. Basically, there are two cate-
gories of the ALE methods which are the so-called indirect method [8–14] and the di-
rect one [15–19]. In the indirect ALE method, the computational mesh firstly moves
in a Lagrangian manner. When the mesh becomes too distorted, a remeshing step is
carried out to generate a new grid with better quality. Then the numerical solutions
on the old mesh are projected to the new one, which is called the remapping step.
This method has been widely used for solving the multi-phase flow problems and the
multi-material flow problems. For instance, Maire et al. [12] developed a cell-centered
multi-material indirect ALE scheme for solving the compressible gas dynamics equa-
tions on two-dimensional unstructured grid, and the multi-material simulations uti-
lized either the concentration equations for miscible fluids or the Volume Of Fluid
(VOF) capability with interface reconstruction for immiscible fluids; Barlow and Maire
et al. [14] reviewed the recent developments in the indirect ALE methods for modeling
the high speed compressible multi-material flows on complex geometry with general
polygonal meshes. In the direct ALE method, the mesh movement is taken into con-
sideration directly in the computation of the numerical flux. Therefore, this method
has no remapping step, and it is easier to be used for constructing high-order accuracy
schemes than other methods with the remapping step. For instance, Zhao et al. [19] pre-
sented a high-order direct ALE Discontinuous Galerkin (DG) method for compressible
single-material flow on the adaptive moving unstructured meshes; Boscheri et al. [17]
proposed a high-order accurate ADER schemes in the direct ALE context.

There are two commonly used approaches for discretizing the gas dynamic equa-
tions. One is the staggered-grid hydrodynamics (SGH) [20–23] in which the velocity
is defined at nodes while the other variables (the density, the pressure and the specific
internal energy) are located inside the cells. The other is the cell-centered hydrodynam-
ics (CCH) [1, 2, 4, 17, 24–34] in which all the primary variables are defined in the cells.
The CCH method offers some advantages over the SGH one. For example, the SGH
schemes use different control volumes for the primary variables, and it is difficult to
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construct the consistent high-order SGH schemes for all these variables. On the con-
trary, the CCH schemes use the same control volume for all the primary variables, thus
it is possible to construct the coherent high-order SGH schemes for all these variables
with the ideas of Godunov methods.

Besides the SGH schemes and the CCH schemes, the vertex-centered hydrodynam-
ics (VCH) has attracted more and more interests in recent years, see [35–38]. In this
kind of schemes, the conserved variables (the mass, the momentum, and the total en-
ergy) are all stored at the nodes of mesh. Morgan et al. [35] proposed a vertex-centered
hydrodynamic scheme which is suitable for modeling the complex compressible flows
on tetrahedron meshes. The scheme reduced to a purely Lagrangian approach when the
flow is linear. The evolution equations for momentum and total energy are discretized
on the vertex control volume using an edge-based finite element approach with lin-
ear basis functions. A multidimensional Riemann-like problem was introduced at the
center of the tetrahedron to account for the discontinuities in the flow such as a shock.
Morgan et al. [36] presented a vertex-centered Arbitrary Lagrangian-Eulerian hydro-
dynamic approach for tetrahedral meshes, and this ALE version was derived from the
Lagrangian one in [35]. Aguirre et al. [37] developed an upwind vertex-centered fi-
nite volume solver for Lagrangian solid dynamics. Liu et al. [38] developed a vertex-
centered DG method in the direct ALE form for compressible single-material flow, and
the vertex control volumes of this scheme are constructed with curved edges. This
scheme is third-order accurate both in space and time, and it is conservative for the
mass, the momentum and the total energy.

In the simulations for the multi-material flows, general Lagrangian vertex-centered
methods often need to deal with the mixed control volumes involving the material
interfaces. It is worthy of studying the problem of how to distinguish the materials
and obtain the pressure conveniently in the mixed control volumes. Considering the
research values of the vertex-centered methods and the advantages of the direct ALE
methods for dealing with the multi-material flows, we propose a new vertex-centered
direct ALE method for the compressible multi-material flows in this paper. In our
scheme, the fluid velocity at vertex which is derived directly from the numerical solu-
tion is selected as the mesh velocity. In other words, the vertexes move in a Lagrangian
manner. In our scheme, a new approach for the space discretization is employed, which
can help our scheme deal with some multi-material flows conveniently and effectively.
The control volume in our scheme includes several sub-cells, the momentum is defined
on the vertex control volume, while the density and the total energy are defined on the
sub-cells of the control volume. The space discretization for momentum conservation
equation is carried out on the control volume, which is similar to other general vertex-
centered methods. The space discretizations for mass equation and energy equation are
carried out on the sub-cells of the control volume, which is different to other general
vertex-centered methods. Hence, there is unified momentum on each control volume,
and there are independent energy, density, pressure and specific heat coefficient on each
sub-cell of the control volume. This way of implementing the space discretization al-
lows our scheme to simulate the multi-material flows conveniently. The key reason for
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choosing this new approach for the space discretization is as follows. Our method be-
longs to the Godunov-type methods which use the approximate Riemann solvers. In
order to solve the Riemann problems on the edges of the vertex control volume, we
need not only the kinematic variables (momentum, etc.) on the control volume but also
the thermodynamic variables (such as the density and the energy, etc.). If we define
the thermodynamic variables on each sub-cell of the vertex control volume, we can
obtain the total thermodynamic variables on the vertex control volume by achieving a
weighted average of the thermodynamic variables on the sub-cells. If the thermody-
namic variables are also defined on the vertex control volume directly, it is difficult to
distinguish the multi-material flows directly and conveniently. Therefore, we define
the thermodynamic variables on each sub-cell of the control volume, and the material
interfaces can be clearly and directly depicted by using the grid edges. Finally, the
multi-material flows can be simulated by our scheme conveniently, which is the most
critical design target of our scheme in this paper.

