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Abstract. This study addresses the parameter identification problem in a system of
time-dependent quasi-linear partial differential equations (PDEs). Using the integral
equation method, we prove the uniqueness of the inverse problem in nonlinear PDEs.
Moreover, using the method of successive approximations, we develop a novel iter-
ative algorithm to estimate sorption isotherms. The stability results of the algorithm
are proven under both a priori and a posteriori stopping rules. A numerical example is
given to show the efficiency and robustness of the proposed new approach.

AMS subject classifications: 65N15, 65N30
Key words: Inverse problem, quasi-linear dynamic model, uniqueness, method of successive
approximations, stability.

1 Introduction

In this study, we consider the inverse problem of estimating function ϕ(·) in the following
quasi-linear dynamic sorption model:

ux+at =0, 0< x< l, 0< t<T, (1.1a)
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at = ϕ(u)−a, 0< x< l, 0< t<T, (1.1b)
u(0,t)=µ(t), 0≤ t≤T, (1.1c)
a(x,0)=0, 0≤ x≤ l, (1.1d)

where u(x,t) is the gas concentration in the pores of the tube between the sorbent grains,
which depends on the metric argument x, and changes from the left input end of the
sorption tube where x=0 to the right outlet section of the tube where x= l; the function
a(x,t) takes the values of the concentration of gas inside the sorbent grains depending
on the same arguments. Function µ(t) represents the concentration of the input gas flow.
Function ϕ(·) is a scaling factor that indicates the ratio of the gas concentration outside
the sorbent grains to that inside the sorbent grains, depending on the external gas con-
centration. This quantity ϕ(·) is called the sorption isotherm, which describes the course
of the chemical absorption of a particular gas by a certain sorbent. For the physical back-
ground of the dynamic sorption model, we refer to [21, 24] and the references therein.

Although determining the values of sorption isotherms is extremely important in
physical chemistry, it presents significant experimental difficulties, particularly in dy-
namic processes. A modern technique for obtaining sorption isotherms involves solv-
ing an inverse problem so that the simulated dynamic quantity coincides with the ac-
tual experimental results. During the last decades, certain inverse problems in esti-
mating sorption isotherms and other parameters in some dynamic PDE models have
been intensively studied, for example, [3, 5, 10, 14, 20, 22, 23, 25–27, 29–31]. We also refer
to [1,2,7,8,12,15–19,28] for more related inverse problem studies. The main contribution
of this work is twofold. First, we provide the uniqueness results for the nonlinear inverse
problem of recovering the sorption isotherm function ϕ(·) in the PDE model (1.1a)-(1.1d).
Second, we develop an iterative regularization algorithm for the efficient reconstruction
of sorption isotherms.

This paper is structured as follows. In the next section, we perform a theoretical
analysis for both the forward and inverse problems of (1.1a)-(1.1d). Section 3 describes
the development of an iterative approach for solving the inverse problem of estimating
sorption isotherms. A convergence analysis of the approach is also presented. In Section
4, numerical simulations for a model problem are presented. Finally, concluding remarks
are given in Section 5.

2 Analysis of the forward and inverse problems

We begin with the well-posedness of the forward model (1.1a)-(1.1d), which was investi-
gated decades ago by Denisov [6, Theorem 2.1] and [4, Theorem 5.4.1] with the study of
properties of the solution for the problem (1.1a)-(1.1d) (see [4, Theorem 5.4.2]).
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Theorem 2.1. Let the functions µ(·) and ϕ(·) satisfy the following conditions.

µ(t)∈C1[0,T], µ′(t)>0 for all t∈ [0,T], µ(0)=0, (2.1a)

ϕ(s)∈C1(R), ϕ′(s)∈ (0,ϕ0] for all s∈R, ϕ(0)=0. (2.1b)

Then, there exists a unique pair of functions (u,a)∈C1(Q̄)×C1(Q̄) satisfying problem (1.1a)-
(1.1d), where Q :={(x,t) : 0< x< l, 0< t<T} and Q̄ is the closure of Q.

