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Abstract. A new delay estimation model using a round trip time as a weight of the asym-

metry of each host pair is developed. It improves the estimation accuracy and is suitable

for complex wide area network architecture. For large-scale scenarios in practice, we

design a symmetric Gauss-Seidel alternating direction method of multipliers. It signif-

icantly reduces memory consumption and computational cost. Numerical experiments

demonstrate the accuracy and efficiency of the model and algorithm.
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1. Introduction

In this work, we present a novel optimization model with the weighted minimum norm

principle for one-way delay (OWD) estimation in wide-area networks (WANs), whose math-

ematical formulation is as follows:

min
x∈Ω

∑

i 6= j

|x i j − x ji|2

RTTα
i j

, Ω=
�

Al oops x = bl oops, x ≥ 0
	

. (1.1)

Here x i j is the delay from node i to another node j in a particular network, and RTTi j is the

round trip time between them. The constraints are the observations of loop measurements

and natural non-negativity of delays, inheriting from [16]. Note that model (1.1) is actually

a loop estimation method using RTT weighting (LERW), in which α controls the effect of

RTT in weighting.

With the continuous complexity and scale of computer networks, network performance

analysis becomes intractable, bringing challenges to downstream tasks, including robust
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network design, scheduling, and congestion control. LERW provides an improved method-

ology for accurate OWD estimation, which is desired extremely in characterizing network

performance. Informally, OWD refers to the time it takes for a data packet to be sent from

one network node to another. It plays a vital role in presenting the real-time status of the

network [2]. One should note that the sending is only one-way, which means OWD focuses

only on unidirectional characteristics. In contrast, RTT, another standard delay metric,

provides a clear view of bidirectional characteristics. It is generally believed that the mea-

surement of OWD is more critical than that of other delay metrics, including RTT. This is

because the performance of an application may greatly depend on unidirectional character-

istics [2]. For example, the quality of video on demand mostly depends on the performance

of the links from servers to clients. File transfer only relies on the path from sender to re-

ceiver [26]. For this reason, service level agreements (SLAs) that aim at ensuring QoS in

real-time applications, such as Voice over IP (VoIP) [4], use OWD as a parameter.

However, measuring OWD directly is impossible because the clocks of hosts in the net-

work are not synchronized [27]. This asynchrony stems from the different frequencies

of the quartz crystal oscillators of hosts, which is severe in WANs. Generally, two times-

tamps representing the transmission time at the transmitter and the reception time at the

receiver are stamped when a probe packet is sent. The clock offset causes their difference

to deviate from the real OWD. The immediate idea is to achieve OWD estimation through

high-precision clock synchronization, but the common methods do not work well due to

fundamental limits [12]. NTP [21] is one of the oldest clock synchronization protocols,

which calculates the clock offset by simply combining the four timestamps obtained from

a pair of packets sent in opposite directions. It has an unsatisfying accuracy of tens of mil-

liseconds in WANs [22], thanks to inaccurate timestamps and the unrealistic assumption

that the forward and reverse delays are symmetrical. PTP, also known as IEEE 1588 [11],

is another usual method for synchronization, adopting hardware timestamps to counter

stack delays occurring in time stamping. It is superior to NTP and suitable for high-precision

scenes. If deployed properly, it will reach an accuracy within 3.2ms. Nevertheless, it suffers

from asymmetry like NTP. GPS is the most reliable clock synchronization method, providing

the highest clock synchronization accuracy [27]. Unfortunately, unique hardware and high

expense hinder its application on the Internet, making it impractical to synchronize using

GPS.

A novel method called loop estimation for OWD measurement without clock synchro-

nization was proposed by Gurewitz et al. [15–17], who suggested considering the OWD

measurement as an optimization problem. They offered to perform measurements along

loops to form an underdetermined system of equations with OWDs as variables. Then

a convincing optimization model aiming to minimize the asymmetries of all node pairs was

proposed to help select a solution in the colossal solution space, taking the form of LERW

with α= 0. For the sake of distinction, we shall hereafter call it LE. Benefiting from a great

deal of information provided by loop measurements, LE works remarkably in multiple net-

work architectures, far superior to previous methods. Considering its excellence, one did

some transformations later and then applied it to the last step of the Huygens algorithm,

a recognized clock synchronized method for local area networks (LANs) in industry [13].
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Nevertheless, LE was initially designed for symmetrical scenes, or rather, slightly asymmet-

rical scenes. It does not examine the diversity of asymmetries of different pairs that exist

in WANs. As a result, LE is shortsighted and performance constrained in WANs.

