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Abstract. In this paper, two fully-discrete local discontinuous Galerkin (LDG) meth-
ods are applied to the growth-mediated autochemotactic pattern formation model
in self-propelling bacteria. The numerical methods are linear and decoupled, which
greatly improve the computational efficiency. In order to resolve the time level mis-
match of the discretization process, a special time marching method with high-order
accuracy is constructed. Under the condition of slight time step constraints, the op-
timal error estimates of this method are given. Moreover, the theoretical results are
verified by numerical experiments. Real simulations show the patterns of spots, rings,
stripes as well as inverted spots because of the interplay of chemotactic drift and
growth rate of the cells.
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Key words: Local discontinuous Galerkin methods, implicit-explicit time-marching scheme, error
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1 Introduction

Complex pattern appears in active systems, such as bacterial colonies, birds flocking, fish
schools, insect swarms and other self-propelled particles [2, 9, 14, 15]. Several different
mechanisms underlying pattern formation in bacteria have been explored, for example,
temporal control of gene expression, density-dependent motility, quorum sensing, and
the phenomenon of chemotaxis. The model we focus on in this paper was proposed by
Mukherjee [13], which has shown interactions of bacterial growth kinetics, autochemo-
tactic movement and cell movement. In addition, growth is a key adjustment parameter
that can determine the spatiotemporal dynamics of a colony.
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Suppose Ω⊂R2 be a rectangular domain. The growth-mediated autochemotactic
pattern formation model [13] for self-propelling bacteria is demonstrated as follows in
dimensionless form:

∂ρ

∂t
=−∇·(ρp)+∇2ρ+gρ(1−ρ), (1.1a)

∂c
∂t

=Dc∇2c+ρ−c+κ∇·(ρp), (1.1b)

∂p
∂t

=−Γp+Dp∇2p+S∇c−Γ2|p|2p, (1.1c)

where ρ is the bacterial density, c is the self-secreted chemical density, and p=(p1,p2) is
the polarization. The variables and parameters in the model are defined as

|p|2= p2
1+p2

2, g=
α

kd
, Γ=

γ

kd
, Dp =

Dp

Dρ
, Dc =

Dc

Dρ
, κ=

kakd

k0ν0
and Γ2=

γ2Dρ

ν2
0

,

where α is the growth rate, γ is the decay rate of p, kd denotes a rate of natural degra-
dation, Dp and Dρ are the translational diffusion constant and the diffusion constant,
respectively, Dc is the diffusion constant, ka is the anisotropic correction term, k0 is the
local rate, ν0 is the self-propulsion speed of the bacteria, γ2 describes saturation in p at
strong alignment, g is the growth rate, and S is chemotactic strength. Here, the param-
eter S represents chemoattraction and chemorepulsion, for positive (S>0) and negative
(S<0) values, respectively.

There are few of numerical simulations for the growth-mediated autochemotactic pat-
tern formation model in self-propelling bacteria. In [13], the authors used the finite dif-
ference method to carry out numerical simulation, but there was no theoretical support
for numerical analysis. When there is not any growth dynamics (i.e., g=0), [10] explored
a mass-preserving characteristic finite element approach, and the convergence analysis
was well studied, yet only the first-order time scheme was developed. However, the
circumtance that g= 0 is not particularly practical since bacteria density cannot expand
locally in the absence of any bounds. Because the change in density is not minor, which
is a characteristic of this problem in some circumstances, we must explore approaches
with high resolution. As a result, for the model in this paper, we use local discontinuous
Galerkin (LDG) methods. To the best of the authors’ knowledge, this is the first paper
that discusses error estimates for the model with this method.

Inspired by Bassi and Rebay [3], the LDG method was introduced by Cockburn and
Shu [4] to solve the convection-diffusion equations. Thereafter, the LDG method has de-
veloped successfully and been employed in numerous models with higher-order and dis-
persive terms [21,22]. The principle of the LDG approach is to introduce certain auxiliary
variables to reduce the higher-order derivatives in the equations to the first-order, so that
the discontinuous Galerkin (DG) approach can then be used. Hence, the LDG approach
inherits advantages of the DG method, including good stability, high-order precision, as
well as flexibility on hp-adaptivity and complex geometry.
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A main feature of this system is that a long time dynamical process is required before
reaching the steady state. Therefore, the IMEX time-marching schemes will be adopted
to resolve the problem in this paper. When solving linear convection-diffusion prob-
lems, the combination of IMEX time-marching with LDG spatial discretization was used
in [18–20] to obtain good stability and accuracy. The IMEX scheme was further employed
to incompressible miscible displacements in [21], and more recently, applied to the worm-
hole propagation [8], for good stability and accuracy.

There are three key issues in the theoretical analysis of our proposed methods. Firstly,
the LDG method is employed for spatial discretization, so it is more difficult to carry
out theoretical analysis because the inter-element discontinuities need to be resolved.
According to Lemma 4.2, we leverage the link between the gradient and interface jump
of the numerical solution with the approximation of auxiliary variable for the gradient
in the LDG methods. Secondly, different from the traditional LDG method, we introduce
new variables including both the convection and diffusion terms, otherwise it is tricky
to obtain the error estimates. Thirdly, we will construct a new time marching method
up to second-order accuracy to resolve the time level mismatch of the discretizations.
It is essential to handle the nonlinear term |p|2p of the second-order time integration,
so the values at time levels tn, tn−1 are used to extrapolate the absolute value at time
level tn+ 1

2 , which contributes to linearizing and decoupling the scheme, saving cost, and
error estimates. Under weak temporal-spatial circumstances, we derive the optimal error
estimates in L∞(L2) norm for density and polarization of both schemes. We simulate
patterns of spots, stripes, rings and inverted spots, which indicates that our numerical
method can account for both chemorepulsion and chemoattraction-related instabilities.

The rest of the paper is organized as follows. In Section 2, we provide a few pre-
liminary setups, including assumptions, basic notations, definitions of norms and pro-
jections. In Section 3, we present two linear, decoupled time integrations. The error
estimates for the time integrations are given in Section 4. The accuracy and capability of
the method will be demonstrated by ample numerical simulations in Section 5. We end
up with concluding remarks in Section 6.

2 Preliminaries

We demonstrate some preliminary settings to be used throughout the paper.

2.1 Hypotheses

The initial conditions of the system (1.1a)-(1.1c) are given as

ρ(x,y,0)=ρ0(x,y), p(x,y,0)=p0(x,y), c(x,y,0)= c0(x,y), (x,y)∈Ω. (2.1)

Throughout this paper, we focus on periodic boundary conditions for simplicity. How-
ever, there is not essential difficulty to extend the schemes to problems with homoge-
neous Neumann boundary.
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Morever, we give the following hypotheses (H) for the problem.

1. 0<ρ∗≤ρ(x,y,t)≤ρ∗,0< c∗≤ c(x,y,t)≤ c∗.

2. g, κ, Γ, Γ2, Dc, Dp are all given positive constants.

3. ρ, c and p are uniformly bounded in R2×[0,T].

2.2 Basic notations

Let Ωh={Kij} be a partiton of Ω⊂R2, where Kij= Ii× Ij=(xi−1/2,xi+1/2)×(yj−1/2,yj+1/2),
for i=1,2,.. .,Nx, j=1,2,.. .,Ny. For simplicity, if not otherwise stated, we always use K to
denote a cell. We denote hx

i =xi+1/2−xi−1/2, hy
j =yj+1/2−yj−1/2, ∀i, j, and h=maxi,j{hx

i ,hy
j }.

We assume the partitions are quasi-uniform in this paper, i.e., h≤λmini,j{hx
i ,hy

j }, where
λ is a positive constant independent of the mesh refinement.

The finite element spaces are defined as

vh ={w∈L2(Ω)2×2 : w|K∈Qk(K)2×2, ∀K∈Ωh},
Mh ={v∈L2(Ω)2 :v|K∈Qk(K)2, ∀K∈Ωh},
χh ={q∈L2(Ω) : q|K∈Qk(K), ∀K∈Ωh},

where Qk(K) denotes the space of tensor product of polynomials of degrees at most k in
K. They are subspaces of the broken Sobolev spaces v×M×χ shown below:

v={w∈L2(Ω)2×2 : w|K∈H1(K)2×2, ∀K∈Ωh},
M={v∈L2(Ω)2 :v|K∈H1(K)2, ∀K∈Ωh},
χ={q∈L2(Ω) : q|K∈H1(K), ∀K∈Ωh}.