For clarity, a summary of the pros and cons of our scheme in contrast to some other
existing methods is given as follows. Compared with the general vertex-centered meth-
ods, our method has the ability of simulating some multi-material flows which do not
involve large deformations conveniently, while the algorithm of our method is more
complex because of the specificity of the space discretizations for mass equation and en-
ergy equation. The general cell-centered Lagrangian methods usually use the velocity
solver to obtain an approximate fluid velocity, and then they take the approximate fluid
velocity as the mesh velocity. For example, the cell-centered Lagrangian scheme [2]
studied by Maire et al. used a strong sufficient condition to construct a nodal solver
which is based on the conservation of momentum, the conservation of energy and the
entropy conditions. When this kind of schemes is used for dealing with the cases in-
volving the discontinuities like shocks, the numerical dissipation caused by the velocity
solver will have certain impacts on the result of the simulation. Our method obtains the
fluid velocity by solving the Euler equations directly on the vertex control volume and
then further uses the fluid velocity to determine the Lagrangian nodal velocity. This
approach avoids the numerical dissipation and the error caused by the solver of the ap-
proximate fluid velocity. The general staggered Lagrangian methods usually introduce
the artificial viscosity into the algorithms to deal with the discontinuities, while our
method which belongs to the Godunov-type methods uses an approximate Riemann
solver to achieve this. In the case with other same conditions, the resolution of dis-
continuities of the numerical solution obtained by the staggered Lagrangian methods
may be not as sharp as the one obtained by our method. Some numerical examples
are presented to demonstrate the anticipated accuracy and the good properties of our
scheme. For instance, compared with the Lagrangian methods in [29] and [32], our
scheme obtains higher resolution in the vicinity of discontinuous solutions with main-
taining better quality of the meshes, and this scheme runs for a longer time when it
is used for the simulation of the Saltzman problem. A noteworthy point is that our
scheme does not apply to the single/multi-material cases involving large deformations
because of the mesh distortion. Although the scope of the application of our scheme is
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currently restricted, it provides a concise idea for the simulations of the multi-material
flows, and we will consider combining other techniques with our scheme to simulate
the multi-material cases involving large deformations in the future work.

The layout of the rest of this paper is as follows. The governing equations of two-
dimensional compressible gas dynamics are given in Section 2. The process for solving
the governing equations with our vertex-centered ALE method is described in Section
3. In Section 4, our method is tested by a suite of numerical tests to assess its accuracy
and properties. The whole paper is concluded in Section 5.

2 Governing equations

The Euler equations of two-dimensional compressible gas dynamics are as follows:

∂ρ

∂t
+∇·(ρV)=0,

∂(ρV)

∂t
+∇·(ρV⊗V)+∇P=0,

∂(ρE)
∂t

+∇·(ρEV)+∇·(PV)=0,

(2.1)

where U = (ρ,ρV,ρE) denotes the vector of the conservative variables; ρ, V = (u,v),
P, and E are the density, the velocity vector, the pressure, and the total energy, respec-
tively; E =E− 1

2 ‖V‖2 denotes the internal energy. The system is closed by the following
equation of state (EOS): P=(γ−1)ρE , where γ is the ratio of specific heats of fluid. This
system of PDEs is valid within a set of admissible states where ρ>0, E >0, and γ>1.

3 The vertex-centered scheme in the framework of ALE

3.1 The structure of the vertex control volume

In our scheme, the governing equations are solved on a set of non-overlapping vertex
control volumes. These control volumes are constructed with the following procedure.
Firstly, the whole domain is partitioned into an ensemble of non-overlapping structured
quadrilateral cells with straight edges. The vertex is denoted by p, and the primal cell
is denoted by z. Considering vertex p in the primal computational mesh, we use the
midpoints of the related edges which involve p and the center points of the related cells
which involve p to build the vertex control volume Ωp at vertex p. Firstly, let zj denote
the jth related cell (j= 1,.. .,m; m denotes the total number of the related cells) of p (zj
also denotes the center point of the jth related cell of p, and it is defined by coordinates
that are the simple average of those of the related cell points), and let the hollow circles
denote the midpoints of the primal related edges of p. Secondly, we connect zj and
the midpoints (the hollow circles) of the primal related edges of p by dashed lines in
counter-clockwise order. One can also refer to [21] for the process. There are several
sub-cells named Ωp

zj (j=1,.. .,m) in each Ωp, where m also denotes the total number of
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Figure 1: The configurations of control volume Ωp: solid lines are the edges of the primal grid cells; dashed
lines are the boundaries of control volumes; black solid circles are the vertexes of the primal grid denoted by
p ; hollow circles are the midpoints of the primal related edges of p; red solid circles are the center points of
the primal related cells p. Top: the control volume for inner vertex p; bottom left: the control volume for a
boundary (not corner) vertex p; bottom right: the control volume for a corner vertex p.

sub-cells in Ωp. The configurations of the control volumes for three types are shown in
Fig. 1.

3.2 Spatial discretization

In this subsection, we show the process of the space discretization. The space discretiza-
tion is accomplished by using a vertex-centered finite volume method. For momentum
conservation equation, we carry out the discretization on Ωp, which is similar to other
classical vertex-centered methods. For mass equation and energy equation, we discrete
them separately on sub-cell Ωp

zj (j=1,...,m). There is unified momentum on Ωp, and
there are independent energy, density, pressure and specific heat coefficient on each Ωp

zj .
An integral ALE scheme of Eqs. (2.1) over Ωp with arbitrary mesh velocity Vg=(ug,vg)
is written in the following form:

d
dt

∫
Ωp

zj

ρdΩp
zj +

∫
sp

zj

(ρ(V−Vg)·n)ds=0,

d
dt

∫
Ωp

(ρV)dΩp+
∫

sp

((ρV)(V−Vg)·n+Pn)ds=0,

d
dt

∫
Ωp

zj

(ρE)dΩp
zj +

∫
sp

zj

((ρE)(V−Vg)·n+(PV)·n)ds=0,

(3.1)
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where sp and sp
zj denote the boundaries of Ωp and Ωp

zj , respectively; n=(nx,ny) is the
unit outward normal vector of the corresponding boundary. The mesh velocity Vg =
(ug,vg) in Eqs. (3.1) is a function of time and position and it can be arbitrary. Eqs. (3.1)
will evolve into the Eulerian form when Vg=0 and the Lagrangian form when Vg=V.