Theorem 2.2. Let the functions µ(·) and ϕ(·) satisfy the following conditions (2.1a)-(2.1b), and
the pair of functions (u,a) is the solution of the problem (1.1a)-(1.1d), then

ut(x,t)>0, at(x,t)>0 for all x∈ [0,l], t∈ [0,T],
0≤u(x,t)≤µ(τ) 0≤ a(x,t)≤ ϕ(µ(τ)) for all x∈ [0,l], t∈ [0,τ], τ∈ (0,T].

From Eq. (1.1b), in the form of a linear inhomogeneous ordinary differential equation
at+a= ϕ(u) with the initial condition (1.1d), we derive the integral equation

a(x,t)=
∫ t

0
e−(t−τ)ϕ(u(x,τ))dτ, (x,t)∈ Q̄. (2.2)

Furthermore, from Eq. (1.1a), in the form of a nonlinear inhomogeneous ordinary differ-
ential equation,

ux(x,t)=−ϕ(u(x,t))+
∫ t

0
e−(t−τ)ϕ(u(x,τ))dτ, (x,t)∈ Q̄,

with the initial condition (1.1c), we obtain the integral equation of Type II for the solution
function u(x,t) in Q̄:

u(x,t)=µ(t)−
∫ x

0
ϕ(u(s,t))ds+

∫ x

0

∫ t

0
e−(t−τ)ϕ(u(s,τ))dτds, (2.3)

which can be further used to obtain the function a(x,t) using formula (2.2).

Remark 2.1. The solution of Eq. (2.3) is obtained numerically using the method of suc-
cessive approximations based on equality (2.3) in the form of a recurrent formula.

In this study, we focused on the following inverse problem:

Problem 2.1 (IP). Recover the sorption isotherm ϕ in some regions as well as the solutions
(u,a) of the system (1.1a)-(1.1d) with a known boundary function µ(t) satisfying (2.1a)
from the noisy measurement of dynamical boundary velocity hδ(t) ∈ Ċ[0,T] := {h(t) ∈
C[0,T] : h(0)=0} of h(t)≡ux(0,t).

Remark 2.2. For data with lower regularity (e.g., hδ(t)∈ L2[0,T]), a smoothing technique
can be employed to obtain smoothed data hδ(t)∈Ċ[0,T] (see [9, Section 4.2] or [13, Section
4]).
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Since the spectrum of differential operator has a accumulation point at infinity, the
inverse problem (IP) is ill-posed in the sense that a tiny perturbation of the measurement
data hδ(t) may give a large change in the conventional resolution of ϕ. Therefore, for the
problem of noisy data hδ(t), some regularization methods should be employed to obtain
meaningful function ϕ. With Tikhonov regularization, the inverse problem (IP) can be
converted to the following minimization problem:

min
ϕ̃ satisfies (2.1b)

‖hδ(t)−ux(0,t; ϕ̃)‖2
L2[0,T]+εR(ϕ̃), (2.4)

where u solves (1.1a)-(1.1d) with a given ϕ̃ †, ε> 0 is the regularization parameter, and
R(ϕ̃) denotes the regularization term, which reflects the a priori information of sorption
isotherm ϕ.

There are two essential difficulties when employing the solution model (2.4). First, it
is difficult to select appropriate regularization termR as well as regularization parameter
ε in practice. By the standard argument of regularization theory of inverse problems, the
optimal choices of these two quantities depend on the ground truth ϕ, which is unknown
in real-world problems. Second, even both R and ε are given, the numerical realization
of the PDE-constrained optimization problem (2.4) is a hard task since it is a non-convex
optimization with a nonlinear PDEs constraint. Therefore, the main purpose of this work
is to find a new replacement model instead of (2.4), which would be much simpler but
sufficiently accurate.