We let υ=(1,1)T be a fixed vector which is not parallel to any normals of the element
interfaces. We denote by Γh the set of all element interfaces and Γ0 =Γh\∂Ω the interior
ones. Moreover, we define e= ∂K1∩∂K2⊂ Γ0 as an interior edge shared by the left ele-
ment K1 and the right element K2, with υ·n1 > 0 and υ·n2 < 0, where n1 and n2 are the
outward normals of K1 and K2, respectively. For any q ∈ χh, we define q− = q|∂K1 and
q+= q|∂K2 , respectively. The jump terms are defined as [q]= q+−q− for scalar functions,
[v]=([v1],[v2])> for vector-valued functions, and [w]=([wij])2×2 for matrix-valued func-
tions. Also, we denote ∂Ω−= {e∈ ∂Ω|υ·ne < 0}, where ne is the outward normal of e,
and ∂Ω+= ∂Ω\∂Ω−. For any e∈ ∂Ω−, we denote q+|e = q|e, and similarly, q−|e = q|e for
e∈ ∂Ω+. For convenience, given e= {x 1

2
}× Jj ∈ ∂Ω− and e′= {xNx+

1
2
}× Jj ∈ ∂Ω+, by the

periodic boundary condition, we define

q−|e =q−|e′ and q+|e =q+|e′ .
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Similarly, given e= Ii×{y 1
2
}∈∂Ω− and e′= Ii×{yNy+

1
2
}∈∂Ω+, we also define

q−|e =q−|e′ and q+|e =q+|e′ .

For more definition details, one can refer to [7].
We define several norms [17]: ‖q‖Λ is the L2 norm of q on the domain Λ⊂R2. ‖·‖s,Λ is

the norm of the Sobolev space Hs(Λ) for s≥0. If Λ=Ω, the domain Ω will be omitted from
subscripts for convenience. The similar norms of vector-valued function v and matrix-
valued function w are given as

‖v‖s,Λ =

( d

∑
i=1
‖vi‖2

s,Λ

)1/2

and ‖w‖s,Λ =

( d

∑
i,j=1
‖wij‖2

s,Λ

)1/2

.

Some other norms are defined as follows

‖v‖Γh =
(

∑
e∈Γh

‖v‖2
e

)1/2
, ‖w‖Γh =

(
∑

e∈Γh

‖w‖2
e

)1/2
and ‖∇v‖=

(
∑

K∈Ωh

‖∇v‖2
K

)1/2

for v∈Mh.
We denote ΓK as the edges of K, and define

‖q‖2
ΓK
=
∫

∂K
q2ds and ‖q‖2

Γh
= ∑

K∈Ωh

‖q‖2
ΓK

.

Additionally, let ‖q‖∞,K be the standard L∞ norm of q in K, and

‖q‖∞ =max
K∈Ωh
‖q‖∞,K.

Similar definitions apply to vector-valued and matrix-valued functions, and we omit the
details to save space.

In this paper, the symbol C is employed as a generic constant independent of mesh
size and time step, which may appear various values at various cases. Furthermore, the
symbol ε denotes a small enough positive constant.

2.3 Projections

Firstly, we would like to introduce the classical inverse property [5].

Lemma 2.1. For q∈χh, there exists C>0 independent of h and q satisfying

h‖q‖∞,K+h1/2‖q‖ΓK
≤C‖q‖K .
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Throughout this paper, several special projections will be used. We first would like to
define a projection P− onto χh [5]: for each cell K,

(P−ω−ω,ϑ)K =0, ∀ϑ∈Qk−1(K),∫
Jj

(P−ω−ω)(xi+ 1
2
,y)ϑ(y)dy=0, ∀ϑ∈Pk−1(Jj),∫

Ii

(P−ω−ω)(x,yj+ 1
2
)ϑ(x)dx=0, ∀ϑ∈Pk−1(Ii),

(P−ω−ω)(xi+ 1
2
,yj+ 1

2
)=0,

where Pk(D) represents the polynomials of degree k over the interval D. Furthermore,
we also define Π+

x and Π+
y onto χh [5]: for each cell K,

(Π+
x ω−ω,ϑx)K =0, ∀ϑ∈Qk(K),∫

Jj

(Π+
x ω−ω)(xi− 1

2
,y)ϑ(y)dy=0, ∀ϑ∈Pk(Jj),

(Π+
y ω−ω,ϑy)K =0, ∀ϑ∈Qk(K),∫

Ii

(Π+
y ω−ω)(x,yj− 1

2
)ϑ(x)dx=0, ∀ϑ∈Pk(Ii),

as well as a vector-valued projection

Π+

(
s1
s2

)
=

(
Π+

x s1
Π+

y s2

)
.

Based on the above definitions, we can similarly define the projections Π+ and P−. For
the vector-valued function p=(p1,p2)>∈M, we define

P−p=(P−p1,P−p2)
>.

For the matrix-valued function w=(w1,w2)∈v, we define w1 and w2 as its two column
vectors,

Π+w=(Π+w1,Π+w2).

In addition, the following definitions are given

(ω,ϑ)= ∑
K∈Ωh

(ω,ϑ)K, (ω,ϑ)= ∑
K∈Ωh

(ω,ϑ)K, (ω : ϑ)= ∑
K∈Ωh

(ω : ϑ)K,

where

(ω,ϑ)K =
∫

K
ωϑdxdy, (ω,ϑ)K =

∫
K
ω·ϑdxdy, (ω : ϑ)K =

∫
K

ω : ϑdxdy.
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Moreover, we define

ω : r=
d

∑
i,j=1

ωijrij, v·ω ·n=
d

∑
i,j=1

viωijnj.

The error of the projections is given by the following lemma [5].

Lemma 2.2. For arbitrary projection Ph, which is either P−, Π+
x or Π+

y , and q∈Hk+1(Ω), we
have

‖q−Phq‖+h1/2‖q−Phq‖Γh
≤Chk+1.

Next, we give the following lemma which has been demonstrated in [12].

Lemma 2.3. Let q∈Ck+1(Ω) and Πq∈χh. We assume that ‖q−Πq‖≤Chκ̃ for some constant
C>0 independent of h and κ̃≤ k+1, then there holds

h‖q−Πq‖∞+h1/2‖q−Πq‖Γh
≤Chκ̃.

Additionally, we give the following superconvergence property [6].

Lemma 2.4. We assume q∈Hk+2(Ω), then for arbitrary cell K and v∈Mh, we have∣∣(q−P−q,∇·v
)

K−
〈
q−P−q,v·nK

〉
∂K

∣∣≤Chk+1‖q‖k+2‖v‖K ,

where the projection P− is defined on the Cartesian meshes, nK is the outward normal, and C>0
is a constant independent of K and h.

3 IMEX-LDG schemes

Two fully-discrete LDG schemes are given in this section. We first construct the semi-
discrete scheme.

3.1 Semi-discrete LDG Scheme

By introducing auxiliary variables q, u, w, we rewrite (1.1a)-(1.1c) into

∂ρ

∂t
=−∇·q+gρ(1−ρ), (3.1a)

q=ρp−∇ρ, (3.1b)
∂c
∂t

=∇·u+ρ−c, (3.1c)

1
Dc

u=∇c+
κ

Dc
ρp, (3.1d)

∂p
∂t

=−Γp+∇·w+S∇c−Γ2|p|2p, (3.1e)

w=Dp∇p. (3.1f)
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The LDG scheme of (3.1a)-(3.1f) is to find ρh,ch∈χh, qh,ph,uh∈Mh, wh∈vh, such that for
arbitrary v,ζ,α,β,θ,r∈χh×χh×Mh×Mh×Mh×vh, we have

(∂ρh

∂t
,v
)

K
=HK(qh,v)+(gρh(1−ρh),v)K, (3.2a)

(qh,α)K =(ρhph,α)K+DK(ρh,α), (3.2b)(∂ch

∂t
,ζ
)

K
=−HK(uh,ζ)+(ρh,ζ)K−(ch,ζ)K, (3.2c)( 1

Dc
uh,θ

)
K
=−DK(ch,θ)+

κ

Dc
(ρhph,θ)K, (3.2d)(∂ph

∂t
,β
)

K
=−LK(wh,β)+(−Γph−Γ2|ph|2ph,β)K−SDK(ch,β), (3.2e)( 1

Dp
wh : r

)
K
=−KK(ph,r), (3.2f)

where

HK(qh,v)=(qh,∇v)K−〈q̂h ·nK,v〉∂K, DK(ρh,α)=(ρh,∇·α)K−〈ρ̂h,α·nK〉∂K,
LK(wh,β)=(wh :∇β)K−〈ŵh ·nK,β〉∂K, KK(ph,r)=(ph,∇·r)K−〈p̂h,r ·nK〉∂K.