LERW is proposed in this paper exactly to overcome LE’s limitations. In contrast, it

penalizes delay asymmetries of node pairs with small RTTs, thus allowing those with large

RTTs to dominate significant asymmetries. We insist on its advance, for it agrees with the

law that asymmetry in WANs is correlated positively with RTT presented in [23]. More-

over, we show its rationality theoretically by proving to be an upper bound of the ideal

objective. We have to admit that this upper bound is relaxed, making the theory not essen-

tial. Given the sheer difficulty of the problem, we still emphasize its value and inspiration.

Analogous to LE, LERW benefits from the increasing scale of networks so that one can

artificially introduce extra nodes to improve estimation accuracy. Unfortunately, the tradi-

tional interior point method’s high memory consumption and low computation speed for

optimization cause a bottleneck in engineering. A crude way to deal with it is to remove

inequality constraints to reduce the difficulty of solving, as did in [16,17], which makes the

loss of rigor. For this, we propose a new solution algorithm named symmetric Gauss-Seidel

alternating direction method of multipliers (SGS-ADMM) to solve LERW. The algorithm

breaks the problem down into multiple iterations involved with a univariate optimization

model solution, thus reducing computation complexity and memory consumption signifi-

cantly. Theoretically, it is proven to converge globally to the optimal solution. We assert its

potential applications in engineering.

The rest of the paper is organized as follows. After stating the OWD estimation problem

in Section 2, we introduce the LERW model and illustrate its reasonability in Section 3. In

Section 4, we cover the SGS-ADMM algorithm and discuss its convergence. Section 5 is our

numerical experiments, and finally, the summary of our paper.

2. Problem Statement

2.1. Probes and timestamps

The communication between hosts is usually performed by sending probing packets in

networks. In the context of delay estimation, packets are timestamped at the sender and

the receiver, respectively, as shown on the left of Fig. 1. The two timestamps, denoted as t1

and t2, are established according to the local clocks. It is biased to regard their difference

as the actual delay because there is an offset between the clocks. Suppose that the clocks

of hosts A and B offset τa and τb related to the reference clock. The relationship between

the delay, clock offsets, and timestamps is formulated as

xab +τb −τa = t2 − t1,

where xab is the OWD from A to B. If swapping the sender and the receiver and denoting

corresponding timestamps as t3 and t4, we have

xba +τa −τb = t4 − t3.
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Figure 1: Left: Two hosts send probe packets to each other. Right: Connected graph of three hosts.

Adding the above two equations gives that

xab + xba = t4 − t3 + t2 − t1
def
= RTTab = RTTba.

If the delays are symmetric, i.e, xab = xba, it exists that

xab = xba =
RTTab

2
. (2.1)

Thanks to the blocks’ complex network architectures and different network protocols, enor-

mous delay asymmetries exist almost everywhere in WANs. Consequently, the Eq. (2.1) is

no longer applicable.

2.2. Host network

This paper uses a completely connected graph with N nodes and m= (N−1)N directed

edges to characterize communication between multiple hosts in WANs. The numbered

node set denotes hosts, and a pair of directed edges connect any two nodes. An example

of a three-host network is shown on the right of Fig. 1. Note the graph represents just

a logical network instead of a physical one. The directed edges are not actual network

links but only refer to communication relationships. Routers responsible for forwarding

packets are hidden. One can send packets along arbitrary paths network-wide and get all

timestamps. Denoting x i j the delay from i to j, we combine all x i j into a vector x ∈ Rm.

Assume its k-th entry x (k) corresponds to the delay from node ik to jk. There are two rules

about x :

1. For all k ≥ 0, i2k+1 = j2k+2, j2k+1 = i2k+2.

2. For all k1, k2 ≥ 0, if k1 > k2, then i2k1+1 ≥ i2k2+1, j2k1+1 ≥ j2k2+1. Our goal is to

estimate x given the observations provided by probing packets.
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3. LERW Model

In this section, we develop the LERW model gradually, first its constraints and then the

objective function.

3.1. Loop measurement

Loop measurement refers to sending probe packets to propagate along a simple loop of

a graph. Since the source and destination are the same, its observation (RTT is a special

case), the difference between the receive timestamp and the transmit timestamp, exactly

equals the delay of the loop and is not affected by clock offset. Assume that bl oop:i jki is the

observation from the loop measurement on loop i → j → k → i of a host network (note

bl oop:i ji = RTTi j). It follows that

x i j + x jk + xki = bl oop:i jki.