Then, we obtain the discrete scheme as follows:

d
dt
(ρ

p
zj |Ω

p
zj |)+

∫
sp

zj

(ρ(V−Vg)·n)ds=0,

d
dt
((ρV)p|Ωp|)+

∫
sp

((ρV)(V−Vg)·n+Pn)ds=0,

d
dt
((ρE)p

zj |Ω
p
zj |)+

∫
sp

zj

((ρE)(V−Vg)·n+(PV)·n)ds=0,

(3.2)

where, Up = (ρ
p
zj ,(ρV)p,(ρE)p

zj) is the vector of the integral average values of the un-
knowns for Ωp

zj or Ωp; |Ωp| and |Ωp
zj | denote the areas of Ωp and Ωp

zj , respectively.
Eqs. (3.2) can further evolve into:

d
dt
(ρ

p
zj |Ω

p
zj |)=−

4

∑
k=1

∫
(sp

zj )k

(F1(U),G1(U))·nds,

d
dt
((ρu)p|Ωp|)=−

τ

∑
k=1

∫
(sp)k

(F2(U),G2(U))·nds,

d
dt
((ρv)p|Ωp|)=−

τ

∑
k=1

∫
(sp)k

(F3(U),G3(U))·nds,

d
dt
((ρE)p

zj |Ω
p
zj |)=−

4

∑
k=1

∫
(sp

zj )k

(F4(U),G4(U))·nds,

(3.3)

where, (sp)k and (sp
zj)k denote the kth edge of Ωp and Ωp

zj , respectively; τ denotes the
total number of the edges of Ωp;

F(U)=


F1(U)

F2(U)

F3(U)

F4(U)

=


(ρ(u−ug))

(ρu(u−ug)+P)
(ρv(u−ug))

(ρE(u−ug)+Pu)

,

G(U)=


G1(U)

G2(U)

G3(U)

G4(U)

=


(ρ(v−vg))

(ρu(v−vg))

(ρv(v−vg)+P)
(ρE(v−vg)+Pv)

,

∫
(sp)k

(F2,G2)·nds and
∫
(sp)k

(F3,G3)·nds are the fluxes for the momentum on (sp)k;∫
(sp

zj )k
(F1,G1)·nds and

∫
(sp

zj )k
(F4,G4)·nds are the fluxes for density and total energy on
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(sp
zj)k, respectively. In this paper, we choose the local L-F (Lax-Friedrichs) numerical

flux to estimate approximately the fluxes, and obtain the following scheme:



d
dt
(ρ

p
zj |Ω

p
zj |)=−

4

∑
k=1

∫
(sp

zj )k

H1(U+,U−)ds,

d
dt
((ρu)p|Ωp|)=−

τ

∑
k=1

∫
(sp)k

H2(U+,U−)ds,

d
dt
((ρv)p|Ωp|)=−

τ

∑
k=1

∫
(sp)k

H3(U+,U−)ds,

d
dt
((ρE)p

zj |Ω
p
zj |)=−

4

∑
k=1

∫
(sp

zj )k

H4(U+,U−)ds,

(3.4)

where H1(U+,U−) and H4(U+,U−) denote the the numerical fluxes on (sp
zj)k,

H2(U+,U−) and H3(U+,U−) denote the the numerical fluxes on (sp)k, and their ex-
pressions are presented as follows:



H1(U+,U−)=
1
2
[(F1(U+),G1(U+))·n+(F1(U−),G1(U−))·n

−β(U+,U−)(ρ+−ρ−)],

H2(U+,U−)=
1
2
[(F2(U+),G2(U+))·n+(F2(U−),G2(U−))·n

−β(U+,U−)((ρu)+−(ρu)−)],

H3(U+,U−)=
1
2
[(F3(U+),G3(U+))·n+(F3(U−),G3(U−))·n

−β(U+,U−)((ρv)+−(ρv)−)],

H4(U+,U−)=
1
2
[(F4(U+),G4(U+))·n+(F4(U−),G4(U−))·n

−β(U+,U−)((ρE)+−(ρE)−)].

(3.5)

U+ denotes the vector of conservative variables inside Ωp(or Ωp
zj ), U− denotes the vec-

tor of conservative variables inside the control volume which shares the edge (sp)k with
Ωp (or the sub-cell which shares the edge (sp

zj)k with Ωp
zj ), c+ and c− denote the values

of the corresponding sound speed. β(U+,U−) is an estimate of the largest absolute
value of eigenvalues of Jacobian of the flux functions (F(U) and G(U) ) with respect to
U, and we set the β to

β(U+,U−)=max(|(V−Vg)·n+c+|,|(V−Vg)·n+c−|)

in our scheme. The line integral in Eqs. (3.4) can be discretized by a four-point Gauss-
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Lobatto integral formula, and Eqs. (3.4) become

d
dt
(ρ

p
zj |Ω

p
zj |)=−

4

∑
k=1

4

∑
r=1

ωr H1(U+(Gr),U−(Gr))|(sp
zj)k|,

d
dt
((ρu)p|Ωp|)=−

τ

∑
k=1

4

∑
r=1

ωr H2(U+(Gr),U−(Gr))|(sp)k|,

d
dt
((ρv)p|Ωp|)=−

τ

∑
k=1

4

∑
r=1

ωr H3(U+(Gr),U−(Gr))|(sp)k|,

d
dt
((ρE)p

zj |Ω
p
zj |)=−

4

∑
k=1

4

∑
r=1

ωr H4(U+(Gr),U−(Gr))|(sp
zj)k|,

(3.6)

where |(sp
zj)k| and |(sp)k| are the lengths of (sp

zj)k and (sp)k, respectively; Gr is the rth
Gaussian quadrature point on the edge; ωr is the corresponding Gaussian weight. In
the Gauss-Lobatto integral formula, the following condition is used for implementing
the calculation:

G1= p1, G2=
1
2
(p1+p2)−

√
5

10
(p2−p1),

G3=
1
2
(p1+p2)+

√
5

10
(p2−p1), G4= p2,

ω1=ω4=
1
12

, ω2=ω3=
5
12

,

for the edge with endpoints p1 and p2.

Remark 3.1 (The special operations for the multi-material flows). For simplicity, we
take the two-material flows as an example to show the special operations for the simu-
lations of the multi-material flows in our scheme. We only consider the cases that the
material interfaces are depicted by the edges of the primal grid cells and do not con-
sider the ones that the material interfaces pass through the sub-cells. In the cases we
consider, each sub-cell only contains one kind of material with its own ratio of specific
heat. The equation of state is obtained as follows.

• Set the equation of state to P=(γ1−1)ρE in the sub-cells which only involve the
material “1” with the ratio of specific heats γ1.

• Set the equation of state to P=(γ2−1)ρE in the sub-cells which only involve the
material “2” with the ratio of specific heats γ2.

In order to prevent the exchange of different materials on the edge of the primal cell
describing the interface and the generation of hybrid sub-cells, we set β to zero in the
numerical fluxes which belong to the edge describing the material interfaces.
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3.3 The velocity of the mesh

In this subsection, the process of obtaining the mesh velocity Vg =(ug,vg) is given as
follows.

Taking control volume Ωp for inner vertex p as an example, with

Up =(ρ
p
zj ,(ρu)p,(ρv)p,(ρE)p

zj)

obtained by solving Eqs. (3.6), we can get Vp =(up,vp), which is the average fluid ve-
locity on Ωp:

up =
(ρu)p

ρp
, vp =

(ρv)p

ρp
,

where ρp is the integral average value of density on Ωp derived from ρ
p
zj and |Ωp

zj | with
the weighted average form:

ρp =
∑m

j=1 |Ω
p
zj |ρ

p
zj

|Ωp|
.

Then, Vp is considered as the fluid velocity at vertex p and is selected as the mesh
velocity at p, which makes the meshes move in a Lagrangian manner. For the high-
order scheme, a WENO reconstruction for the velocity vector is used for obtaining the
related polynomial, and then the mesh velocity at vertex p can be determined by the
reconstructed polynomial.

A key point we should consider is how to obtain Vg in the fluxes. With the fluid
velocity at each vertex, we obtain Vg at each node of Ωp by using the approach which
is similar to the one for obtaining the coordinates of the node. Then, Vg in the fluxes
can be determined, too. Taking a boundary segment l of Ωp as an example, we assume
that the two endpoints of l are pl

1 and pl
2. An approximate fluid velocity at the target

point will be chosen as Vg in the fluxes. Taking the midpoint pl
0 of l as an example, we

show the steps of obtaining the mesh velocity Vg(pl
0) as follows.

Firstly, we let nl =((nl)x,(nl)y) denote the unit outward normal vector of l and let
(−(nl)y,(nl)x) denote the unit tangent vector of l, and then we take the projection in
the tangent direction of the arithmetic average of Vg(pl

1) and Vg(pl
2) as the tangential

component (denoted by wt) of Vg(pl
0). Secondly, we determine the normal component

(denoted by wn) of Vg(pl
0). In [39], the HLLC approximate Riemann solver in the Eu-

lerian form has been employed. In our scheme, the normal component of Vg(pl
0) is set

to the middle wave (also called the contact wave) velocity which is a by-product of the
HLLC approximate Riemann solver in the Eulerian form, see [39]. The middle wave
velocity S∗ is

S∗=
P−−P++ρ+q+nl

(S+−q+nl
)−ρ−q−nl

(S−−q−nl
)

ρ+(S+−q+nl )−ρ−(S−−q−nl )
, (3.7)

where

S−=min[q−nl
−c−,V̇·nl− ċ], S+=max[q+nl

+c+,V̇·nl+ ċ],

q−nl
=V− ·nl , q+nl

=V+ ·nl .
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The items with superscripts “+” (or “−”) denote the values of the corresponding vari-
ables at l, and this definition is similar to the case in the local L-F (Lax-Friedrichs) nu-
merical flux (3.5); V̇ and ċ are the Roe’s average values of the fluid velocity and the
speed of sound from two sides of l, respectively. Thirdly, we can get the x- and y- com-
ponents (denoted by wx and wy, respectively) of Vg(pl

0) with the relationship between
wx, wy, wn and wt as follows:

wx =wn(nl)x−wt(nl)y, wy =wn(nl)y+wt(nl)x.

3.4 The WENO reconstruction

For constructing the second-order scheme, we will use the second-order WENO recon-
structions to obtain the corresponding reconstructions of polynomials for the variables.
Here, we present two kinds of efficient WENO reconstructions. The reconstructions for
different variables are separately considered as follows.

3.4.1 The reconstruction for ρ, ρE

The process of the reconstruction for ρE and the one for ρ are the same, so we only show
the one for ρ. Taking sub-cell Ωp

zj as an example and defining e=Ωp
zj for convenience,

we construct a linear polynomial ρ̃ for ρ in e:

ρ̃=ρe+ ρ̃x(x−xe)+ ρ̃y(y−ye), (3.8)

where (xe,ye) is the centroid of e:

xe =
1
|e|

∫
e
xde, ye =

1
|e|

∫
e
yde,

(ρ̃x,ρ̃y) denotes the gradient of ρ at the centroid of e; ρe is the integral average value
of ρ in e; |e| denotes the area of e; ρ̃ maintains the average value of ρ in e. In order to
evaluate the coefficients ρ̃x and ρ̃y, we need to specify two conditions.