Moreover, we define

Ξ(·,·)= ∑
K∈Ωh

ΞK(·,·) with Ξ=H,D,L,K.

Alternating numerical fluxes are chosen as

q̂h =q+
h , ρ̂h =ρ−h , ûh =u+

h , ĉh = c−h (3.2d), ŵh =w+
h , p̂h =p−h .

Specifically, in equation (3.2e), the choice of numerical flux ĉh depends on the sign of the
coefficient S, if S is positive, ĉh = c−h , if S is negative, ĉh = c+h . The following identification
may be easily verified by integration by parts.

Lemma 3.1. For arbitrary (v,q,u,w)∈χh×Mh×Mh×vh, there hold

H(q,v)+D(v,q)=0, L(w,u)+K(u,w)=0. (3.3)

3.2 Fully-discrete LDG scheme

Dividing the time interval [0,T] uniformly into M parts, with τ=T/M representing the
time step, we consider two IMEX time integrations with LDG spatial discretization.
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3.2.1 IMEX-LDG(k,1) scheme

We consider IMEX-LDG(k,1) as the first-order time integration indicated as below. For
any n≥ 0, we assume the numerical solutions ρn

h , cn
h , pn

h , qn
h , un

h , wn
h are known, then we

calculate the numerical solutions ρn+1
h , qn+1

h by(ρn+1
h −ρn

h
τ

,v
)
=H(qn+1

h ,v)+(gρn+1
h (1−ρn

h),v), (3.4a)

(qn+1
h ,α)=(ρn+1

h pn
h ,α)+D(ρn+1

h ,α), (3.4b)

for any v∈χh, α∈Mh. After that, we find the numerical solutions cn+1
h , un+1

h by( cn+1
h −cn

h
τ

,ζ
)
=−H(un+1

h ,ζ)+(ρn+1
h ,ζ)−(cn+1

h ,ζ), (3.5a)( 1
Dc

un+1
h ,θ

)
=
( κ

Dc
ρn+1

h pn
h ,θ
)
−D(cn+1

h ,θ), (3.5b)

for any ζ∈χh, θ∈Mh. Finally, we compute the numerical solutions pn+1
h , wn+1

h by(pn+1
h −pn

h
τ

,β
)
=−L(wn+1

h ,β)+(−Γpn+1
h −Γ2|pn

h |2pn+1
h ,β)−SD(cn+1

h ,β), (3.6a)( 1
Dp

wn+1
h : r

)
=−K(pn+1

h ,r), (3.6b)

for any β∈Mh, r∈vh. To start this scheme, we provide the initial conditions through
projections:

ρ0
h =P−ρ0, c0

h =P−c0, p0
h =P−p0. (3.7)

3.2.2 IMEX-LDG(k,2) scheme

We consider IMEX-LDG(k,2) as the second-order time integration indicated as below.
For any n≥1, we assume the numerical solutions at tn, tn−1 are known, then we calculate
the numerical solutions ρn+1

h , qn+1
h by(ρn+1

h −ρn
h

τ
,v
)
=H

(qn+1
h +qn

h
2

,v
)
+
(

gρ
n+ 1

2
h

(
1−

3ρn
h−ρn−1

h
2

)
,v
)

, (3.8a)(qn+1
h +qn

h
2

,α
)
=
(

ρ
n+ 1

2
h

3pn
h−pn−1

h
2

,α
)
+D

(ρn+1
h +ρn

h
2

,α
)

, (3.8b)

for any v∈χh, α∈Mh. After that, we calculate the numerical solutions cn+1
h , un+1

h by( cn+1
h −cn

h
τ

,ζ
)
=−H

(un+1
h +un

h
2

,ζ
)
+
(ρn+1

h +ρn
h

2
,ζ
)
−
( cn+1

h +cn
h

2
,ζ
)

, (3.9a)( 1
Dc

un+1
h +un

h
2

,θ
)
=
( κ

Dc
ρ

n+ 1
2

h
3pn

h−pn−1
h

2
,θ
)
−D

( cn+1
h +cn

h
2

,θ
)

, (3.9b)
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for any ζ∈χh, θ∈Mh. Finally, we find the numerical solutions pn+1
h , wn+1

h by(pn+1
h −pn

h
τ

,β
)
=−L

(wn+1
h +wn

h
2

,β
)
+
(
−Γ

pn+1
h +pn

h
2

−Γ2

∣∣∣3pn
h−pn−1

h
2

∣∣∣2pn+ 1
2

h ,β
)

−SD
( cn+1

h +cn
h

2
,β
)

, (3.10a)( 1
Dp

wn+1
h +wn

h
2

: r
)
=−K

(pn+1
h +pn

h
2

,r
)

, (3.10b)

for any β∈Mh, r∈vh, where

ρ
n+ 1

2
h =

ρn
h+ρn+1

h
2

, pn+ 1
2

h =
pn

h+pn+1
h

2
.

To avoid time level mismatch of the spatial discretization, the schemes (3.8b), (3.9b) and
(3.10b) are symmetric about tn+ 1

2 . Moreover, we can linearize the scheme using the ex-
trapolation in absolute value in (3.10a).

To start this scheme, the initial conditions at time levels t0 and t1 are needed. The
solutions at t0 are obtained from (3.7), and the solutions at t1 are taken from the IMEX-
LDG(k,1) scheme in Subsection 3.2.1.

4 Error estimate

We denote e as the error between the exact and numerical solutions throughout this pa-
per, i.e.,

eρ =ρ−ρh, eq=q−qh, ec = c−ch, eu=u−uh, ep=p−ph, ew =w−wh.

We split the errors into two terms as follows

eρ = ξρ−ηρ, ηρ =P−ρ−ρ, ξρ =P−ρ−ρh,

eq=ξq−ηq, ηq =Π+q−q, ξq =Π+q−qh,
ec = ξc−ηc, ηc =P−c−c, ξc =P−c−ch,

eu=ξu−ηu, ηu =Π+u−u, ξu =Π+u−uh,
ep=ξ p−ηp, ηp =P−p−p, ξ p =P−p−ph,
ew = ξ

w
−η

w
, η

w
=Π+w−w, ξ

w
=Π+w−wh.

Then we can easily prove that

H(ηu,σ)=H(ηq,σ)=0, L(η
w

,σ)=0, ∀σ∈Qk(K). (4.1)

Following [17], the following properties hold by Lemma 2.2 and the linear structure of
elliptic projection.
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Lemma 4.1. For any n≥0, we have∥∥∥ηn
p

∥∥∥+∥∥∥ηn
ρ

∥∥∥+‖ηn
c ‖+

∥∥∥ηn
q

∥∥∥+‖ηn
u‖+

∥∥∥ηn
w

∥∥∥≤Chk+1, (4.2a)∥∥∥ηn
p

∥∥∥
∞
+
∥∥∥ηn

ρ

∥∥∥
∞
+‖ηn

c ‖∞+
∥∥∥ηn

q

∥∥∥
∞
+‖ηn

u‖∞+
∥∥∥ηn

w

∥∥∥
∞
≤Chk, (4.2b)∥∥∥ηn+1

ρ −ηn
ρ

∥∥∥+∥∥∥ηn+1
c −ηn

c

∥∥∥+∥∥∥ηn+1
p −ηn

p

∥∥∥≤Chk+1τ. (4.2c)

Then there hold the following initial results by (3.7)

ξ0
ρ =P−ρ0−ρ0

h =0, ξ0
c =P−c0−c0

h =0, ξ0
p =P−p0−p0

h =0. (4.3)

Refer to [17–20] with certain minor changes, we will obtain the following important rela-
tionship, so we omit the detailed proof here.