To obtain an equation with respect to the function ϕ(·), Eq. (2.3) can be differentiated
using argument x to obtain the result in the form of an equation

ϕ(u(x,t))=
∫ t

0
e−(t−τ)ϕ(u(x,τ))dτ−ux(x,t), (x,t)∈ Q̄.

With variable substitutions s=u(0,t) and θ=u(0,τ), we derive the equation for x=0:

ϕ(s)=
∫ µ−1(s)

0

e−(µ−1(s)−µ−1(θ))

µ′(µ−1(θ))
ϕ(θ)dθ−ux(0,µ−1(s)), s∈ [0,µ(T)]. (2.5)

Eq. (2.5) is an affine Volterra integral equation of Type II. It can be used with a given
perturbation hδ(t) instead of the exact measurement h(t)≡ ux(0,t) to solve the inverse
problem with approximate determination of the function ϕ(s) using the method of suc-
cessive approximations from the equation

ϕ(s)=
∫ µ−1(s)

0

e−(µ−1(s)−µ−1(θ))

µ′(µ−1(θ))
ϕ(θ)dθ−hδ(µ

−1(s)), s∈ [0,µ(T)],

or for the composite function ϕ(µ(t))≡ψ(t) from the equation

ψ(t)=
∫ t

0
e−(t−τ)ψ(τ)dτ−hδ(t), t∈ [0,T], (2.6)

†It is not difficult to show that ux(0,t; ϕ̃(·))=−ϕ̃(µ(t))+
∫ t

0 e−(t−τ) ϕ̃(µ(τ))dτ.
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with the subsequent transition to the function ϕ(s) in the form

ϕ(s)=ψ(µ−1(s)), s∈ [0,µ(T)]. (2.7)

Before proving the uniqueness of (IP), we provide a definition of mild solutions of (IP).

Definition 2.1. A triad of functions (ϕ(s),u(x,t),a(x,t)) is called a mild solution of (IP) if ϕ(s),
u(x,t), a(x,t) satisfy (1.1a)-(1.1d) with conditions (2.1a), hδ(t)=ux(0,t)∈Ċ[0,T], u,a∈C1(Q̄),
and ϕ satisfies

ϕ(s)∈C1[(0,µ(T)], ϕ′(s)∈ (0,ϕ0], s∈ [0,µ(T)], ϕ(0)=0. (2.8)

Theorem 2.3. The inverse problem (IP) has no more than one mild solution.

Proof. Define

A : C[0,T]→C[0,T], Aψ(t) :=
∫ t

0
e−(t−τ)ψ(τ)dτ. (2.9)

Evidently, A is a bounded linear operator on the Banach space C[0,T] with

‖A‖≡‖A‖L(C[0,T],C[0,T]) :=
‖Aψ(τ)‖C[0,T]

‖ψ(τ)‖C[0,T]
=

∥∥∥∫ t
0 e−(t−τ)ψ(τ)dτ

∥∥∥
C[0,T]

‖ψ(τ)‖C[0,T]

≤
∥∥∥∥∫ t

0
e−(t−τ)dτ

∥∥∥∥
C[0,T]

=
∥∥1−e−t∥∥

C[0,T]=1−e−T <1.

According to [11, Theorem 2.14], I−A has a bounded inverse on C[0,T] given by the
Neumann series

(I−A)−1=
∞

∑
k=0

Ak. (2.10)

Hence, Eq. (2.6) has a unique solution

ψ=−(I−A)−1hδ, (2.11)

that gives ϕ(s) by the formula (2.7).
Now, let there exist two solutions (ϕ1(·),u1(x,t),a1(x,t)) and (ϕ2(·),u2(x,t),a2(x,t)) of

(IP) with initial functions µ(t) and hδ(t). If the functions ϕ1(µ(t))=ψ1(t) and ϕ2(µ(t))=
ψ2(t) satisfy the Eq. (2.6), then, consequently, the uniqueness of (IP) solution follows from
the equalities ψ(t)=ψ1(t)=ψ2(t) as the unique solution of Eq. (2.6) and from relations
(2.7).