Firstly, we identify a number of admissible stencils S1,S2,··· ,S8 for sub-cell e con-
sisting of the neighboring sub-cells, such that e itself belongs to each stencil. For clarity,
we show e and its eight adjacent sub-cells denoted by a,b,···,g in Fig. 2. Each stencil
consists of three sub-cells. Taking stencil S1 ={e,a,b} as an example, we will introduce
two specified conditions as follows:

1
|a|

∫
a
ρ̃d(a)=ρa, (3.9a)

1
|b|

∫
b
ρ̃d(b)=ρb, (3.9b)

where |a| and |b| denote the areas of a and b, respectively. The other seven stencils are
{e,b,c}, {e,c, f }, {e, f ,i}, {e,i,h}, {e,h,g}, {e,g,d}, {e,d,a}. Secondly, we use the corre-
sponding specified conditions to reconstruct the polynomial ρ̃k=ρe+ρ̃k

x(x−xe)+ρ̃k
y(y−
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Figure 2: The configuration of sub-cell e and its eight adjacent sub-cells.

ye) for each stencil Sk (k=1,.. .,8). For sub-cell a, we denote: xae=xa−xe and yae=ya−ye,
where (xa,ya) is the centroid of a. With the following linear system:{

xaeρ̃
k
x+yaeρ̃

k
y =ρa−ρe, (3.10a)

xbeρ̃
k
x+ybeρ̃

k
y =ρb−ρe, (3.10b)

obtained by (3.9), we can get the two coefficients ρ̃k
x and ρ̃k

y. Thirdly, we calculate the
weight µk for each ρ̃k:

µk =
µk

∑8
k=1 µk

,

where µk =
1

(ok+σ)2 , σ = 10−6, and ok = [(ρ̃k
x)

2+(ρ̃k
y)

2]|e|2 is an oscillation indicator [40]
of the polynomial ρ̃. Finally, we can obtain the final reconstruction of polynomial: ρ̃=

∑8
k=1 µkρ̃k.

3.4.2 The reconstruction for V=(u,v)

In this subsection, we reconstruct the polynomial for variable u (or v) on control volume
Ωp. The reconstruction process for variable u (or v) is similar to the one for ρ above,
and we refer the reader to the Subsection 3.4.1 for details. The only key point we should
notice is that the elements in the stencils of this reconstruction are control volumes,
which is different from the process of the reconstruction in Subsection 3.4.1.

3.5 Time discretization

In this work, the Runge-Kutta (RK) method [41] is used for the time discretization of
Eqs. (3.6). Since the mesh will change with time advancing, the information of each
control volume should be updated at each RK stage. In this paper, the symbols with
superscripts “n” and “(n+1)” denote the values of the corresponding variables at the
nth and (n+1)th time steps, respectively; the symbols with subscript “p” denote the
values of the corresponding variables at vertex p.
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For keeping consistent with the accuracy of the spatial discretization, the time dis-
cretization in our scheme is carried out by the second-order RK method. With the val-
ues of all variables at the nth time step, the time marching is carried out as follows.
Step 1. The time steplength in our scheme is

∆tn =λ min
p=1,···,ι

(∆lp
zj /cp

zj)
n, (3.11)

where ι is the total number of control volumes; ∆lp
zj is the shortest edge length of the

sub-cell Ωp
zj ; cp

zj is the average sound speed of Ωp
zj . We let the Courant number λ be 0.3

unless otherwise stated in the following tests.
Step 2. With the approach in Subsection 3.3, the mesh velocity at vertex p denoted by
((ug

p)
n,(vg

p)
n) can be obtained. Then, the mesh vertex p is updated as follows:

x(1)p = xn
p+(ug

p)
n∆tn, y(1)p =yn

p+(vg
p)

n∆tn. (3.12)

The new Ωp can be obtained, and the variables are updated as follows.
Case 1. For ϕp =(ρu)p or (ρv)p:

|Ω(1)
p |ϕ(1)

p = |Ωn
p|ϕn

p+Ln
p∆tn, (3.13)

where

Ln
p =



{
−

τ

∑
k=1

4

∑
r=1

ωr H2(U+(Gr),U−(Gr))|(sp)k|
}n

, if ϕp =(ρu)p,{
−

τ

∑
k=1

4

∑
r=1

ωr H3(U+(Gr),U−(Gr))|(sp)k|
}n

, if ϕp =(ρv)p.

(3.14)

Case 2. For ϕ
p
zj =ρ

p
zj or (ρE)p

zj :

|(Ωp
zj)

(1)|(ϕ
p
zj)

(1)= |(Ωp
zj)

n|(ϕ
p
zj)

n+(Lp
zj)

n∆tn, (3.15)

where

(Lp
zj)

n =



{
−

4

∑
k=1

4

∑
r=1

ωr H1(U+(Gr),U−(Gr))|(sp
zj)k|

}n

, if ϕ
p
zj =ρ

p
zj ,{

−
4

∑
k=1

4

∑
r=1

ωr H4(U+(Gr),U−(Gr))|(sp
zj)k|

}n

, if ϕ
p
zj =(ρE)p

zj .

(3.16)

Step 3. With the variables obtained from Step 2 and the approach in Subsection 3.3, the
new vertex velocity ((ug

p)
(1),(vg

p)
(1)) can be determined. Then, the vertex p is updated

as follows:

xn+1
p =

1
2

xn
p+

1
2
(x(1)p +(ug

p)
(1)∆tn), yn+1

p =
1
2

yn
p+

1
2
(y(1)p +(vg

p)
(1)∆tn). (3.17)
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With the new Ωp, the variables are updated as follows.