The above equation can be viewed as an equation of x . If l loops are measured, we will

obtain a system of linear equations of x , formulated as

Al oops x = bl oops. (3.1)

Here Al oops ∈ Rl×m whose entries are 1 and 0, and bl oops ∈ Rl . The above system is

underdetermined as the following theorem states.

Theorem 3.1 (cf. Gurewitz & Sidi [17]). The maximal number of independent equations

obtained by measuring loop delays in an N-host connected network is less than the number of

variables by (N − 1).

Therefore, it is impossible to solve delays directly from the system of equations (3.1).

In addition to the equations, there are some substantial non-negative constraints for

OWDs

x ≥ 0. (3.2)

It is natural because OWDs measure the time taken to send a data packet from one node

to another, and therefore are always a nonnegative quantity.

As an example, the network with three hosts on the right of Fig. 1 has a total of five

simple loops. Thus, the following constraints for OWD hold:

x12 + x21 = bl oop:121, (3.3a)

x13 + x31 = bl oop:131, (3.3b)

x23 + x32 = bl oop:232, (3.3c)

x12 + x23 + x31 = bl oop:1231, (3.3d)

x13 + x32 + x21 = bl oop:1321, (3.3e)

x i j > 0, i, j = 1,2,3, i 6= j. (3.3f)
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It is clear that Eq. (3.3e) is redundant, as it can be derived by (3.3a)+(3.3b)+(3.3c)-(3.3d).

In other words, the probing on loop 1→ 3→ 2→ 1 is unnecessary.

In the rest of the paper, we may assume Al oops has full row rank — i.e. l = m−(N−1) =

(N−1)2. In this sense, only measurements need to be made on specific l loops instead of all.

In fact, these l loops are easy to determine. Apart from the obvious m/2 two-node loops

that are associated with the RTTs, a fundamental cycle basis of the undirected complete

graph reduced from the host network provides the remaining m/2− (N −1) loops. To find

them, one needs first to calculate a spanning tree. Then each edge outside the tree and the

corresponding two paths from the root to the two ends of the edge, form a loop that we

require. In the context of the complete graph, they each contain only three different nodes.

As a result, Al oops has either only two or three elements of 1 in a row, thus sparse.

3.2. RTT weighting

Equality constraints provided by loop measurements and non-negativity determine a fea-

sible region for delays. We consider designing a reasonable optimization objective to help

select the solution from infinite candidates.

As the forerunner, Gurewitz et al. [15] present the LE model

min
x∈Ω

∑

i 6= j

|x i j − x ji|2, Ω=
�

Al oops x = b l oops, x ≥ 0
	

for slight asymmetrical scenarios, which aims to minimize the total asymmetry to emphasize

the symmetric nature. Inspired by this, for modern WAN with abundant asymmetry this

paper concerns, we propose the LREW model

min
x∈Ω

∑

i 6= j

|x i j − x ji|2

RTTα
i j

, Ω=
�

Al oops x = bl oops, x ≥ 0
	

.

Here α > 0 is a hyperparameter. In comparison to LE, LERW assigns a weight inversely

proportional to the α power of RTT for each delay asymmetry of the network so that pairs

of node pairs with large RTTs have significant delay asymmetries. We emphasize its pos-

itive because it follows the relationship between delay asymmetry and RTT observed by

Pathak et al. [23]. Their results on the PlanetLab testbed [8] show that the deviation of

the forward delay from one-half of the RTT increases with RTT — i.e. delay asymmetry

is positively correlated with RTT. In fact, this conclusion fits with intuition. In WANs, the

communication between hosts is bridged by a number of routers. A large RTT is often as-

sociated with a multi-hop routing path, in which case a great deal of equal-cost paths exist.

Selected from these paths under a certain stochastic strategy, forward and reverse paths dif-

fer more, at least in terms of probability. Moreover, multi-hop means that the packet passes

through more routers to be forwarded before being received. It occurs likely that there is

much congestion in one direction, while less congested relatively in the others, which also

contributes to asymmetry.

The rationality of LERW can be demonstrated further theoretically, to a certain extent.