Lemma 4.2. Assume that ξ p and ξ
w

are defined above. We have

‖∇ξ p‖≤C(‖ξ
w
‖+hk+1), h−

1
2 ‖[ξ p]‖Γh≤C(‖ξ

w
‖+hk+1).

Then we follow [21] and give a priori hypothesis that

‖em
p ‖+‖em

ρ ‖≤h1+δ, 0≤m≤n, (4.4)

where h is small enough and δ is any given positive constant, which further implies

‖pm
h ‖∞+‖ρm

h ‖∞≤C, 0≤m≤n, (4.5)

by hypothesis 3 and Lemma 2.3. The above a priori assumption will be proved in Section
4.2.

Next, we state the error estimate of the IMEX-LDG(k,1) scheme.

4.1 The proof of the IMEX-LDG(k,1) scheme

Theorem 4.1. Suppose the exact solutions of the problem (3.1a)-(3.1f) satisfy ρ∈L∞(0,T;Hk+3),
q∈ L∞(0,T;(Hk+2)2), c∈ L∞(0,T;Hk+3), u∈ L∞(0,T;(Hk+2)2), w∈ L∞(0,T;(Hk+2)2×2) and
p∈ L∞(0,T;(Hk+3)2). The exact solutions are second-order differentiable. The numerical solu-
tions of IMEX-LDG(k,1) are ρh,qh,ch,uh,ph,wh, which satisfy the initial condition (3.7). If the
finite element space is the piecewise tensor product polynomials of degree up to k, suppose Cτ≤ 1

2

and the temporal-spatial condition τ≤ h1+ 3δ
2 , where δ≤ 2

3 k, (k≥ 1) is given constant, then the
error estimate of IMEX-LDG(k,1) scheme is obtained

‖en
ρ‖2+‖en

c ‖2+‖en
p‖2+τ

n

∑
m=1
‖em

q ‖2+τ
n

∑
m=1
‖em

u ‖2+τ
n

∑
m=1
‖em

w‖2

≤C(h2k+2+τ2), ∀n≥1.
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The first-order time marching scheme is considered in this section. For any n≥0, we
have the following equations about the exact solutions

(ρn+1−ρn

τ
,v
)
=H(qn+1,v)+(gρn+1(1−ρn),v)+(ςn

1,v), (4.6a)

(qn+1,α)=(ρn+1pn,α)+D(ρn+1,α)+(ςn
2,α), (4.6b)( cn+1−cn

τ
,ζ
)
=−H(un+1,ζ)+(ρn+1,ζ)−(cn+1,ζ)+(ςn

3,ζ), (4.6c)( 1
Dc

un+1,θ
)
=
( κ

Dc
ρn+1pn,θ

)
−D(cn+1,θ)+(ςn

4,θ), (4.6d)(pn+1−pn

τ
,β
)
=−L(wn+1,β)−(Γpn+1,β)−(Γ2|pn|2pn+1,β)

−SD(cn+1,β)+(ςn
5,β), (4.6e)( 1

Dp
wn+1 : r

)
=−K(pn+1,r). (4.6f)

Here local trunction errors ςn
i , (i=1,.. .,5) satisfy

‖ςn
i ‖≤Cτ, i=1,.. .,5, ∀n≥0. (4.7)

Subtracting (4.6a)-(4.6f) from (3.4a)-(3.6b), the following error equations are given

( en+1
ρ −en

ρ

τ
,v
)
=H(en+1

q ,v)+(gρn+1(1−ρn)−gρn+1
h (1−ρn

h),v)+(ςn
1,v), (4.8a)(

en+1
q ,α

)
=(ρn+1pn,α)−(ρn+1

h pn
h ,α)+D(en+1

ρ ,α)+(ςn
2,α), (4.8b)( en+1

c −en
c

τ
,ζ
)
=−H(en+1

u ,ζ)+(en+1
ρ ,ζ)−(en+1

c ,ζ)+(ςn
3,ζ), (4.8c)( 1

Dc
en+1

u ,θ
)
=

κ

Dc
(ρn+1pn−ρn+1

h pn
h ,θ)−D(en+1

c ,θ)+(ςn
4,θ), (4.8d)(en+1

p −en
p

τ
,β
)
=−L(en+1

w ,β)−(Γen+1
p ,β)−(Γ2|pn|2pn+1,β)+(Γ2|pn

h |2pn+1
h ,β)

−SD(en+1
c ,β)+(ςn

5,β), (4.8e)( 1
Dp

en+1
w : r

)
=−K(en+1

p ,r). (4.8f)

Proof. By using the Schwarz inequality, Lemma 2.4, Lemma 3.1, Lemma 4.1, (4.5), (4.3),
(4.1), Lemma 4.2 and hypotheses, we take v= ξn+1

ρ in (4.8a), α= ξn+1
q in (4.8b), ζ = ξn+1

c

in (4.8c), θ= ξn+1
u in (4.8d), β= ξn+1

p in (4.8e) and r = ξn+1
w

in (4.8f), and sum up these
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equations to get

‖ξn
ρ‖2+‖ξn

c ‖2+‖ξn
p‖2+τ

n

∑
m=1
‖ξm

q ‖2+τ
n

∑
m=1
‖ξm

u ‖2+τ
n

∑
m=1
‖ξm

w
‖2

≤C(h2k+2+τ2), ∀n≥1, (4.9)

where we use the discrete Gronwall’s inequality, which further derive the above theorem.
For more details, it is easy to be deduced, we omit it here. Next we mainly focus on the
proof of the IMEX-LDG(k,2) scheme.

4.2 The proof of the IMEX-LDG(k,2) scheme

Theorem 4.2. Suppose the exact solutions of the problem (3.1a)-(3.1f) satisfy ρ∈L∞(0,T;Hk+3),
q∈ L∞(0,T;(Hk+2)2), c∈ L∞(0,T;Hk+3), u∈ L∞(0,T;(Hk+2)2), w∈ L∞(0,T;(Hk+2)2×2) and
p∈L∞(0,T;(Hk+3)2). The exact solutions are third-order differentiable. The numerical solutions
of IMEX-LDG(k,2) are ρh, ch, ph, qh, uh, wh which satisfy the initial condition (3.7). If the finite
element space is the piecewise tensor product polynomials of degree up to k, suppose Cτ≤ 1

4 and
the temporal-spatial condition τ≤ h

1
2+

3δ
4 , where δ≤ 2

3 k (k≥1) is given constant. Then the error
estimate of IMEX-LDG(k,2) scheme is obtained

‖en
ρ‖2+‖en

c ‖2+‖en
p‖2+τ

n

∑
m=2
‖

em
q +em−1

q

2
‖2+τ

n

∑
m=2
‖em

u +em−1
u

2
‖2

+τ
n

∑
m=2
‖

em
w+em−1

w

2
‖2≤C(h2k+2+τ4), ∀n≥2.

For any n≥1, we have the following equations about the exact solutions(ρn+1−ρn

τ
,v
)
=H

(qn+1+qn

2
,v
)
+
(

gρn+ 1
2

(
1− 3ρn−ρn−1

2

)
,v
)
+(ς

n+ 1
2

1 ,v
)

, (4.10a)(qn+1+qn

2
,α
)
=
(

ρn+ 1
2

3pn−pn−1

2
,α
)
+D

(ρn+1+ρn

2
,α
)
+(ς

n+ 1
2

2 ,α), (4.10b)( cn+1−cn

τ
,ζ
)
=−H

(un+1+un

2
,ζ
)
+
(ρn+1+ρn

2
,ζ
)
−
( cn+1+cn

2
,ζ
)
+(ς

n+ 1
2

3 ,ζ), (4.10c)( 1
Dc

un+1+un

2
,θ)=

( κ

Dc
ρn+ 1

2
3pn−pn−1

2
,θ
)
−D

( cn+1+cn

2
,θ
)
+(ς

n+ 1
2

4 ,θ), (4.10d)(pn+1−pn

τ
,β
)
=−L

(wn+1+wn

2
,β
)
+
(
−Γpn+ 1

2−Γ2

∣∣∣3pn−pn−1

2

∣∣∣2pn+ 1
2 ,β
)