Case 1. For ϕp =(ρu)p or (ρv)p:

|Ωn+1
p |ϕn+1

p =
1
2
|Ωn

p|ϕn
p+

1
2
(|Ω(1)

p |ϕ(1)
p +L(1)

p ∆tn), (3.18)

where

L(1)
p =



{
−

τ

∑
k=1

4

∑
r=1

ωr H2(U+(Gr),U−(Gr))|(sp)k|
}(1)

, if ϕp =(ρu)p,{
−

τ

∑
k=1

4

∑
r=1

ωr H3(U+(Gr),U−(Gr))|(sp)k|
}(1)

, if ϕp =(ρv)p.

(3.19)

Case 2. For ϕ
p
zj =ρ

p
zj or (ρE)p

zj :

|(Ωp
zj)

n+1|(ϕ
p
zj)

n+1=
1
2
|(Ωp

zj)
n|(ϕ

p
zj)

n+
1
2
(|(Ωp

zj)
(1)|(ϕ

p
zj)

(1)+(Lp
zj)

(1)∆tn), (3.20)

where

(Lp
zj)

(1)=



{
−

4

∑
k=1

4

∑
r=1

ωr H1(U+(Gr),U−(Gr))|(sp
zj)k|

}(1)

, if ϕ
p
zj =ρ

p
zj ,{

−
4

∑
k=1

4

∑
r=1

ωr H4(U+(Gr),U−(Gr))|(sp
zj)k|

}(1)

, if ϕ
p
zj =(ρE)p

zj .

(3.21)

4 Numerical examples

In this work, several tests are presented to demonstrate the accuracy and the perfor-
mance of our scheme. It should be noted that our scheme can achieve the second-order
accuracy in the regions of single-material flow, while it may not achieve the second-
order accuracy near the material interfaces in the simulations of multi-material flows.
We preliminarily extrapolate that, the approach for dealing with the material interfaces
and the selection of the fluxes at the material interfaces may have some impacts on
the accuracy of the spatial discretization. The detailed reason for the case mentioned
above, the way of improving the accuracy, and the accuracy test for the multi-material
flows still need to be studied in the future work. We need more time to consider these
questions. In this work, we preliminarily provide a usable and concise algorithm for
the simulations of the multi-material flows, and we only carry out the accuracy test for
the single-material flow.

We show the results obtained by our scheme as follows. If there is no special expla-
nation, all the boundary conditions are the wall conditions in the following test cases.
All the simulations are run on a PC with one Inter Core i7(2.6GHz).
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4.1 The accuracy test: Taylor-Green vortex problem

This problem is a vortical flow problem with an analytical solution [30]. The initial
condition is

ρ=1, P=
1
4
[sin(2πx)+cos(2πy)]+1,

u=sin(πx)cos(πy), v=−cos(πx)sin(πy),

with γ=1.4 in the computational domain (x,y)∈ [0,1]×[0,1]. In the compressible invis-
cid case, an energy source term is used to maintain the steady state solution,

SE =
π

4(γ−1)
[cos(3πx)cos(πy)−cos(3πy)cos(πx)].

The initial computational mesh is Cartesian grid. The mesh and the pressure map at
t=0.75 for 40×40 cells are displayed in Fig. 3. The L1, L2, L∞ errors and corresponding
convergence orders of our scheme for density ρ, horizontal velocity u, and vertical ve-
locity v at t=0.75 are shown in Table 1, Table 2, and Table 3, respectively. It can be seen
that our scheme achieves the anticipated accuracies.
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Figure 3: The result of the Taylor-Green vortex problem at t=0.75 for 40×40 cells. Left: the mesh; right:
the pressure map.

4.2 The Sod’s shock tube problem in 2D

The Sod’s shock tube problem is used for evaluating the shock-capturing and the non-
oscillatory properties of our scheme. It consists of a shock tube of unity length. The left
state of this case is high pressure fluid, and the right state is low pressure fluid. This
problem can be regarded as the simulation of the one-dimensional Sod’s shock tube
problem on two-dimensional mesh with a final time t= 0.2, and the numerical results
are shown by the scatter plots which involve all the control volumes.
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Table 1: The errors and orders of the density ρ for the Taylor-Green vortex problem.

Elements L1 error order L2 error order L∞ error order
10×10 1.1266E-002 1.5267E-002 3.4852E-002
20×20 4.2959E-003 1.3910 5.3321E-003 1.5177 1.9447E-002 0.8416
40×40 9.2677E-004 2.2126 1.2857E-003 2.0521 4.0315E-003 2.2701
80×80 1.7574E-004 2.3990 2.2293E-004 2.5278 7.5320E-004 2.4202

160×160 3.0235E-005 2.5388 3.7460E-005 2.5731 1.2910E-004 2.5444
320×320 6.4383E-006 2.2314 8.1038E-006 2.2087 2.8602E-005 2.1743

Table 2: The errors and orders of the horizontal velocity u for the Taylor-Green vortex problem.

Elements L1 error order L2 error order L∞ error order
10×10 2.8367E-002 3.5114E-002 9.1151E-002
20×20 9.4389E-003 1.5875 1.2758E-002 1.4606 4.2251E-002 1.1092
40×40 2.2654E-003 2.0588 2.9621E-003 2.1067 1.1058E-002 1.9339
80×80 4.6581E-004 2.2820 4.8975E-004 2.5965 2.0659E-003 2.4202

160×160 7.6295E-005 2.6101 8.5523E-005 2.5176 3.4527E-004 2.5810
320×320 1.6389E-005 2.2189 2.1031E-005 2.0237 8.0548E-005 2.0998

Table 3: The errors and orders of the vertical velocity v for the Taylor-Green vortex problem.