Suppose x ∗ is the true delay and x is any estimate satisfying x ∈ Ω.
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Let

I1 =
∑

i 6= j

|x i j − x∗
i j
|2

RTTα
i j

, I2 =
∑

i 6= j

|x i j − x ji|2

RTTα
i j

, I3 =
∑

i 6= j

|x∗
i j
− x∗

ji
|2

RTTα
i j

.

We give the following theorem.

Theorem 3.2.

2I1 ≤ I2 + I3.

Proof. Considering x , x ∗ ∈ Ω, for all (i, j) we obtain x i j + x ji = x∗
i j
+ x∗

ji
= RTT i j. It is

straightforward to show that

(x i j − x∗
i j
)2 + (x ji − x∗

ji
)2

RTTα
i j

=
(x i j − x ji)

2

RTTα
i j

+
(x∗

i j
− x∗

ji
)2

RTTα
i j

+
2(x i j − x∗

ji
)(x ji − x∗

i j
)

RTTα
i j

≤
(x i j − x ji)

2

RTTα
i j

+
(x∗

i j
− x∗

ji
)2

RTTα
i j

+
(x i j − x∗

ji
+ x ji − x∗

i j
)2

RTTα
i j

=
(x i j − x ji)

2

RTTα
i j

+
(x∗

i j
− x∗

ji
)2

RTTα
i j

.

Accumulating the inequality for all (i, j) gives that

2I1 ≤ I2 + I3.

The proof is complete.

In view of the unknown x ∗, I1 is an ideal but unrealistic objective function. Theorem 3.2

indicates that solving I2 as an alternative of I1 is practical since I3 is an invariant.

4. SGS-ADMM Algorithm

LERW is a convex quadratic programming problem with linear constraints

min
x

1

2
x TQx

s.t. Ax = b, x ≥ 0,

(4.1)

where Q is a positive semidefinite and tridiagonal matrix, and A is highly sparse. A general

algorithm to solve it is the interior point method (IPM) [14]. However, because of the pro-

hibitive complexity and high memory consumption, IPM does not meet the requirement of

coping with large-scale scenarios†. Instead, an alternating direction method of multipliers

algorithm is welcomed [5–7,18–20].

In this part, we propose an efficient symmetric Gauss-Seidel alternating direction me-

thod of multipliers (SGS-ADMM) algorithm [20] to solve model (4.1), which fully exploits

†In the follow-up experiments, we find that the expansion of network size can improve the mode performance.
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the special structure and sparsity of Q and A to accelerate the iteration. Its global conver-

gence is guaranteed. The tridiagonal matrix Q takes the form













1/RTTα
i1, j1

−1/RTTα
i1, j1

0 0 · · ·
−1/RTTα

i1, j1
1/RTTα

i1, j1
0 0 · · ·

0 0 1/RTTα
i3, j3

−1/RTTα
i3, j3
· · ·

0 0 −1/RTTα
i3, j3

1/RTTα
i3, j3

· · ·
· · · · · · · · · · · · · · ·













.

We decompose it as Q = HT H = H2, H = Q̂/
p

2 where Q̂ has the same form as Q except

for replacing α with α/2. Then we can reformulate model (4.1) as

min
x ,y ,z

1

2
‖y‖2 +δR+(z)

s.t. Hx = y , Ax = b, x = z.

(4.2)

The indicator function δR+ is defined as

δR+(z) =

¨

0, z ≥ 0,

+∞, z < 0.

The dual of model (4.2) is given by

max
u,v ,w

min
x ,y ,z

L(x , y , z; u, v , w ),

where the Lagrangian function

L(x , y , z; u, v , w ) =
1

2
‖y‖2 +δR+(z)− 〈u , Hx − y〉 − 〈v ,Ax − b〉 − 〈w , x − z〉

=
1

2
‖y‖2 − 〈HT u + AT v + w , x 〉+

�

δR+(z) + 〈w , z〉
�

+ 〈u , y〉+ 〈v , b〉.

Let (x ∗, y∗, z∗, u∗, v ∗, w ∗) be the optimum solution of the dual model. From ∂ L/∂ x = 0

and ∂ L/∂ y = 0, we obtain that

HT u∗ + AT v∗ + w ∗ = 0, y∗ + u∗ = 0.

Thus, the dual model actually reads

min
u,v ,w

1

2
‖u‖2 − 〈v , b〉

s.t. HT u + AT v + w = 0, w ≥ 0.

