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A POSTERIORI ERROR ESTIMATES FOR
DARCY-FORCHHEIMER’S PROBLEM COUPLED WITH THE
CONVECTION-DIFFUSION-REACTION EQUATION

FAOUZI TRIKI, TONI SAYAH*, AND GEORGES SEMAAN

Abstract. In this work we derive a posteriori error estimates for the convection-diffusion-reaction
equation coupled with the Darcy-Forchheimer problem by a nonlinear external source depending
on the concentration of the fluid. We introduce the variational formulation associated to the
problem, and discretize it by using the finite element method. We prove optimal a posteriori
errors with two types of calculable error indicators. The first one is linked to the linearization and
the second one to the discretization. Then we find upper and lower error bounds under additional
regularity assumptions on the exact solutions. Finally, numerical computations are performed to
show the effectiveness of the obtained error indicators.
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1. Introduction.

This work deals with the a posteriori error estimate of the Darcy-Forccheimer
system coupled with the convection-diffusion-reaction equation. We consider fol-
lowing system of equations:

%K‘1u+é|u|u+Vp = f(,C) inQ,
p

divu =0 inQ,

(P) —aAC+u-VC+reC = g in 2,

u-n 0 onl,

C =0 onl,

where ) C ]Rd, d = 2,3, is a bounded simply-connected open domain, having a
Lipschitz-continuous boundary I' with an outer unit normal n. The unknowns are
the velocity u, the pressure p and the concentration C of the fluid. |.| denotes the
Euclidean norm, |u|? = u-u. The parameters p, u and 3 represent the density of
the fluid, its viscosity and its dynamic viscosity, respectively. [ is also referred as
Forchheimer number when it is a scalar positive constant. The diffusion coefficient
« and the parameter r( are strictly positive constants. The function f represents an
external force that depends on the concentration C' and the function g represents
an external concentration source. K is the permeability tensor, assumed to be
uniformly positive definite (i.e 27Kz > 0 for all z € R?\ {0}) and bounded such
that there exist two positive real numbers K,, and Kj; such that

(1) 0< Km < HK_luLoc(Q)dxd < KM~

It is important to note that K, should be smaller than the smallest eigenvalue of
K~ over Q and Kj; could be very large.
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System (P) represents the coupling of the Darcy-Forchheimer problem with the
convection-diffusion-reaction equation satisfied by the concentration of the fluid.
The same system can represent the coupling of the Darcy-Forchheimer system with
the heat equation by replacing the concentration C' by the temperature T and
setting ro = 0.

Darcy’s law (see [31] and [42] for the theoretical derivation) is an equation that
describes the flow of a fluid through a porous medium. This law was formulated
by Darcy based on experimental results. It is simply the first equation of the
system (P) where the dynamic viscosity § = 0. In the case where the velocity
of the fluid is higher and the porosity is non uniform, Forchheimer proposed the
Darcy-Forchheimer equation (see [22]) which is the first equation of system (P)
by adding the non-linear term). Several numerical and theoretical studies of the
Darcy-Forchheimer equation were performed, and among others we mention [25,
27, 32, 28, 33].

For the coupling of Darcy’s equation with the heat equation, we refer to [9]
where the system is treated using a spectral method. The authors in [7] and [16]
considered the same stationary system but coupled with a nonlinear viscosity that
depends on the temperature. In [17], the authors derived an optimal a posteriori
error estimate for each of the numerical schemes proposed in [7]. We can also refer
to [3] where the authors used a vertex-centred finite volume method to discretize the
coupled system. For physical applications of system (P), we refer to [39]. In [36],
we introduced the variational formulation associated to system (P), and we showed
uniqueness under additional constraints on the concentration. Then, we discretized
the system by using the finite element method and we showed the existence and
uniqueness of corresponding solutions. Moreover, we established the a priori error
estimate between the exact and numerical solutions and introduced a numerical
scheme where we studied the corresponding convergence.