Elements L1 error order L2 error order L∞ error order
10×10 3.0652E-002 3.8756E-002 8.8872E-002
20×20 8.9426E-003 1.7772 1.3302E-002 1.5427 4.5861E-002 0.9545
40×40 2.3538E-003 1.9257 3.0865E-003 2.1075 1.0119E-002 2.1803
80×80 4.8794E-004 2.2702 5.1273E-004 2.5897 1.9378E-003 2.3845

160×160 7.5586E-005 2.6905 8.4285E-005 2.6049 3.2629E-004 2.5702
320×320 1.5958E-005 2.2438 1.9535E-005 2.1089 7.7502E-005 2.0738

4.2.1 The single-material Sod’s shock tube problem

The initial condition of the single-material Sod’s shock tube is{
(ρL,uL,vL,PL)=(1.000,0,0,1.0), x≤0.5,
(ρR,uR,vR,PR)=(0.125,0,0,0.1), x>0.5,

with γ=1.4. The partition of computational mesh is 200×5 in the domain [0,1]×[0,0.1].
The numerical results of our scheme are given in Fig. 4. From the comparison of our
results with the exact solutions, we can see that our scheme satisfies the essentially
non-oscillatory property, and our results approximate the exact solutions well.

4.2.2 The multi-material Sod’s shock tube problem

The second case is a multi-material variant of the Sod’s shock tube problem [12]. At the
initial time, the interface is located at x=0.5. The left state is a high pressure fluid char-
acterized by (ρl ,Pl ,ul ,vl) = (1.0,2.0,0,0), the right state is a low pressure fluid defined
by (ρr,Pr,ur,vr)=(0.125,0.1,0,0). The specific heat ratio on the left is defined as γl =2.0,
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Figure 4: The single-material Sod’s shock tube at t=0.2. Left: the density; right: the pressure.

and the one on the right is defined as γr =1.4. The partition of computational mesh is
100×5 in the domain [0,1]×[0,0.1]. Other conditions of this case are similar to the ones
of the single-material Sod’s shock tube above.

The numerical results of our scheme are given in Fig. 5. We can see that the ele-
mentary waves of the numerical results are resolved well. Under the precondition of
simulating this case on the meshes with the similar sizes, it can be seen that our results
are comparable to the ones obtained by the indirect cell-centred ALE scheme using the
VOF interface reconstruction (or using the concentration equations) in [12] except for
some slight oscillations and overshoots in the vicinity of discontinuities.

4.3 The Sedov problem

The Sedov problem [42] consists in the propagation of a high intensity cylindrical shock
wave generated by a strong explosion. It is a classical test case for the Lagrangian
schemes. The initial computational domain is set to [0,1.21]×[0,1.21] with a Cartesian
grid whose initial uniform grid consists of 45×45 rectangular mesh elements. The initial
density is unity and the initial velocity is zero. In the sub-cells included by the mesh
element which contains the origin O=(0,0), the values of the specific internal energy
are 400, and the ones in other sub-cells are zero. The polytropic index γ is 1.4. When
the time reaches t=1, the analytical solution gives a shock at radius unity with a peak
density of 6. Fig. 6 shows the mesh and the scatter plots of density as a function of the
radius at t=1, respectively. The density peak obtained by our scheme is 5.89.

We can notice that our numerical solution approximates the exact one well, and
the mesh has good quality. The CPU time consumed in this simulation is 290 seconds.
The computational efficiency of our scheme is lower than the one of the general vertex-
centered schemes in the simulations of single-material flow, because of the additional
computation in the sub-cells. Even so, the major advantage of our scheme is that it
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Figure 5: The multi-material Sod’s shock problem at t=0.2. Top left: the density; top right: the pressure;
bottom left: the horizontal velocity; bottom right: the internal energy.

can simulate some multi-material flows conveniently, and so we consider it is worth
making some acceptable sacrifices in the computational efficiency of our scheme.

4.4 The Dukowicz problem

The Dukowicz problem is a two-dimensional shock refraction problem on an uneven
mesh. The domain consists of two adjacent regions with different densities but equal
pressure. Here, we carry out this simulation with regarding it as a two-material case.
The left region has a 37×30 mesh partition with a normal left boundary and a right
boundary aligned at 30◦ to the horizontal direction. The right region has a 53×30 mesh
partition uniformly slanted at 30◦ to the horizontal direction, see Fig. 7. The initial
conditions of two regions are ρL = 1, uL = 0, vL = 0, PL = 1 and ρR = 1.5, uR = 0, vR = 0,
PR =1, respectively. The upper and the lower boundaries are the reflective boundaries,
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Figure 6: The Sedov problem at t=1. Left: the mesh; right: the scatter plots of density.

and the left boundary is a piston which moves from left with horizontal velocity 1.48.
This problem runs to a time t=1.3, just before the shock would leave the right region.
Fig. 8 shows the result obtained by our scheme. The interface and the transmitted
shocks can be observed clearly, and the reflective shock does not show up clearly due
to the small difference in density across it.

By comparison, we can see that the density contours of our result are similar to the
ones for reference in [43]. In addition, we consider the position of the interface on the
lower boundary. The interface position of our result is located at 2.03. Table 4 gives
the interface positions of the numerical results shown in [43]. Comparing the interface
location of our result and the ones in Table 4, we can see that our interface location is
within the scope of the ones in [43]. All the comparisons above show that our result is
reasonable.

Table 4: The interface positions in [43].