(4.3)

Its augmented Lagrangian function is

Lσ(u, v , w ; x ) =
1

2
‖u‖2 − 〈v , b〉+ 〈x , HT u + AT v + w 〉+ σ

2
‖HT u + AT v + w‖2.

We consider solving model (4.3) instead of (4.1) by using Algorithm 4.1.
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Algorithm 4.1 SGS-ADMM Algorithm

Input: γ,σ, initial u(0), v (0), w (0), x (0).

Output: x (k).

1: k=0.

2: repeat

3: u(k+
1
2 ) = arg min

u

1
2‖u‖2 + 〈Hx (k), u〉+ σ2 ‖HT u + AT v (k) + w (k)‖2;

4: v (k+
1
2 ) = arg min

v
〈Ax (k)− b, v〉+ σ2 ‖HT u(k+

1
2 ) + AT v + w (k)‖2;

5: w (k+1) = arg min
w≥0

〈x (k), w 〉+ σ2 ‖HT u(k+
1
2 ) + AT v (k+

1
2 ) + w‖2

F
;

6: v (k+1) = arg min
v

〈Ax (k)− b, v〉+ σ2 ‖HT u(k+
1
2 ) + AT v + w (k+1)‖2;

7: u(k+1) = arg min
u

1
2‖u‖2 + 〈Hx (k), u〉+ σ2 ‖HT u + AT v (k+1) + w (k+1)‖2;

8: x (k+1) = x (k)+ γσ(HT u(k+1)+ AT v (k+1) + w (k+1));

9: k = k+ 1.

10: until convergence

In each iteration, a series of subproblems concerning only one variable are solved. In

this way, the optimization problem is intensely simplified. Whereafter, we give the closed

forms of the optimums related to all the subproblems.

The subproblem of u is equivalent to the following linear equations:

�

I +σHHT
�

u = −H
�

σ(AT v + w ) + x
�

.

Given H is tridiagonal, it can be efficiently solved by the well-known Thomas algorithm [9].

The subproblem of v is also equivalent to a system of linear equations

σAAT v = b− A
�

x +σ(HT u + w )
�

.

The potential large scale, e.g., the number of rows and columns of A attains more than

ten thousand, makes it impractical to solve with direct methods. By exploiting the high

sparsity and the full row rankness of A, we instead pursue an effective strategy that is to

implement the inexact conjugate gradient algorithm [3]. It is rather fast and reliable when

the coefficient matrix is symmetric positive definite. For the subproblem of w ∗, with simple

calculation, we have that

w :=max

n

0,−
�

HT u + AT v +
x

σ

�o

.

The global convergence of the proposed SGS-ADMM is provided as follows [20].

Theorem 4.1. Suppose the iteration sequence of the proposed SGS-ADMM is {(u (k), v (k),

w (k), x (k))}, k = 1,2, . . . . Then the sequence converges. Denote the limiting point as (u∗, v∗,
w ∗, x ∗). Moreover, x ∗ is the optimum of the primal model (4.1) and u∗, v∗ and w ∗ are the

optimums of the dual model.
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5. Numerical Experiments

In this section, we present a series of experiments to demonstrate the validity of our

model and the advantage of the SGS-ADMM algorithm. Given the unknown ground truth of

delays in the real network, our experiments rely on highly realistic simulation. We observe

the performance of LERW with various α and compare them with LE and PTP. In addition,

the computation speed and memory consumption are evaluated on SGS-ADMM and the

interior point method. All the experiments are run on Python 3.7, deployed on a PC with

16G RAM and Intel(R) Core(TM) i5-10210U CPU @ 1.60GHz 2.11 GHz.

Here we need first to establish the communication of the host network, mainly how

to set routers and generate actual OWDs. In our simulations, we adopt mesh-distributed

routers with size 20 × 20 for the underlying communication‡ and set N hosts randomly

within the plane, shown in Fig. 2. Each host is directly connected to the unique nearest

router. Routing paths in both directions between them are selected with equal probability

from ones with minimum hop count to simulate different transmission paths frequently

occurring in WANs [1, 25]. The OWD between any two hosts equals the sum of the link

delays in their router path.

Figure 2: Hosts communicate via grid-distributed routers, then a logically complete connected host
network is formed (only part of the edges are drawn). Here the gray disks are routers, and the blue
nodes are hosts.