Remark 2.3. The existence of solutions (u,a) can not be guaranteed by Theorem 2.2 due
to the possibility of violation of sufficient condition (2.1b).
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Remark 2.4. The conditions (2.1): µ(t) ∈ C1[0,T], do not allow the conclusivity of the
function µ(t) on the segment [0,T] as limt→T µ(t) = ∞, since according to Weierstrass’s
first theorem about the limitation of a continuous function defined on the segment. All
mathematical results in this paper are obtained under conditions (2.1). Of the physico-
chemical correspondences, the function µ(t) determines the concentration of a substance
(absorbed gas) at a point, and is also a limited value. A mathematical problem can be
considered with an integrable function µ(t), for example, from space L2[0,T]. Such an
expansion would require a separate study.

3 An iterative algorithm

According to the proof of Theorem 2.3, the partial sums

ψn :=−
n

∑
k=0

Akhδ

of the Neumann series (2.10) satisfy ψn+1 = Aψn−hδ for all n≥ 0. Hence, the Neumann
series (2.10) is related to successive approximations using the following theorem.

Proposition 3.1. for any measurement hδ(t)∈ Ċ[0,T], the successive approximations

ψn+1=Aψn−hδ, n=0,1,.. ., (3.1)

with an arbitrary ψ0∈ Ċ[0,T] converge in Ċ[0,T] to the unique solution of ψ=Aψ−hδ.

Proof. This follows from [11, Theorem 2.15].

Remark 3.1. Condition (2.1b) is not used in Section 3. In particular, ψn may not satisfy
(2.1b) in general.

Now we are in a position to give the main result of this work–two stability results for
the iterative algorithm (3.1). To that end, let ψ† be the unique solution of the equation
ψ= Aψ−ux(0,t) such that ϕ†(s) =ψ†(µ−1(s)), (u(x,t;ϕ†(s)),a(x,t;ϕ†(s))) is the unique
mild solution of (IP). Moreover, suppose that the measurement dynamical data hδ(t)
obeys the deterministic noise model

‖hδ(t)−h(t)‖C[0,T]≤δ (3.2)

with a known noise level δ>0.
The following theorem provides the stability for the iterative algorithm (3.1), which

indicates that the numerical ψn(δ) converges to the true solution ψ† after appropriate
steps.
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Theorem 3.1 (A priori stopping rule). If the stopping index n = n(δ)is selected such that
n≥ C ·ln(δ−1) with C > 1/ln(1/‖A‖), then the iterative algorithm (3.1) exhibits the linear
convergence rate, i.e.,

‖ψn(δ)−ψ†‖C[0,T]=O(δ) as δ→0. (3.3)

Proof. Let ψδ be the unique solutions of equations ψ=Aψ−hδ. Then, from (3.2) and (2.10),
using the inequalities

‖(I−A)−1‖≤
∞

∑
k=0
‖Ak‖≤

∞

∑
k=0
‖A‖k =(1−‖A‖)−1,

we derive

‖ψδ−ψ†‖C[0,T]≤‖(I−A)−1(hδ−ux(0,t))‖C[0,T]≤‖(I−A)−1‖δ≤ (1−‖A‖)−1δ. (3.4)

Furthermore, by selecting n(δ) (i.e., n≥C·ln(δ−1) with C>1/ln(1/‖A‖)), we deduce that
for all δ∈ (0,1],

‖A‖n(δ)≤δ. (3.5)

Finally, according to successive formula (3.1), we obtain

ψn−ψδ =A(ψn−1−ψδ)= ···=An(ψ0−ψδ), (3.6)

which, using inequalities (3.4), (3.5), and ‖A‖<1, implies that

‖ψn(δ)−ψ†‖C1[0,T]≤‖ψn(δ)−ψδ‖C[0,T]+‖ψδ−ψ†‖C[0,T]

≤‖An‖‖ψ0−ψδ‖C[0,T]+‖ψδ−ψ†‖C[0,T]

≤‖A‖n(‖ψ0−ψ†‖C[0,T]+‖ψ†−ψδ‖C[0,T])+‖ψδ−ψ†‖C[0,T]

≤‖A‖n‖ψ0−ψ†‖C[0,T]+2‖ψδ−ψ†‖C[0,T]

≤(‖ψ0−ψ†‖C[0,T]+2(1−‖A‖)−1)δ. (3.7)

This yields the required estimation in (3.3).