I. Babuska was the first who introduced a posteriori analysis (see [4]), then it
was developed by R. Verfiirth [41], and has been the object of a large number of
publications. Many works have established the a posteriori error estimates for the
Darcy flow, see for instance [2, 10, 11, 29]. In [17], the authors established a pos-
teriori error estimates for Darcy’s problem coupled with the heat equation. Sayah
T. (see [34]) established the a posteriori error estimates for the Brinkman-Darcy-
Forchheimer problem. Moreover, in [35], we established the a posteriori estimates
for the Darcy-Forchheimer problem without the convection-diffusion-reaction equa-
tion. Furthermore, several works established the a priori and a posteriori errors
for the time-dependent convection-diffusion-reaction equation coupled with Darcy’s
equation(see [12, 13]).

The main goal of this work is to derive the a posteriori error estimates associated
to the coupling system (P) for the numerical scheme introduced in [36]. We start
by recalling some auxiliary results from [36] concerning the discretization of system
(P), and the numerical scheme with the corresponding convergence. In a second
step, we establish the a posteriori error estimates where the error between the exact
and iterative numerical solutions are bounded by two types of local indicators: the
indicators of discretization and the indicators of linearization. Then, we show the
corresponding efficiency by bounding each indicator by the local error. Finally,
we present some numerical computations in order to show the effectiveness of the
proposed method.

The outline of the paper is as follows:

e Section 2 is devoted to the continuous problem.
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e In section 3, we introduce the discrete and iterative problems and recall
their main properties.
e In section 4, we provide the error indicators and prove the upper and lower
error bounds.
e Numerical results validating the theory are presented in section 5.
We further assume that the volumic and boundary sources satisfy the following
conditions:

Assumption 1.1. The functions £ and g satisfy:
(1) £ can be written as follows:

(2) Vx € QVC ER,  f(x,0) = fo(x) + £ (0),

where £y € L3 (Q)? and f, is Lipschitz-continuous with constant cg, > 0,
and verifies £1(0) = 0. In particular we have

v§ € R7 ‘fl(f)‘ < Cf1|§|a
(2) g€ L3(9).

Remark 1.2. The decomposition of the source term f(x,C) = fo(x) + 1 (C) in the
coupling of the Darcy-Forchheimer model with the concentration equation (or heat
equation with ro = 0) has physical explanations that can be related to real situations
involving fluid flow and concentration transfer (or heat transfer). Indeed the term
fo(x) represents the source contribution related to fluid flow through porous media
(modeled by the Darcy-Forchheimer equation), and the term f1(C) represents the
impact of the concentration on the source term. Therefore, the separation of the
source term simplifies the treatment and the study of the considered coupling system.

2. Variational Formulation

In order to introduce the variational formulation, we recall some classical Sobolev
spaces and their properties. Let x = (1,22, ...,24) € R, and let o = (o, g, . . .,
aq) be a vector of non negative integers, set |a| = Z?:l «;, and define the partial
derivative 9% by

oled
© 0xyt0xs? L 0xGt
Then, for any positive integer m and number p > 1, we recall the classical Sobolev
space [1, 30]
(3) WmP(Q) ={v e LP(Q); V|a] <m, 0% € LP(Q)},

equipped with the seminorm
1
@) ooy = (32 [ 0P ax)?
|a]=m Q
and the norm
(5) lollwroe = (3 1olen)

0<k<m

When p = 2, this space is the Hilbert space H™(£2). The definitions of these spaces
are extended straightforwardly to vectors, with the same notation, but with the
following modification for the norms in the non-Hilbert case. Let v be a vector
valued function; we set

(6) Il oy = ( /2 V[P dx)?,

80{

=
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where |.| denotes the Euclidean vector norm.
For vanishing boundary values, we define

Hy () ={v € H'(Q); v} = 0},
W (Q) ={v € WH(Q); v, = 0}

We shall often use the following Sobolev embeddings: for any real number p > 1
whend=2,or1 <p< f—j‘g when d > 3, there exist constants .S, and Sg such that

(7)

(8) Vo€ HY(Q), [vllire) < Spllvll e
and
(9) Vo€ Hy(Q), |[v]lr@) < Splvlaq)-

When p =2, (9) reduces to Poincaré’s inequality.
To deal with the Darcy-Forchheimer, we recall the space
(10) L3(Q) = {v e L*(Q); / vdx = 0}.