−SD
( cn+1+cn

2
,β
)
+(ς

n+ 1
2

5 ,β), (4.10e)( 1
Dp

wn+1+wn

2
: r
)
=−K(pn+ 1

2 ,r). (4.10f)
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Here ς
n+ 1

2
i , (i=1,.. .,5) satisfy ∥∥∥∥ς

n+ 1
2

i

∥∥∥∥≤Cτ2, n≥1. (4.11)

Subtracting (4.10a)-(4.10f) from (3.8a)-(3.10b), the following error equations are given

( en+1
ρ −en

ρ

τ
,v
)
=H

(en+1
q +en

q

2
,v
)
+
(

gρn+ 1
2

(
1− 3ρn−ρn−1

2

)
,v
)

−
(

gρ
n+ 1

2
h

(
1−

3ρn
h−ρn−1

h
2

)
,v
)
+(ς

n+ 1
2

1 ,v), (4.12a)(en+1
q +en

q

2
,α
)
=
(

ρn+ 1
2

3pn−pn−1

2
,α
)
−
(

ρ
n+ 1

2
h

3pn
h−pn−1

h
2

,α
)

+D
( en+1

ρ +en
ρ

2
,α
)
+(ς

n+ 1
2

2 ,α), (4.12b)( en+1
c −en

c
τ

,ζ
)
=−H

(en+1
u +en

u
2

,ζ
)
+
( en+1

ρ +en
ρ

2
,ζ
)
−
( en+1

c +en
c

2
,ζ
)
+(ς

n+ 1
2

3 ,ζ), (4.12c)( 1
Dc

en+1
u +en

u
2

,θ
)
=
( κ

Dc
ρn+ 1

2
3pn−pn−1

2
,θ
)
−
( κ

Dc
ρ

n+ 1
2

h
3pn

h−pn−1
h

2
,θ
)

−D
( en+1

c +en
c

2
,θ
)
+(ς

n+ 1
2

4 ,θ), (4.12d)(en+1
p −en

p

τ
,β
)
=−L

( en+1
w +en

w

2
,β
)
−
(

Γ
en+1

p +en
p

2
,β
)
−Γ2

(∣∣∣3pn−pn−1

2

∣∣∣2pn+ 1
2

−
∣∣∣3pn

h−pn−1
h

2

∣∣∣2pn+ 1
2

h ,β
)
−SD

( en+1
c +en

c
2

,β
)
+(ς

n+ 1
2

5 ,β), (4.12e)( 1
Dp

en+1
w +en

w

2
: r
)
=−K(en+ 1

2
p ,r). (4.12f)

Step 1. We take v=
ξn+1

ρ +ξn
ρ

2 in (4.12a) and α=
ξn+1

q +ξn
q

2 in (4.12b), and sum up these two
equations by the aid of Lemma 3.1 as well as (4.1) to get

( ξn+1
ρ −ξn

ρ

τ
,
ξn+1

ρ +ξn
ρ

2

)
+
(ξn+1

q +ξn
q

2
,
ξn+1

q +ξn
q

2

)
=

5

∑
i=1

Ri, (4.13)

where

R1=
(ηn+1

ρ −ηn
ρ

τ
,
ξn+1

ρ +ξn
ρ

2

)
+
(ηn+1

q +ηn
q

2
,
ξn+1

q +ξn
q

2

)
,



222 H. Wang, H. Guo, J. Zhang and L. Tian / Adv. Appl. Math. Mech., 16 (2024), pp. 208-236

R2=
(

ρn+ 1
2

3pn−pn−1

2
−ρ

n+ 1
2

h
3pn

h−pn−1
h

2
,
ξn+1

q +ξn
q

2

)
=
(

ρn+ 1
2

3en
p−en−1

p

2
,
ξn+1

q +ξn
q

2

)
+
(
(ρn+ 1

2−ρ
n+ 1

2
h )

3pn
h−pn−1

h
2

,
ξn+1

q +ξn
q

2

)
,

R3= g
(

ρn+ 1
2

(
1− 3ρn−ρn−1

2

)
,
ξn+1

ρ +ξn
ρ

2

)
−g
(

ρ
n+ 1

2
h

(
1−

3ρn
h−ρn−1

h
2

)
,
ξn+1

ρ +ξn
ρ

2

)
= g
( en+1

ρ +en
ρ

2
,
ξn+1

ρ +ξn
ρ

2

)
−g
(

ρn+ 1
2

3en
ρ−en−1

ρ

2
,
ξn+1

ρ +ξn
ρ

2

)
−g
( en+1

ρ +en
ρ

2
3ρn

h−ρn−1
h

2
,
ξn+1

ρ +ξn
ρ

2

)
,

R4=−D
(ηn+1

ρ +ηn
ρ

2
,
ξn+1

q +ξn
q

2

)
,

R5=
(

ς
n+ 1

2
1 ,

ξn+1
ρ +ξn

ρ

2

)
+
(

ς
n+ 1

2
2 ,

ξn+1
q +ξn

q

2

)
.

R1 can be derived by the Schwarz inequality and Lemma 4.1,

R1≤Chk+1
(
‖ξn

ρ‖+‖ξn+1
ρ ‖+

∥∥∥ξn+1
q +ξn

q

2

∥∥∥).

Using hypothesis 3, Lemma 4.1 and (4.5), we obtain

R2≤C(hk+1+‖ξn+1
ρ ‖+‖ξn

ρ‖+‖ξn
p‖+‖ξn−1

p ‖)
∥∥∥ξn+1

q +ξn
q

2

∥∥∥,

where C depends on ‖pn
h‖∞, ‖pn−1

h ‖∞. Similarly, using hypothesis 3, Lemma 4.1 and (4.5),
we obtain

R3≤C(hk+1+‖ξn+1
ρ ‖+‖ξn

ρ‖+‖ξn−1
ρ ‖)(‖ξn+1

ρ ‖+‖ξn
ρ‖),

where C depends on ‖ρn
h‖∞, ‖ρn−1

h ‖∞. By Lemma 2.4, we have

R4≤Chk+1‖ρn+1‖k+2

∥∥∥ξn+1
q +ξn

q

2

∥∥∥+Chk+1‖ρn‖k+2

∥∥∥ξn+1
q +ξn

q

2

∥∥∥.

Finally, for R5, we apply the Schwarz inequality to get

R5≤Cτ2
(
‖ξn+1

ρ ‖+‖ξn
ρ‖+

∥∥∥ξn+1
q +ξn

q

2

∥∥∥).

Substituting the above equations into (4.13) and with the help of Young’s inequality, we
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have

1
2
‖ξn+1

ρ ‖2− 1
2
‖ξn

ρ‖2+τ
∥∥∥ξn+1

q +ξn
q

2

∥∥∥2

≤Cτ(hk+1+τ2+‖ξn+1
ρ ‖+‖ξn

ρ‖+‖ξn−1
ρ ‖)(‖ξn+1

ρ ‖+‖ξn
ρ‖)

+Cτ(hk+1+τ2+‖ξn+1
ρ ‖+‖ξn

ρ‖+‖ξn
p‖+‖ξn−1

p ‖)
∥∥∥ξn+1

q +ξn
q

2

∥∥∥
≤Cτ(‖ξn+1

ρ ‖2+‖ξn
ρ‖2+‖ξn−1

ρ ‖2+‖ξn
p‖2+‖ξn−1

p ‖2)

+ετ
∥∥∥ξn+1

q +ξn
q

2

∥∥∥2
+Cτ(h2k+2+τ4). (4.14)

Step 2. We choose ζ = ξn+1
c +ξn

c
2 in (4.12c) and θ= ξn+1

u +ξn
u

2 in (4.12d), then sum up them by
the aid of Lemma 3.1 as well as (4.1) to get( ξn+1

c −ξn
c

τ
,
ξn+1

c +ξn
c

2

)
+
( 1
Dc

ξn+1
u +ξn

u
2

,
ξn+1

u +ξn
u

2

)
+
( ξn+1

c +ξn
c

2
,
ξn+1

c +ξn
c

2

)
=

5

∑
i=1

R̃i, (4.15)

where

R̃1=
(ηn+1

c −ηn
c

τ
,
ξn+1

c +ξn
c

2

)
+
( 1
Dc

ηn+1
u +ηn

u
2

,
ξn+1

u +ξn
u

2

)
,

R̃2=
( en+1

ρ +en
ρ

2
,
ξn+1

c +ξn
c

2

)
+
(ηn+1

c +ηn
c

2
,
ξn+1

c +ξn
c

2

)
,

R̃3=
κ

Dc

(
ρn+ 1

2
3pn−pn−1

2
−ρ

n+ 1
2

h
3pn

h−pn−1
h

2
,
ξn+1

u +ξn
u

2

)
=

κ

Dc

(
ρn+ 1

2
3en

p−en−1
p

2
,
ξn+1

u +ξn
u

2

)
+

κ

Dc

((
ρn+ 1

2−ρ
n+ 1

2
h

)3pn
h−pn−1

h
2

,
ξn+1

u +ξn
u

2

)
,

R̃4=D
(ηn+1

c +ηn
c

2
,
ξn+1

u +ξn
u

2

)
,

R̃5=
(

ς
n+ 1

2
3 ,

ξn+1
c +ξn

c
2

)
+
(

ς
n+ 1

2
4 ,

ξn+1
u +ξn

u
2

)
.