Theorem 3.2 (A posteriori stopping rule). If the iteration of (3.1) is terminated according to
the following stopping rule,

‖ψn(δ)+1−ψn(δ)‖C[0,T]≤ c·δ<‖ψn+1−ψn‖C[0,T], 0≤n<n(δ), (3.8)

for some c>0. Then,

n(δ)=O(ln(δ−1)) and ψn(δ)→ψ† in C[0,T] as δ→0. (3.9)
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Proof. The well-posedness of the stopping rule (3.8) follows from the following relation:

‖ψn+1−ψn‖C[0,T]=‖A(ψn−ψn−1)‖C[0,T]= ···=‖An(ψ1−ψ0)‖C[0,T]→0 (3.10)

as n→∞.
Let {δk} be a sequence converging to 0 as k→∞, and let hδk be a corresponding se-

quence of noisy data with
‖hδk(t)−h(t)‖C[0,T]≤δk.

For each tuple (δk,hδk), denote by nk = n(δk) the corresponding terminating time point
determined from (3.8).

To prove this assertion, we distinguish between two cases: (i) nk has a finite accumu-
lation point n∗ or (ii) nk→∞ as k→∞.

For case (i), there exists an index k0 such that for all k > k0 : nk ≡ n∗. Consequently,
estimates (3.9) hold because ψn∗ is the unique solution of ψ=Aψ+h.

Now, consider case (ii). Using (3.7), we deduce that

‖ψnk−ψ†‖C[0,T]≤‖A‖nk‖ψ0−ψ†‖C[0,T]+2‖ψδk−ψ†‖C[0,T]→0

as k→∞, where ‖A‖nk→0 when nk→∞.
Finally, by combining (3.8) and (3.10), we deduce the following:

cδk <‖ψnk−ψnk−1‖C[0,T]≤‖Ank(ψ1−ψ0)‖C[0,T]≤‖A‖nk−1‖ψ1−ψ0‖C[0,T],

which implies that

n(δ)≤1+ln
(
‖ψ1−ψ0‖C[0,T]c

−1δ−1
)/

ln(‖A‖−1).

Thus, we complete the proof.

4 Numerical examples

In this section, we present numerical experiments to illustrate the theoretical predication
of the convergence analysis developed in the previous sections. In the simulations ‡, we
consider nonlinear functions ϕ†(u) = 2u−sin(u) and µ(t) = 13t−cos(4πt)+1 in (1.1b)
and (1.1c), respectively. Such choices of ϕ and µ satisfy both of conditions (2.1a)-(2.1b) in
Theorem 2.1. Moreover, we set l=1 and T=1.

First, the experiment is concerned with the finite difference method for solving (1.1a)-
(1.1d). We employ the backward finite difference scheme to discrete (1.1a) and (1.1b) for
both space and time domain and obtain the following discrete scheme: Ak+1

n =Ak
n+∆t[ϕ(Uk

n)−Ak
n],

Uk
n+1=Uk

n−
h

∆t
(Ak+1

n −Ak
n),

(4.1)

‡All the computations were performed on a dual core PC with 16.00 GB RAM with MatLab version R2021b.
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(a) Numerical solution of uh (b) Numerical solution of ah

Figure 1: Numerical results of solutions uh and ah. Parameters: l = 1, T = 1, ϕ†(u) = 2u−sin(u), µ(t) =
13t−cos(4πt)+1.