Q
It follows from the nonlinear term in the system (P) that the velocity u and the
test function v must belong to L3(Q)?; then, the gradient of the pressure must
belong to L2 (2)%. Furthermore, the concentration C' must be in HZ (). Thus, we
introduce the spaces (see [25])

X=L3Q)¢, M=Ww'"3(Q)nL}Q), Y =H)Q.
Furthermore, we recall the following inf-sup condition between X and M (see [25]),

v(x) - Vg(x) dx

(11) inf sup 22 =1
9€M vex ||V||LS(Q)d HV‘J“L%(Q)

We introduce the following variational formulation associated to problem (P):

Find (u,p,C) € X x M x Y such that:
p - 8
Vv e X, " /Q(K lu(x)) - v(x) dx + 5 /Q [u(x)|u(x) - v(x) dx
+ /Q Vp(x) - v(x)dx = /Qf(x, C(x)) - v(x)dx,
Vg € M, /QVq(x) -u(x)dx =0,

VS EeY, a / VC(x) - VS(x) dx + / (- VO)(x)S(x) dx
Q Q

w0 [ CO0sEdx = [ gx)S(x) dx.

Q

The existence and uniqueness of the solutions to the problem (V,) can be found in
[36]. To study the discretization of the variational problem (V,), it is convenient to
introduce the nonlinear mapping;:

A: L3 = L3(Q)
v — A(v) = Pr-1v + é|v|v.
P p
We refer to [25, 21] for the following useful results.
Property 2.1. A satisfies the following properties:
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(1) A maps L3(Q)% into L2 (Q)% and we have for all v € L3(Q)%:
. B 2
HA(V)HL%(Q)d < P | K 1||Oo HV“L%(Q)d + » V1720 -
(2) For all (v,w) € R% x R, we have,
= B
2 A - A< (LR v ) -

(3) A is monotone from L3(Q)% into L3(Q)%, and we have for all v,w €
L(Q)7,

(13) /Q (AV(x)) = AW(x))) - (v(x) — w(x)) dx
2 max(em [V = WliEs o 5 Kon IV = Wil3aoye),

where ¢, s a strictly positive constant.
(4) A is coercive in L3(2)4:

/ A(u) - udx
lim Jo 00000

= +00.
all syt vee 0l Loy

(5) A is hemi-continuous in L3(Q)?: for fized u,v € L3>(Q)¢, the mapping
t— / A(u+tv) - vdx
Q

s continuous from R into R.

3. Discretization

In this section, we recall the discretization of problem (P) introduced in [36], and
restrict the analysis to dimensions d = 2,3. We begin by introducing a nonlinear
discrete problem associated to (P) and then we recall the corresponding properties
(bounds of the discrete solution, a priori error estimate, ...). Next, we introduce
an iterative problem in order to approximate the solution of the nonlinear discrete
problem and to establish the corresponding bound and convergence under some
assumptions.

We assume that €2 is a polygon when d = 2 or polyhedron when d = 3, so it
can be completely meshed. Next, we describe the space discretization. A regular
family of triangulations (see Ciarlet [14]) (7x)p of €2, is a set of closed non degenerate
triangles for d = 2 or tetrahedra for d = 3, called elements, satisfying

e for each h, 2 is the union of all elements of Tp,;

e the intersection of two distinct elements of 7y, is either empty, a common
vertex, or an entire common edge (or face when d = 3);

e the ratio of the diameter h, of an element k € T to the diameter p,
of its inscribed circle when d = 2 or ball when d = 3 is bounded by a
constant independent of h, that is, there exists a strictly positive constant
o independent of h such that,

hy
(14) max — < g.
KETh Pr
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As usual, h denotes the maximal diameter of all elements of 7;,. To define the finite
element functions, let » be a non negative integer. For each k in 7T, we denote by
P,-(x) the space of restrictions to x of polynomials in d variables and total degree
at most , with a similar notation on the faces or edges of k. For every edge (when
d = 2) or face (when d = 3) e of the mesh T, we denote by h, the diameter of e.