Let di j = ai j + ci j be the link delay from router i to router j. The basic component

ai j characterizes the diversity of link lengths, while the small increment ci j creates the

asymmetry between forward delay and reverse delay. We ensure ai j = a ji and then sample

ai j from a uniform distribution U(1ms, 1.5ms). In this way, the delays between the most

distant routers are about 40∼ 50ms, close to China’s Internet state. There are two ways to

generate ci j viz.

(1) Unidirectional communication. Terms ci j are sampled from U(0ms, 0.01ms). Some

networks are equipped with unidirectional fiber pairs to connect routers for a low cost.

When laying fibers, it is hard to ensure the same lengths in both directions, giving rise

to random delay asymmetry.

‡It is realistic because routers in real-world the routers are evenly distributed over an area and tend to be

directly connected to the nearest ones.
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(2) Bidirectional communication. Set ci j = θ · ai j, c ji = 0 or ci j = 0, c ji = θ · a ji , where

0 < θ < 1. For networks using bidirectional single fiber, different wavelengths of

light used in opposite directions cause distinct propagation distances. The asymmetry

|ci j − c ji | is proportional to the distance, and the coefficient θ depends on the specific

fiber material [10].

5.1. Unidirectional communication

In this part, we investigate the performance of LERW in unidirectional communication.

We set the number of hosts N to 50,100,150,200 in turn and repeat the experiments 10

times with various random seeds for each N . Feasible regions Ω of models are derived

by finding fundamental loops of the graphs and accumulating the real OWDs along them

[24]. The SGS-ADMM algorithm proposed is used to solve all models, with σ selected from

{10,100,1000,1000}, γ = 1.618.

Table 1 compares the average relative errors with respect to 1-norm and 2-norm. Fig. 3

visualizes the comparison and additionally shows the standard deviations. As expected,

in all cases, LERW and LE are overwhelmingly superior to PTP, and LERW outperforms

LE significantly. Beyond the inherent superiority of the loop estimation, this empirically

demonstrates the helpfulness of the RTT weighting. Interestingly, we find that LERW works

best at α = 2. It seems natural, consistent with the order of |x i j − x ji|. On the other

hand, the error of LERW is observed to decrease as N increases regardless of the value

of α, which means that large-scale networks facilitate the effect of the model. It brings

important enlightenment that we can artificially introduce additional hosts to form a larger

network for the purpose of improving the accuracy of delay estimation. Our fast algorithm

SGS-ADMM is just designed for this.

Table 1: Relative error comparison in unidirectional communication. 1-norm: ‖x − x ∗‖1/‖x ∗‖1, 2-norm:
‖x − x ∗‖2/‖x ∗‖2. The best results are in bold.

N
LERW

LE PTP Criterion
α= 1 α= 2 α = 3

50 2.17e-3 2.04e-3 2.39e-3 2.85e-3 13.0e-3

1-norm

100 1.37e-3 1.23e-3 1.45e-3 1.88e-3 12.9e-3

150 1.10e-3 9.67e-4 1.15e-3 1.55e-3 12.9e-3

200 8.91e-4 7.77e-4 9.42e-4 1.30e-3 13.0e-3

250 8.10e-4 6.70e-4 8.45e-4 1.16e-3 12.9e-3

50 2.47e-3 2.34e-3 2.73e-3 3.24e-3 16.3e-3

2-norm

100 1.55e-3 1.42e-3 1.64e-3 2.12e-3 16.3e-3

150 1.24e-3 1.11e-3 1.29e-3 1.74e-3 16.2e-3

200 1.02e-3 9.00e-4 1.08e-3 1.47e-3 16.3e-3

250 9.22e-4 7.66e-4 9.66e-4 1.32e-3 16.3e-3
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a) 1-norm errors b) 2-norm errors

Figure 3: Visualization of relative error comparison in unidirectional communication. The thicker lines
in the middle show the means on 10 repetitions. The widths of the light-colored regions are equal to
twice the corresponding standard deviations.

5.2. Bidirectional communication

In bidirectional communication, we obtain similar results for a given θ to those in the

previous subsection. For brevity, we here will not report them. In order to study the ro-

bustness of LERW under different optical fiber materials, we observe its performance on

θ = 0.001,0.002,0.005,0.01,0.02 and compare it with LE and PTP, with the number of

hosts N = 150. Each experiment is also repeated 10 times.

Table 2 and Fig. 4 show the errors with two evaluation criteria as did in Section 5.1.

LERW beats the others again and still works best at α = 2, with errors about two-thirds of

those of LE. As θ increases, the accuracies of all methods decrease. Even so, the perfor-

mance of LERW at θ = 0.02 keeps an advantage over the others at θ = 0.001. It shows

that LERW is in a position to deal with bidirectional communication well.