where the time step ∆t is set to be equal to the mesh size h. In this numerical scheme we
compute Ak+1

n in the (k+1)-th time step by using the results Ak
n and Uk

n in the k-th time
step, and then use the obtained Ak+1

n to calculate Uk
n+1 in the (n+1)-th mesh step. The

convergent results in space at a fixed time point t=1 are reported in Table 1, where ||·||2
represents the standard L2-norm and the subscript N denotes the numerical solutions on
the highest mesh level (i.e., h= 1/640 in our experiments). In this work, uN and aN are
used to be the surrogates for exact quantities u and a, respectively.

We notice that the relative errors for ||un−un+1||2
||uN ||2 and ||an−an+1||2

||aN ||2 both converge in 2 order
as h goes to zero. The numerical results for u(x,t) and a(x,t) in terms of x and t are
depicted in Fig. 1.

We also present the computed results in Fig. 2 to verify Theorem 2.2 in Section 2.
Figs. 2(a) and (b) show that both ut(x,t)>0 and at(x,t)>0 for all x∈ [0,1], t∈ [0,1]. More-
over, Figs. 2(c) and (d) indicate that 0≤ u(x,t)≤ µ(τ) and 0≤ a(x,t)≤ ϕ(µ(τ)) for all
x ∈ [0,1], t∈ [0,τ] and τ ∈ (0,1]. These numerical results demonstrate that our numeri-

Table 1: Convergence of the errors at t=1. Parameters: l=1, T=1, ϕ†(u)=2u−sin(u), µ(t)=13t−cos(4πt)+1.

t h ||un−un+1||2
||uN ||2

order ||an−an+1||2
||aN ||2

order

1

1/10 1.0000E−03 – 1.8000E−03 –
1/20 6.0251E−04 2.4533 1.3000E−03 1.9186
1/40 3.8040E−04 2.2851 9.4890E−04 2.0165
1/80 2.5346E−04 2.1652 6.7200E−04 2.0372

1/320 1.7393E−04 2.1023 4.7508E−04 2.0407
1/640 1.2116E−04 2.0711 3.3582E−04 2.0401
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(a) ut(x,t) (b) at(x,t)

(c) u(x,t) vs µ(t) (d) a(x,t) vs ϕ(µ(t))

Figure 2: Properties of solutions u(x,t) and a(x,t). Parameters: l = 1, T = 1, ϕ†(u) = 2u−sin(u), µ(t) =
13t−cos(4πt)+1.

cal scheme (4.1) is structure-preserving (namely positivity-preserving and boundedness-
preserving).

Now, we investigate the inverse problems (IP) with both noise-free and noisy data.
First, by the introduced finite difference method (4.1) we obtain the numerical solution
h(t)= ux(0,t), which is identified as the exact measurement data. Then, uniformly dis-
tributed noises with the magnitude δ′ are added to h(t) to obtain the noise data hδ(t):

hδ(t)= [1+δ′ ·(2Rand−1)]·h(t), (4.2)

where Rand returns a pseudo-random value drawn from a uniform distribution on [0,1].
Since (4.2) generates non-smoothing data in L2(0,T), we have to smooth it as shown in
Remark 2.2. Denote by hs

δ(t) the smoothed noisy data by using the cubic spline method
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Figure 3: Exact measurement h(t), noisy measurement hδ(t) with δ′=0.04, and smoothed noisy measurement

hs
δ(t), whose noise level is δ2 =60% (δ∞ =0.04). Other parameters: l=1, T=1, ϕ†(u)=2u−sin(u), µ(t)=

13t−cos(4πt)+1.

(i.e., “spline” in MatLab). In our experiment we use both L2-norm and C-norm to mea-
sure the noise level, which is defined as follows,

δ2= ||hs
δ(t)−h(t)||2, δ∞ = ||hs

δ(t)−h(t)||∞.