In order to use inverse inequalities, we assume that the family or triangulations
is uniformly regular in the following sense: there exists Sy > 0 such that, for every
element x € Ty, we have

We shall use the following inverse inequality: for any numbers p,q > 2, for any
dimension d, and for any non negative integer r, there exist constants cr(p) > 0,

cj(q) > 0, and ¢z, > 0 such that for any polynomial function v, of degree r on an
element k or an edge (when d = 2) or face (when d = 3) e of the mesh Ty,

d_d
lvnllLe ey < cr@)hE ? lonll L2 (e

d=1_d-1
1e) lonllace) < cs@he” 7 Jonllr2ce),
d_d_q
on a1 ey < cLhe * ”UhHLp(,@) )

where ¢y, ¢; and ¢y, depend on the regularity parameter o of (14).

Let X;, C X, My, C M and Y}, C Y be the discrete spaces corresponding to the
velocity, the pressure and the concentration. In the following section we will give
the explicit form of these spaces and introduce a nonlinear discrete problem.

3.1. Discrete Scheme. We recall the discrete problem introduced in [36]: Find
(uh,ph,Ch) € X}, x My, xY;, such that

(17)
Vv, € Xy, / A(up) - vpdx +/ Vpp - v dx = / £(Ch) - vp dx,
Q Q Q
Van € My, Van -updx =0,
(Var) Q
VSy € Y, OL/ VC, - VS, dx + / (uh . VCh)Sh dx
Q Q
1
—&—f/ div(up) CpSpdx + ro/ ChSh dx = / gSy dx.
2 Ja Q Q

In the following, we will introduce the finite dimension spaces X, M} and Y},.
Let x be an element of 7, with vertices a;, 1 < i < d + 1, and corresponding
barycentric coordinates A;. We denote by b,; € Py11(k) the basic bubble function :

(18) Bre (%) = A1 (%) A1 ().

We observe that b, (x) = 0 on 0k and that b,(x) > 0 in the interior of &.
We introduce the following discrete spaces:

X, ={v € () VK € Th, vi|s € P(r),
My, ={qn € CO(Q); VK € Th, gnls € P1(x)} N L(Q)(Q)7
(19) Vi ={gn € C°(Q); Vi € Th, qnlx € P1(k)} N HE(R),

Vi :{Vh € Xh;th S Mh,/ Vap - v, dx = 0},
Q

where
P(k) = Pi(k) @ Vect{by}.
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In this case, the following inf-sup condition holds [24]:

/th - v dx
(20) Vg, € M,, sup 22—

> Ballgnllay s
vheXp ||VhHXh

where (5 is a strictly positive constant independent of h.
The existence and uniqueness of solutions of problem (V) can be deduced from
inf-sup condition (20) (see for instance [36]).

In order to recall the a priori error estimates and establish later the a posteri-
ort error bounds, we will introduce some projection operators. We shall use the
following results (see [36] and [35]):

(1) For the concentration: there exists an approximation operator (when d = 2,
see Bernardi and Girault [8] or Clément [15]; when d = 2 or d = 3, see
Scott and Zhang [38]), Ry, in the space of linear continous operators from
WLP(Q) to Yy, LIWLP(Q);Y},), such that for all & in Tp,, m = 0,1, 1= 0,1,
and all p > 1,

(21) VS e WHP(Q), |S = Ru(S)|lwmaw) < clp,m, 1) RS wivan(a,)s

where A,; is the macro element containing the values of S used in defining
Ry (S). Furthermore for all £ in 7Ty, for all e in Ok and for all S € H(Q),

(22) IS = RuSlL2(e) < ceh1S| 1 (w,),
where ¢, > 0 is a positive constant independent of A and w, is the union of
elements of 7, that intersect e.
(2) For the velocity: We introduce a variant of R, denoted by Fj, that is stable
over LP(Q)%:
(23) H]:huHLp(Q)d <Gy ||uHLp(Q)d , forallp=>1.

(see Appendix in [23])

(3) For the pressure: Let ry, be a Clément-type interpolation operator [15]. We
have the following error estimate: for all k in Ty, for all e in Ok and for all
g € WH32(Q),

(24) lg = rrallLs/200) < cuhilalwrsrzw,)

and

(25) lg = rnallsr2(e) < cehe’*lalworz )

where ¢, > 0 and ¢, > 0 are constants independent of h, and w, is the
union of elements of 75 that intersect k, including & itself.