By the Schwarz inequality and Lemma 4.1, we have

R̃1≤Chk+1
(
‖ξn

c ‖+‖ξn+1
c ‖+

∥∥∥ξn+1
u +ξn

u
2

∥∥∥).

Following from Lemma 4.1, we can get

R̃2≤C(hk+1+‖ξn+1
ρ ‖+‖ξn

ρ‖)(‖ξn+1
c ‖+‖ξn

c ‖).
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Using hypothesis 2, hypothesis 3, Lemma 4.1 and (4.5), we obtain

R̃3≤C(hk+1+‖ξn+1
ρ ‖+‖ξn

ρ‖+‖ξn
p‖+‖ξn−1

p ‖)
∥∥∥ξn+1

u +ξn
u

2

∥∥∥,

where C depends on ‖pn
h‖∞, ‖pn−1

h ‖∞. By Lemma 2.4, we have

R̃4≤Chk+1‖cn+1‖k+2

∥∥∥ξn+1
u +ξn

u
2

∥∥∥+Chk+1‖cn‖k+2

∥∥∥ξn+1
u +ξn

u
2

∥∥∥.

Finally, for R̃5, we apply the Schwarz inequality to get

R̃5≤Cτ2
(
‖ξn+1

c ‖+‖ξn
c ‖+

∥∥∥ξn+1
u +ξn

u
2

∥∥∥).

Substituting the above equations into (4.15) and with the help of Young’s inequality, we
have

1
2
‖ξn+1

c ‖2− 1
2
‖ξn

c ‖2+τ
∥∥∥ 1√
Dc

ξn+1
u +ξn

u
2

∥∥∥2

≤Cτ(hk+1+τ2+‖ξn+1
ρ ‖+‖ξn

ρ‖)(‖ξn+1
c ‖+‖ξn

c ‖)

+Cτ(hk+1+τ2+‖ξn+1
ρ ‖+‖ξn

ρ‖+‖ξn
p‖+‖ξn−1

p ‖)
∥∥∥ξn+1

u +ξn
u

2

∥∥∥
≤Cτ(‖ξn+1

ρ ‖2+‖ξn
ρ‖2+‖ξn+1

c ‖2+‖ξn
c ‖2+‖ξn

p‖2+‖ξn−1
p ‖2)

+ετ
∥∥∥ 1√
Dc

ξn+1
u +ξn

u
2

∥∥∥2
+Cτ(h2k+2+τ4). (4.16)

Step 3. Choosing β=
ξn+1

p +ξn
p

2 in (4.12e) and r=
ξn+1

w +ξn
w

2 in (4.12f), and then summing these
two equations by the aid of Lemma 3.1 as well as (4.1), we get

(ξn+1
p −ξn

p

τ
,
ξn+1

p +ξn
p

2

)
+

1
Dp

( ξn+1
w

+ξn
w

2
:
ξn+1

w
+ξn

w

2

)
+Γ
(ξn+1

p +ξn
p

2
,
ξn+1

p +ξn
p

2

)
+Γ2

(∣∣∣3pn
h−pn−1

h
2

∣∣∣2 ξn+1
p +ξn

p

2
,
ξn+1

p +ξn
p

2

)
=

6

∑
i=1

Ti, (4.17)

where

T1=
(ηn+1

p −ηn
p

τ
,
ξn+1

p +ξn
p

2

)
+

1
Dp

(ηn+1
w

+ηn
w

2
:
ξn+1

w
+ξn

w

2

)
,

T2=Γ
(ηn+1

p +ηn
p

2
,
ξn+1

p +ξn
p

2

)
,
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T3=−Γ2

((∣∣∣3pn−pn−1

2
|+
∣∣∣3pn

h−pn−1
h

2

∣∣∣)(∣∣∣3pn−pn−1

2

∣∣∣−∣∣∣3pn
h−pn−1

h
2

∣∣∣)pn+1+pn

2
,

ξn+1
p +ξn

p

2
)+Γ2

(∣∣∣3pn
h−pn−1

h
2

∣∣∣2 ηn+1
p +ηn

p

2
,
ξn+1

p +ξn
p

2

)
,

T4=−SD
( en+1

c +en
c

2
,
ξn+1

p +ξn
p

2

)
,

T5=K
(ηn+1

p +ηn
p

2
,
ξn+1

w
+ξn

w

2

)
,

T6=
(

ς
n+ 1

2
5 ,

ξn+1
p +ξn

p

2

)
.

We can obtain the estimate of T1 by Lemma 4.1 and the Schwarz inequality,

T1≤Chk+1
(
‖ξn+1

p ‖+‖ξn
p‖+

∥∥∥ ξn+1
w

+ξn
w

2

∥∥∥).

We can estimate T2 by Lemma 4.1,

T2≤Chk+1(‖ξn+1
p ‖+‖ξn

p‖).

Following from hypothesis 2, hypothesis 3, Lemma 4.1 and (4.5), then we can obtain

T3≤C(hk+1+‖ξn
p‖+‖ξn−1

p ‖)(‖ξn+1
p ‖+‖ξn

p‖).

Here,we use ∥∥∥∣∣∣3pn−pn−1

2

∣∣∣−∣∣∣3pn
h−pn−1

h
2

∣∣∣∥∥∥≤∥∥∥∣∣∣3pn−pn−1

2
−

3pn
h−pn−1

h
2

∣∣∣∥∥∥
=
∥∥∥3pn−pn−1

2
−

3pn
h−pn−1

h
2

∥∥∥
and C depends on ‖pn

h‖∞, ‖pn−1
h ‖∞. Refer to Lemma 4.2 and Lemma 2.1, we have

T4≤C(hk+1+‖ξn+1
c ‖+‖ξn

c ‖)
(

hk+1+
∥∥∥ ξn+1

w
+ξn

w

2

∥∥∥).

Using the Lemma 2.4, we get

T5≤Chk+1‖pn+1‖k+2

∥∥∥ ξn+1
w

+ξn
w

2

∥∥∥+Chk+1‖pn‖k+2

∥∥∥ ξn+1
w

+ξn
w

2

∥∥∥.