Table 2: Relative error comparison in bidirectional communication. The best results are in bold.

θ
LERW

LE PTP Criterion
α = 1 α= 2 α = 3

0.001 1.05e-3 9.43e-4 1.09e-3 1.49e-3 13.0e-3

1-norm

0.002 1.05e-3 9.44e-4 1.09e-3 1.49e-3 13.0e-3

0.005 1.06e-3 9.61e-4 1.11e-3 1.50e-3 13.1e-3

0.01 1.12e-3 1.03e-3 1.17e-3 1.55e-3 13.1e-3

0.02 1.35e-3 1.27e-3 1.40e-3 1.73e-3 13.3e-3

0.001 1.18e-3 1.09e-3 1.26e-3 1.68e-3 16.4e-3

2-norm

0.002 1.19e-3 1.09e-3 1.26e-3 1.68e-3 16.4e-3

0.005 1.20e-3 1.11e-3 1.27e-3 1.70e-3 16.4e-3

0.01 1.27e-3 1.19e-3 1.34e-3 1.75e-3 16.4e-3

0.02 1.52e-3 1.45e-3 1.59e-3 1.95e-3 16.5e-3
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a) 1-norm errors b) 2-norm errors

Figure 4: Visualization of relative error comparison in bidirectional communication. The thicker lines in
the middle show the means on 10 repetitions. The widths of the light-colored regions are equal to twice
the corresponding standard deviations.

5.3. Comparison of SGS-ADMM and IPM

Our SGS-ADMM algorithm and the traditional interior point method (IPM) can both be

utilized for solving LERW models. In this part, we compare their efficiency on LERW with

α= 2. The quadratic programming solver in CVXOPT§ is applied to implement IPM. Table 3

shows the CPU time of the algorithms on two types of communication and the difference

in their computation results. We can see that the two algorithms bring about close results,

while SGS-ADMM has an outstanding speed advantage. SGS-ADMM is about two orders

of magnitude faster than IPM at N = 200 and this gap in performance widens further with

larger values of N .

Table 3: Comparison of SGS-ADMM and IPM in running time and results on LERW with α = 2. A dash
means it cannot be calculated because of memory error.

Type N m l
CPU time (sec) speed-up

ratio

‖x ADMM − x IPM‖2
‖x ∗‖2ADMM IPM

Unidirectional

50 2450 2401 0.52 0.87 1.67 1.22e-4

100 9900 9801 6.75 22.5 3.33 6.95e-5

150 22350 22201 9.86 300 30.4 6.04e-5

200 39800 39601 16.48 2438 148 6.67e-5

250 62250 62001 50.2 - - -

Bidirectional

(θ = 0.001)

50 2450 2401 0.34 0.78 2.29 1.20e-4

100 9900 9801 6.46 14.5 2.24 6.24e-5

150 22350 22201 9.28 338 26.4 6.43e-5

200 39800 39601 14.1 2448 173 7.79e-5

250 62250 62001 69.7 - - -

§https://cvxopt.org/
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Fig. 5 presents the memory usage of the two algorithms. Communication type has no

impact on the size of the LERW model and thus on the memory consumption, meaning

the two subgraphs are nearly identical. It is evident from Fig. 5 that SGS-ADMM also

performs remarkably well in terms of memory consumption. Specifically, it takes less than

300MB at N = 250, while the usage of IPM has reached about 6GB at a smaller scale

N = 200. The usage of IPM at N = 250 is not given because it is beyond the memory limit

of approximately 10.5GB (system processes and some necessary programs occupy about

35% of the machine’s memory).

Figure 5: The memory usage of SGS-ADMM and IPM. Left: Unidirectional communication. Right:
Bidirectional communication with θ = 0.001.

6. Conclusion

Considering the positive correlation between RTT and asymmetry in WANs, we pro-

posed the LERW model. RTT is used to add a weight to each term in the summation so

that pairs of hosts with large RTTs can dominate greater asymmetries. We proved the ra-

tionality of the model in theory and verified its excellent effect in experiments. Moreover,

we found the model performs best at α = 2. Hence, we recommend using α = 2 in the

engineering. In order to adapt to the large scale, we also designed a solving algorithm

SGS-ADMM, which is significantly superior to the general interior point method in both

memory consumption and computation speed.
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