We recall the following theorem of a priori error estimates betwen the exact
solution (u,p,C) of Problem (V,) and discrete solution (up,pn,Ch) of Problem
(Van) [36]:

Theorem 3.1. Under Assumption 1.1, let (up,pn,Cp) be a solution of problem
(Van), and (u,p,C) be a solution of problem (V). If (u,p,C) are such that C €
H2(Q), uc Wh3(Q)? and p € H*(Y), and satisfies the following condition.:

apk,,
26 SClwrs i+ || C || poe (o) < ——2—,
(20) Byt 1€ i g7 g
then, we have the following a priori error estimates:
@) 10~ Cilm@t | u—w e + 1 V=) I3 0, < ah
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and
(28) | u—uy, [|ps)e< eah®?,
where ¢1 and co are strictly positive constants independent of h.

The following proposition gives a bound for the discrete velocity in L5(2)¢ which
will be used in Section 4.

Proposition 3.2. Under the assumptions of Theorem 3.1, we have the following
bound:

(29) anllps(qye < é(u, p, C)
where ¢(u,p,C) is a positive constant independent of h.

Proof. Asu € W13(Q)4 ¢ L5(Q)%, and using a triangle inequality, we start from
the following bound

anllpe(qye < llan = Frullpoqye + 1Fnull pogya -

Using the fact that the operator Fj, is stable over L6(Q)¢ (relation (23) for p = 6),
and that the mesh is uniformly regular, we get the bound

/3

[anl Lo (ye < ch™ % lun = Frull 2 gy + cllull o (g

< ch™3(|luy — ul[ 2y + lu = Frullp2gya) + cllull o qya -

Finally, using the a priori error estimates, the properties of the operator Fj, we
get the desired result.
|

3.2. Successive approximations. As the problem is nonlinear, we introduce
a straightforward successive approximation algorithm (see [36]) which converges
to the discrete solution (up,pn,Ch) of Problem (V) under suitable conditions.
The algorithm proceeds as follows: let uf € Xj and CP € Y, the initial guesses.
Having (u},C}) € Xp x Y}, at each iteration i, we compute (uzﬂ,pfl,C’?l) €
Xy x My, x Yy, such that

Vi € X, v [o(uptt —ud) - viadx + & Jo (KTt - vy dx
—|—£/ [ug [uitt - vy, dx +/ Vpitt vy, dx = / £(CL) - vy, dx,
PJa Q Q
(Vani) { Van € M, [ Van - u;tdx =0,
VS € Yy, a/ VOt VS dx + / (uitt . veith)s, dx
Q Q

1 ) . .
+5 / div(uit) Cit Spdx + 1o / CirlSy dx = / gSh dx,
Q Q Q

where v is a real strictly positive parameter. Later on, the parameter v will be
chosen to ensure the convergence of algorithm (V,p;). At each iteration i, having
u, and C}, the first two lines of (Vjp,;) computes (u™, pitt). Next, we substitute
u}fl by its value in the third equation of (V,p;) to compute C’ffl.

The additional term fQ(uffl —u})-vpdx was added to ensure the convergence
of the algorithm by calibrating the parameter . In fact, without this additional
term, the convergence becomes more complex and requires additional assumptions

on the exact solution.
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For the existence and uniqueness of the solution of problem (V,;), we recall the
following theorems (see [36]) with few modifications that give the parameter ~y
explicitly. The main ideas in the proof are exactly the same but for the reader
convenience, we detailed some steps.

Theorem 3.3. In addition to assumption 1.1, we suppose that f € LQ(Q)d. For
each (u},C}) € X, x Yy, problem (Vap;) admits a unique solution (uﬁfl,pﬁfl, C’,’fl)

€ Xp X My, xYy,. Moreover, we have the following bound

+1 S5
(31) 1y e < o H9||L2(Q)~
Furthermore, if the initial value uY) satisfies the condition
(32) Hu?lHLz(Q)d < Li(f,9),
where

SO 2
Li(f,g9) = M%m(HfOHm(Q)d + Cﬁ% 91l 22 ()

and if v > v, with

326 3, app (P PEM (53)
= By f, W2)
gl 27/)01 Ko, + el | 0||L2(Q)d +on o ||9||L2(Q)

(33) ,
3232 _ (59)2
+mc?h d (fOL2(Q)d +Cf1% ||g||L2(Q) ,

then, the following inequalities hold

(34) ||u2+1“[,2(9)d S Ll(f7g)7
and
) K,,
(35) i ages < (5™ + LR ().