Numerical experiments indicate that δ′≈ δ∞ if the mentioned parameters is applied for
our model problem. To visualize the data processing, we plot the noise free dynamical
boundary velocity h(t), the noisy data hδ(t) with δ′= 0.04 (consequently, δ2 = 60% and
δ∞ =0.04), and the smoothed noisy data hs

δ(t) in Fig. 3.
Now we carry on the iterative algorithm (3.1) introduced in Section 3 for problem

(1.1a)-(1.1d) based on the above results. By the a posteriori stopping rule (3.8) in Theorem
3.2, we set the tolerance to be cδ′ with c=0.01 and δ′ defined in (4.2). This means that the
iteration stops when the error between two successive iterations is less than cδ′. From
the relation (2.7), we see that ψ†(t)=2s−sin(s) with s=13t−cos(4πt)+1, where 0≤ t≤1
in this numerical example. Let F(t)=Aψ(t), the discrete form for the iterative algorithm
(3.1) is as following:  Fn(tk+1)=

Fn(tk)+∆t·ψn(tk+1)

1+∆t
,

ψn+1=Fn−hδ,
(4.3)

with the initial guess ψ0 = t. According to the iterative algorithm, we first calculate Fn,
that is Aψn, on the n-th iteration, then submit it into the second equation to update ψn+1.
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Figure 4: Numerical results ψh(x,t) vs true result for different noise levels.

In this case we test the iterative algorithm both for h(t) without noise and hδ(t) with
different noise levels. The numerical results for the iterative algorithm are shown in Fig. 4
and Table 2. We see that the iteration number decreases with the noise level increasing,
which numerically proves the a posteriori stopping rule. For all cases with different noise
levels, the numerical solution converges to the true solution as the error ||ψn(δ)−ψ†||C(0,T)
goes to 0. Fig. 4 presents the numerical results ψh(x,t) for different noise levels. It can be
seen that oscillations become severer when the noise level gets higher, but still end with
a convergent result, which proves that our iterative algorithm is robust with respect to
the noise even for high leveled ones.

We end this section by dynamic behaviors of iteration scheme (3.1) with noise-free
data in Fig. 5. From Fig. 5(a), we see that the error ||ψh−ψ||C(0,T) converges nearly to 0 in
just several iterations. We also give the residual error ||ψn−Aψn+hδ||2 and the increment
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the a posteriori stopping rule

Figure 5: Dynamics of quantities ||ψh−ψ||C(0,T), ||ψn−Aψn+hδ||2 and ||ψn+1−ψn||C(0,T) in the noise-free
case.

||ψn+1−ψn||C(0,T) on each iteration in Figs. 5(b) and (c). For both cases the errors present
a fast convergent results as iteration getting higher.

5 Conclusions

In this paper, we derived a Volterra integral equation for a nonlinear inverse problem in
PDEs, which can be used not only for proving the the uniqueness of considered inverse
problem but also for developing an efficient inversion solver. Both theoretical analysis
and numerical simulations showed that our new inversion solver is stable and efficient.
Finally, we mention that our methodology can be extended to the following more com-
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Table 2: Convergent results for different noise levels.

δ∞ δ2 Iteration numbers ||ψn(δ)−ψ†||C(0,T)
0.02% 0.3% 13 3.0400E−02

0.075% 1% 11 3.9900E−02
0.15% 2% 10 5.1900E−02
0.2% 3% 8 6.0200E−02
0.7% 5% 7 1.4580E−01
1% 15% 6 1.9880E−01
4% 60% 5 6.9360E−01

plicated cases, which will be reported in the future: (i) System (1.1a)-(1.1c) with non-
vanishing initial data a(x,0)=a0(x) such that a0∈C1(0,l) and a′0(x)≤0 for all x∈(0,l); (ii)
the transport equation ux+ut+at=0 and (1.1b) with appropriate boundary condition; (iii)
the transport equation with diffusion ux+ut+at = Duxx and (1.1b), where D represents
the diffusion parameter.
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