The estimate of T6 folllows from the Schwarz inequality that

T6≤Cτ2(‖ξn+1
p ‖+‖ξn

p‖).
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Substituting the above equations into (4.17) and with the help of Young’s inequality, we
have

1
2
‖ξn+1

p ‖2− 1
2
‖ξn

p‖2+τ
∥∥∥ 1√
Dp

ξn+1
w

+ξn
w

2

∥∥∥2

≤Cτ(hk+1+τ2+‖ξn
p‖+‖ξn−1

p )(‖ξn+1
p ‖+‖ξn

p‖)

+Cτ(hk+1+‖ξn+1
c ‖+‖ξn

c ‖)
∥∥∥ ξn+1

w
+ξn

w

2

∥∥∥
≤Cτ(‖ξn+1

c ‖2+‖ξn
c ‖2+‖ξn+1

p ‖2+‖ξn
p‖2+‖ξn−1

p ‖2)

+ετ
∥∥∥ 1√
Dp

ξn+1
w

+ξn
w

2

∥∥∥2
+Cτ(h2k+2+τ4). (4.18)

Taking ε= 1
8 and combining (4.14), (4.16), (4.18), then summing them over n, we obtain

1
2
‖ξn+1

ρ ‖2+
1
2
‖ξn+1

c ‖2+
1
2
‖ξn+1

p ‖2+
7τ

8

n

∑
m=1

∥∥∥ξm+1
q +ξm

q

2

∥∥∥2

+
7τ

8

n

∑
m=1

∥∥∥ 1√
Dc

ξm+1
u +ξm

u
2

∥∥∥2
+

7τ

8

n

∑
m=1

∥∥∥ 1√
Dp

ξm+1
w

+ξm
w

2

∥∥∥2

≤Cτ
n

∑
m=1

(‖ξm+1
ρ ‖2+‖ξm

ρ ‖2+‖ξm−1
ρ ‖2+‖ξm

c ‖2+‖ξm+1
c ‖2+‖ξm+1

p ‖2

+‖ξm
p ‖2+‖ξm−1

p ‖2)+C(h2k+2+τ4)+Q1, (4.19)

where

Q1=
1
2
‖ξ1

ρ‖2+
1
2
‖ξ1

c‖2+
1
2
‖ξ1

p‖2. (4.20)

When proving the theorem 4.1, we assume n=0 to obtain

1
2
‖ξ1

ρ‖2+
1
2
‖ξ1

c‖2+
1
2
‖ξ1

p‖2+τ‖ξ1
q‖2+τ

∥∥∥ 1√
Dc

ξ1
u

∥∥∥2
+τ
∥∥∥ 1√
Dp

ξ1
w

∥∥∥2

≤Cτ(hk+1+τ+‖ξ1
ρ‖)‖ξ1

ρ‖+Cτ(hk+1+τ+‖ξ1
ρ‖)‖ξ1

q‖+Cτ(hk+1+τ+‖ξ1
ρ‖)‖ξ1

c‖
+Cτ(hk+1+τ+‖ξ1

ρ‖)‖ξ1
u‖+Cτ(hk+1+τ)‖ξ1

p‖+Cτ(hk+1+‖ξ1
c‖)‖ξ1

w
‖

≤ε(‖ξ1
ρ‖2+‖ξ1

c‖2+‖ξ1
p‖2)+ετ‖ξ1

q‖2+ετ
∥∥∥ 1√
Dc

ξ1
u

∥∥∥2
+ετ

∥∥∥ 1√
Dp

ξ1
w

∥∥∥2
+Cτh2k+2+Cτ4,

where τ and ε is small enough. Then we get

‖ξ1
ρ‖2+‖ξ1

c‖2+‖ξ1
p‖2+τ‖ξ1

q‖2+τ‖ξ1
u‖2+τ‖ξ1

w
‖2≤C(h2k+2+τ4).
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Therefore,

Q1≤C(h2k+2+τ4).

Applying the discrete Gronwall’s inequality to (4.19) and under the condition Cτ≤ 1
4 , we

can obtain

‖ξn
ρ‖2+‖ξn

c ‖2+‖ξn
p‖2+τ

n

∑
m=2

∥∥∥ξm
q +ξm−1

q

2

∥∥∥2
+τ

n

∑
m=2

∥∥∥ξm
u +ξm−1

u
2

∥∥∥2

+τ
n

∑
m=2

∥∥∥∥ ξm
w
+ξm−1

w

2

∥∥∥∥2

≤C(h2k+2+τ4), (4.21)

which further yields the following error equation

‖en
ρ‖2+‖en

c ‖2+‖en
p‖2+τ

n

∑
m=2

∥∥∥em
q +em−1

q

2

∥∥∥2
+τ

n

∑
m=2

∥∥∥em
u +em−1

u
2

∥∥∥2

+τ
n

∑
m=2

∥∥∥ em
w+em−1

w

2

∥∥∥2
≤C(h2k+2+τ4). (4.22)

In the theoretical analysis, the proof of the a priori assumption is necessary. Since ‖ξ0
p‖=0

and ‖ξ0
ρ‖=0, by k≥1 and a use of Lemma 4.1, we have

‖e0
p‖+‖e0

ρ‖=‖η0
p‖+‖η0

ρ‖≤Chk+1≤h1+δ,

if h is sufficiently small. Assuming that (4.4) holds for arbitrary given n, it follows that
theorem 4.2 holds for the bounding constant that is independent of n and h.

‖en+1
p ‖+‖en+1

ρ ‖≤C(hk+1+τ2)≤h1+δ. (4.23)

Therefore, the a priori assumption is plausible.

5 Numerical experiments

In this section, several numerical examples are provided to illustrate the accuracy and
capability of the IMEX-LDG schemes (3.4a)-(3.6b) and (3.8a)-(3.10b) for the growth-
mediated autochemotactic pattern formation model. The interplay of growth rate and
chemotactic drift of the cells with respect to the self-secreted signaling chemicals is stud-
ied in the examples. Example 5.2 was performed in [10] by a first-order semi-implicit
time discretization, and when g = 0 in the density equation (1.1a), a mass-preserving
characteristic finite element method was considered therein. A finite difference method
and a first-order accurate Euler time method are used to simulate Examples 5.3, 5.4, 5.6
in [11, 13]. In this paper, we use fully-discrete IMEX-LDG(1,2) numerical method in the
simulations, which is a second-order accurate numerical method. The IMEX time inte-
gration method constructed in this paper is decoupled and linear, which saves a lot of
computational costs in long time simulations.
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5.1 Accuracy verification

Example 5.1 (Accuracy verification of the IMEX-LDG discretizations.). We first study the
accuracy of the fully-discrete IMEX-LDG method for the growth-mediated autochemo-
tactic pattern formation model (1.1a)-(1.1c). The parameters are chosen as κ= 1, S= 0.1,
Γ=1, Γ2=10, g=1.0. The results are presented for Dp=2, Dc=1 and Dp=0.02, Dc=0.01,
respectively. We choose the exact smooth solution as

ρ(x,y,t)= e−t sin(x)sin(y), c(x,y,t)= e−t cos(x)cos(y), (5.1a)

p(x,y,t)= e−t[sin(x)cos(y), cos(x)sin(y)], (x,y)∈ [0,2π]2, (5.1b)

to satisfy Eqs. (1.1a)-(1.1c) with source terms. The initial conditions are computed from
(5.1). We impose periodic boundary conditions in this example.

The computational domain is partitioned by a uniform rectangular mesh of Nx×Ny

cells. In this example, we take Nx =Ny,N for simplicity. Fully-discrete IMEX-LDG(1,1)
and IMEX-LDG(1,2) time-marching schemes are applied in this example. The time step is
chosen as ∆t=0.1h, with h the mesh size. Table 1 shows the numerical results for the ac-
curacy test withDc=1,Dp=2 and Table 2 shows those of the convection-dominated case
with Dc =0.01, Dp =0.02. The optimal order of accuracy is observed for IMEX-LDG(1,1)
and IMEX-LDG(1,2) of the growth-mediated autochemotactic pattern formation model,
respectively.

Table 1: Accuracy verification of the growth-mediated autochemotactic pattern formation model (1.1a)-(1.1c)
in L2 norm at terminal time T=0.2. The parameters are chosen as κ=1, S=0.1, Γ=1, Γ2 =10, g=1.0.

N ||ρ−ρh||2 order ||c−ch||2 order ||p−ph||2 order

IMEX-LDG(1,1)

8 5.73E-01 – 1.20E-00 – 5.47E-01 –
16 1.58E-01 1.85 3.17E-01 1.92 1.82E-01 1.58
32 5.07E-02 1.64 8.79E-02 1.85 6.94E-02 1.39
64 2.04E-02 1.31 2.88E-02 1.60 3.18E-02 1.12

IMEX-LDG(1,2)

8 5.68E-01 – 1.20E-00 – 5.99E-01 –
16 1.42E-01 2.00 3.06E-01 1.96 1.39E-01 2.10
32 3.55E-02 2.00 7.71E-02 1.99 3.53E-02 1.98
64 8.87E-03 2.00 1.93E-02 1.99 8.96E-03 1.98

The rest several examples are provided to simulate the growth-mediated autochemo-
tactic pattern formation in the chemoattraction case and chemorepulsion case. In Exam-
ple 5.5, the parameters of Eqs. (1.1a)-(1.1c) are taken as

Dc =0.02, Γ=1.0, Dp =0.01. (5.2)

In the remaining examples, the parameters of Eqs. (1.1a)-(1.1c) are chosen as

Dc =1.0, Γ=1.0, Dp =1.0. (5.3)
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Table 2: Accuracy verification of the growth-mediated autochemotactic pattern formation model in L2 norm
for the convection-dominated case at terminal time T=0.2. The parameters are chosen as κ=1, S=0.1, Γ=1,
Γ2 =10, g=1.0.