Proof. To prove the existence and uniqueness of the solution of Problem (V)
which is a square finite dimension linear system, it suffices to show the uniqueness
which is readily checked for each (uj,,C}) € X, x Yj,. In fact, let (uj', pif', C3 1)
and (u;ﬁ; , pfﬁzl, CZEI) be two solutions of problem (V,;;). Denote wy, = uﬁll —u}j&l
and &, = pﬁjll — p}le. We deduce from the problem (Vgp;) that (wy, &) is the

solution of the following problem
Yun, € Xy, ’}//Wh~Vth+H/K71Wh~Vth
Q pJa

—I—% fQ |u§l\wh - vp dx + fQ Vgh -vpdx =0,
thEMh, /th-thXZO.
Q

Taking (vp,qn) = (Wp, &) and remarking that / [ut,||wp|? dx is non negative, we
)

obtain by using the properties of K1, the following bound

UK,
<7 + pm> w72 0ye < 0.

Thus, we deduce that w, =0 (u}jll = u;:r;). The discrete inf-sup condition (20)
implies that &, = 0 (p}‘:rl1 = p2+21). This gives the uniqueness of the velocity and
the pressure for each iteration .

Let us now prove the uniqueness of the concentration. We denote by C,ifl =
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C’;:rll — CZ:';. Then, the third equation of problem (V,;;) gives: Find C’fL'H €Y,
such that for all S;, € Y},

(36) o / VOt VS, dx + / (- Vet Sy, dx
Q

/ div(ujtt) €yt Spdx + o / Ot Sy dx =0,
Q

where (u}"!, pi*!) is the unique solution of the first two equations of problem (V).
By takmg ShL = C”+1 and using the antisymmetric property we get the uniqueness
of the concentratlon

The bound (31) can be deduced immediately by taking S, = C;*' in the third
equation of problem (V,z;), and by using the Cauchy-Schwartz inequality.
i1

To prove the bound (34), we need first to estimate the error Huh — u%Hp(g)d in

terms of the previous value u}. Taking the first equation of problem (V,;;) with

vy = thrl — uz € Vy, yields

VHU%H uh||L2(Qd+ /K ! H_l (u ;L+1 u;L)dX

/ it (i — il )dx = / £(CI) - (it — i )dx.
Q
By inserting u}, in the second and third terms of the last equation, we get,
= g+ [ K ) ()

2 [ g = i ax

/ (Ch) (uj, il u}L) dx — ; QK (ufj‘l — u}l) dx

/ |uh|uh ZH - u%) dx.

Using the properties of K1, the Cauchy-Schwartz inequality and relation (16) give
the following

(38)
7 7 /’[’Km [ [
Y o™ = k| e + = [ = ][
i [ 7 IU‘K % 7 %
< Hf(ch)HL2(Q)d Hu i uhHL2(9)d + == Hu - uhHL2(9)d ||uh||L2(Q)d
ﬂ 37— 2 3 7
2O [ gy 10" = Wbl a0
We simplify by ||uj™ — u§L||L2(Q)d to obtain:
K, i
O E = e

i PEN B s, gy
< IE(C) 2 ye + T”uh”LQ(Q)d + ;C% 2 [lup 172 gya-

Using the properties of f and the bound of the concentration (31), we get the
following estimate:

(39) Juptt — af |l 2y < La(f, g, |[u) ] r2(0)a),
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where

P (53)? B 3,
L2<faga77>:MTm(HfOHL%Q)d‘i‘Cﬁ%HgHLQ(Q +T77+ cth 2772)7 neRy.

Then, we are now in position to show relation (34). We consider the first equation

of problem (V,;) with v;, = u}fl and obtain

,y/<u2+1 7) z+1 dx + & /K 1 1+1 hLl dx + — H zJFIHLS(Q)d

(10) ;
/f Ch ZH dx + — / |ul+1| - \u2|)|u2+1|2 dx.