Algorithm Interface position
Edge viscosity 1.95

Symmetric tensor tangential viscosity 2.12
Nonsymmetric tensor tangential viscosity 2.20

Tensor normal viscosity 2.18

4.5 The Saltzman problem

The Saltzman test case describes the motion of a piston which is impinging on a fluid at
rest contained in the initial computational domain [0,1]×[0,0.1]. This is a well known
challenging test problem [44] to validate the robustness of any Lagrangian scheme
when the mesh is not aligned with fluid flow. The problem contains a rectangular
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Figure 7: The initial mesh of the Dukowicz problem.
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Figure 8: The Dukowicz problem at t=1.3. Top: the mesh; bottom: the density contours.

box whose left end is a piston. The piston moves with velocity V=(1,0) and a strong
shock wave is generated which travels along the main direction of the computational
domain. The elements near the piston are highly compressed when the piston moves.
The computational mesh composed of 100×10 elements can be obtained with the steps
as follows.
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Figure 9: The initial mesh configuration of the Saltzman problem.

• Firstly, we build a Cartesian mesh with 100×10 square elements.

• Secondly, the uniform grid defined by coordinates (x,y) is skewed with the map-
ping:

x′= x+(0.1−y)sin(πx), y′=y,

where x′ and y′ are the coordinates of the mesh points. The initial mesh is displayed in
Fig. 9.

A moving slip wall boundary condition is chosen as the boundary condition of the
the piston on left side of domain and the wall boundary conditions are imposed on the
remaining boundaries. The working fluid is described by an ideal gas with γ = 5/3,
and the initial condition Q0 is given by the state

Q0=(ρ0,u0,v0,(ρE)0)=(1,0,0,10−4).

The piston starts moving fast towards the fluid which is initially at rest. For maintaining
stability, we set an initial Courant number to CFL=0.01 and increase it to 0.1 after t=
0.01, one can refer to [32] for details. Under these conditions, a strong shock wave
travelling from left to right is generated. Then, more and more reflections of the shock
occur on the right-hand wall and the piston until the time t=1 is reached. The meshes
and the density contours at t = 0.925 and t = 0.98 are shown in Fig. 10. At t = 0.925,
the shock wave is at the location x =0.95. Compared with the second-order results of
the Lagrangian DG scheme in [29] at t=0.925, our scheme captures the sharper shock
wave and obtains the mesh with better quality. In addition, the scatter plots for density
and horizontal velocity are shown in Fig. 11. It can be noticed that the scatter plots
approximate the exact solution closely, which also shows that our scheme can preserve
the symmetry of the solution.

Some cell-centered Lagrangian schemes fail at t= 0.75, because of nodes crossing.
Other schemes based on finite volume method run a little longer, but they always fail at
about t=0.93, see [27]. The Lagrangian DG method in [32] runs longer which can reach
t= 0.9719. In our scheme, we manage to make the simulation time reach a relatively
large value. As can be seen in Fig. 10, we give the results at t=0.98, which corresponds
to several successive rebounds of the shock wave on the vertical boundaries of the
domain. It is observed that our scheme preserves one-dimensional solution well except
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Figure 10: The Saltzman problem. Left: the mesh; right: the density contours; top: t = 0.925, bottom:
t=0.98.

for the regions near up and bottom wall boundaries. Finally, the robustness of our
scheme is clearly demonstrated by this test case: this simulation can make the final
time reach 0.99909, the meshes at t = 0.99 and t = 0.99909 given in Fig. 12 still have
acceptable quality.

4.6 The triple point problem

The triple point problem which has significant vorticity, large shear, and complex in-
teracting shocks is used to assess the property of simulating the multi-material flows
of our scheme. This is a two-material problem which corresponds to a three states
two-dimensional Riemann problem in a rectangular domain. The computational do-
main [0,7]×[0,3] is split into the following three sub-domains D1 = [0,1]×[0,3], D2 =
[1,7]×[0,1.5] and D3 =[1,7]×[1.5,3]. The sub-domain D1 contains a high-pressure and
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Figure 11: The scatter plots of the Saltzman problem at t= 0.925. Left: the density; right: the horizontal
velocity.
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Figure 12: The meshes of the Saltzman problem. Left: t=0.99; right: t=0.99909.

high-density gas whose initial state is (ρ1,P1,V1) = (1,1,0). The sub-domain D2 con-
tains a low-pressure and high-density gas whose initial state is (ρ2,P2,V2)= (1,0.1,0).
The sub-domain D3 contains a low-pressure, low-density gas whose initial state is
(ρ3,P3,V3) = (0.125,0.1,0). The sub-domains D1 and D3 are filled with the same ma-
terial characterized by the polytropic index γ1=γ3=1.5, whereas the sub-domain D2 is
filled with a different material with γ2 = 1.4. This simulation is carried out with mesh
partition 70×30. Due to the difference of the acoustic impedance, two shocks in D2
and D3 propagate with different speeds, which creates a strong shear along the initial
contact discontinuity located at the interface between D2 and D3. The shear produces a
Kelvin-Helmholtz instability and a vortex formation occurs.
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Figure 13: The triple point problem at t=3.03. Top: the mesh; bottom: the density.

This simulation fails at time t=3.03, because of distorted mesh. The mesh and the
density at t=3.03 are shown in Fig. 13. As illustrated, the result shows that our scheme
has the primary ability to carry out the simulations of the multi-material flows which
do not involve large deformations.

5 Conclusions

In this paper, we have proposed an ALE type vertex-centered finite volume method
for two-dimensional compressible flow. In our method, the space discretization for
momentum equation is carried out on the vertex control volume, and the ones for mass
equation and energy equation are implemented on the sub-cells of the vertex control
volume. The mesh velocity is given by the fluid velocity at vertex derived directly from
the numerical solution. These operations make our scheme can simulate the multi-
material flows which do not involve large deformations conveniently. Some numerical
examples are presented to demonstrate the accuracy and the good performance of our
scheme. Although the scope of the application of our scheme is currently restricted,
it provides a concise and usable idea for the simulations of the multi-material flows.
In the future work, we will consider combining other techniques (such as the interface
capturing methods) with our scheme for simulating the single/multi-material cases
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involving large deformations.
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