N ||ρ−ρh||2 order ||c−ch||2 order ||p−ph||2 order
8 5.73E-01 – 1.15E-00 – 4.83E-01 –
16 1.58E-01 1.85 3.66E-01 1.65 1.52E-01 1.67

IMEX-LDG(1,1) 32 5.11E-02 1.64 1.15E-01 1.67 5.74E-02 1.40
64 2.06E-02 1.31 3.22E-02 1.84 2.60E-02 1.13

128 9.69E-03 1.09 1.20E-02 1.42 1.30E-02 1.00
8 5.67E-01 – 1.16E-00 – 5.56E-01 –
16 1.42E-01 2.00 3.67E-01 1.66 1.20E-01 2.21

IMEX-LDG(1,2) 32 3.55E-02 2.00 1.10E-01 1.74 3.10E-02 1.95
64 8.87E-03 2.00 2.42E-02 2.19 8.33E-03 1.90

128 2.21E-03 2.00 5.23E-03 2.21 2.17E-03 1.94

The initial conditions are chosen as

ρ(x,y,0)=1+10−4(2rand(0,1)−1), c(x,y,0)=1+10−4(2rand(0,1)−1), (5.4a)

p1(x,y,0)=10−2(2rand(0,1)−1), p2(x,y,0)=10−2(2rand(0,1)−1), (5.4b)

where rand(0,1) represents the number sampled uniformly at random from [0,1]. The
computational domain is Ω= [0,100]2. Periodic boundary conditions are applied to the
examples.

5.2 Chemoattraction case

When S>0, bacteria propel themselves toward the self-secreted chemicals and form ag-
gregates. As feedback, when the bacteria aggregate, more chemicals are produced which
thereby attract more bacteria. This process means chemoattraction.

Example 5.2 (Absence and presence of growth dynamics). The parameters in Eqs. (1.1a)-
(1.1c) are chosen as Γ2=10, S=10, κ=1. Simulations are presented for g=0 in the absence
of any growth dynamics and g=0.1 in the presence of growth dynamics, respectively.

We plot the contours of density of the bacteria in Fig. 1 for g=0 and 0.1, respectively.
Figs. 1(a) and (b) show that when g = 0, the bacterial droplets aggregate continuously
with time. The formation of stationary spot patterns of well attained steady state sizes
are observed in Figs. 1(c) and (d) when g=0.1. The mass with time evolution is displayed
in Fig. 2. Fig. 2 indicates that the total mass is conserved for g= 0, while decreases for
g=0.1. These results are similar to those in [11, 13].

Example 5.3 (Low value of Γ2). Next, we perform simulations by decreasing the value of
Γ2, for example Γ2 = 0.1. The parameters in Eqs. (1.1a)-(1.1c) are chosen as S= 10, κ= 0.
The parameter g is chosen as 0.1, 1, and 1.5.
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Figure 1: Density at different times in Example 5.2 for g=0 and g=0.1. The parameters are chosen as Γ2=10,
S=10, and κ=1.0. All other parameters are the same as in (5.3).

Fig. 3 shows that spots, stripes and inverted spots are obtained for g=0.1,1.0 and 1.5,
respectively. The results again agree with those in [11, 13].

Example 5.4 (Concentric ring patterns). In this example, we study the pattern develop-
ment in a growing colony by an initial inoculation of small bacterial droplets at the center
of the domain. The initial conditions are given by

ρ(x,y,0)= e−20(x−50)2−20(y−50)2
, c(x,y,0)=1+10−4(2rand(0,1)−1), (5.5a)

p1(x,y,0)=10−2(2rand(0,1)−1), p2(x,y,0)=10−2(2rand(0,1)−1). (5.5b)



H. Wang, H. Guo, J. Zhang and L. Tian / Adv. Appl. Math. Mech., 16 (2024), pp. 208-236 231

0 100 200 300 400 500

time

7000

8000

9000

10000

m
a
s
s

g=0.1

g=0

Figure 2: Time evolution of mass in Example 5.2. The parameters are chosen as Γ2 =10, S=10, κ=1.0. All
other parameters are the same as in (5.3).

We take the parameters in Eqs. (1.1a)-(1.1c) as Γ2 = 10, κ = 0.5, g= 0.5. The value of S is
taken as S=40. All other parameters are kept the same as in (5.3). This example is moti-
vated by the formation of concentric ring patterns observed in [1, 16] and the numerical
verifications of [13].

The initial condition (5.5) means that a droplet of bacterial emerges at the center of
the domain. Fig. 4 shows time evolution of the droplet of bacterial, and the colony de-
velops concentric rings of bacterial density. Growth makes bacteria move away from the
center of the domain, but chemoattraction holds them together. Similar to [13], we find
destabilization of inner rings into small spot like structures.

Example 5.5 (The convection-dominated case). We do simulations for Example 5.2 with
small values Dc=0.02, Dp=0.01. The rest of parameters are chosen the same as in Exam-
ple 5.2. The stationary spot pattern with steady state sizes is displayed in Fig. 5 at final
time. Fig. 6 shows that the total mass decreases for the autochemotactic pattern formation
model with g=0.1.

5.3 Chemorepulsion case

When S<0, bacteria flee away from the self-secreted signaling molecules. Such a process
means chemorepulsion.

Example 5.6 (Growth dynamics). The parameters in Eqs. (1.1a)-(1.1c) are chosen as Γ2 =
10, κ=0.5, S=−15.

We plot the contour of density of the active colloids at different times in Fig. 7 for
g = 0.1 and g = 4, respectively. Fig. 7 shows that the small perturbation of the initial
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Figure 3: Density at different times in Example 5.3 for g=0.1, 1.0 and g=1.5. The parameters are Γ2 =0.1,
S=10, κ=0. All other parameters are the same as in (5.3).
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Figure 4: Density at different times in Example 5.4 for S=40. The parameters are chosen as Γ2 =10, κ=0.5,
g=0.5. All other parameters are the same as in (5.3).
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Figure 5: Density at different times in Example 5.5. The parameters are chosen as Dc=0.02, Dp=0.01, Γ2=10,
S=10, κ=1.0, Γ=1.0 and g=0.1.

uniform density develops clustering and pattern formation and finally a special order of
the clustering and pattern shows up. The numerical mass is displayed in Fig. 8 during
the simulations, which shows that the stable state can be obtained earlier for larger value
of g. The results agree with those in [11, 13].

6 Concluding remarks

We have studied the IMEX-LDG methods for the growth-mediated autochemotactic pat-
tern formation model. Two time integrations of both first-order and second-order ac-
curacy are constructed, and error estimates of the IMEX-LDG schemes are derived. The
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Figure 6: Time evolution of mass in Example 5.5. The parameters are chosen as Dc=0.02, Dp=0.01, Γ2=10,
S=10, κ=1.0, Γ=1.0 and g=0.1.
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Figure 7: Density at different times in Example 5.6 for g= 0.1 and g= 4.0, respectively. The parameters are
Γ2 =10, κ=0.5, S=−15. All other parameters are the same as in (5.3).
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Figure 8: Time evolution of mass for different values of g in Example 5.6. The parameters are Γ2=10, κ=0.5,
S=−15. All other parameters are the same as in (5.3).

decoupled linear time integration methods constructed in this paper are computationally
efficient. The theoretical analysis and capabilities for the simulations in applications are
verified by ample numerical experiments. The numerical tests in Example 5.1 and 5.5 in-
dicate that our IMEX-LDG methods are also suitable for the autochemotactic pattern for-
mation model with low value ofDc andDp. In our future work, the positivity-preserving
technique of the density of the model will be explored.
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