Using the properties of K~1, the Cauchy-Schwarz inequality and the relations ab <

1 1 K
—a® + b2 and a?b < b3+252a)with6:upm and 0 = (3’[2)2/3 we get

2¢ - 3((53

v v i i |12
5 15 g — HuhHLz oo 5 [0 = Wi )

uKm

(41) i ey + 5, HW“HLS (@)1

ﬁ 7 i 3
= QuKm £y ”“ t a7, 27p cth™ 2 [[uy ™! — [ e -
We denote by

i i 166 i
1(HuhHL2(Q)d) = 5 27p Sh d/2L2(f’g7 ||uh||L2(Q)d,)

which is not necessarily positive at this level. Therefore, by using the bound (39),

we obtain the following bound:
3 195 oy = Huh|IL2(Q)d +er([[uil o gay) 195" = Wil e
(42) MK

NKm i i
[ || W —Li(E, g).

(Q)d + |L3(Q)d =

We now prove estimate (34) by inductlon on ¢ > 1 under some condition on v that
we will determine. Starting with relation (32), we suppose that we have

(13) 132 e < La(E.9).

We have two situations:

||ul+1||L2(Q)d < ||uh||L2 (@) which immediately leads to
HuH_l HLQ(Q)d < Ll(fvg)'
||ul+1||L2(Q)d > ||u§L||L2(Q)d. By using the induction condition (43) and the

fact that the function Lo is increasing with respect to 7, we chose

16
l Z B 3h d/2L2(f7g,L1(f’g))
27 27p
(44) 165
3p—d/2 i
Z 27pclh / L2(f7g? u;lHL2(Q)d)7

to get cl(HuZHLQ(Q)d) > 0, and deduce from relation (42) that

Huz+1HL2(Q)d < Ly(f, g).
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Then relation (34) holds. The bound (35) is a simple consequence of (42) and (34).
Now we focus on the inequality (44). It is easy to show that Vi € Ry,

£, (59)? B g, _a p
(45) Lo(f,g,m) < WK (HfOHLz(Q)d+72||9HL2(Q)) K 77+ C% zuKmn2’
and then to get by using the definition of L:
P pE
Ly(f,9,L1(f, 9)) < (MK + el ) <f0L2(Q)d +Cf1 ||9||L2 Q))
m
(46) 2
6 0)2

+

(s3)
3K3md”@mm@dmﬂwyw

Relation (44) and the last inequality allow us to obtain
16
T B 3 3

- Y2158, 9, L1(F,9)) > 6(7)

v 168 5. _ pK (59)
0 = § = oot (i + 22 (Woll oy + et 2 gl o

1652 (59)2 ’
- gz i (Il e + o6 2 gl )

We remark that ¢(v) is a polynomial of first degree with respect to v with only
root v, > 0. Finally, we get ¢(y) > 0 for all v > ~.. O

We mention that the bounds of the iterative velocity ((34) and (35)) are obtained
under the condition v > .. It is important to note that v, is not easy to compute
and depends on the mesh step h.

The next theorem shows the convergence of the solution (uf,pi, C}) of problem
(Vani) to the discrete solution (up, pp, C) of problem (V).

Theorem 3.4. Under the assumption of Theorem 3.3, we assume that the concen-
tration solution of the problem (V,) satisfies

0 HK o
(48) S61Clwrs(@) +1C] L) < 200,50
Moreover, if v satisfies the condition
(49) v > max{7ys, Yax },
where
2pB32c8h—1 (59)2 2
e = ot — (16 o + e 2 Nz

and if

1 ||CHL°°(Q) 6/(6—d)
50 h < C , e~ e )
(50) < (5o (Clnsiey + — 4 )

where ¢y is the constant in (27), then the solution (ui,pi,CL) of problem (Van;)
converges in L2(Q)? x L%(Q) x HY(Q) to the solution of problem (V,p).
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Proof. We start by substracting the third equation of problem (Vgj;) from the one
of problem (V,5,) to get

a/ v(Cy - CtY VS, dx+/ uy, - VC, Sy, dx
Q Q
(51) —/Qll;fl'V02+1Shdx+7"0/52(0h—C}ifl)shdx

1 . . 1
_! / divuit CitLS, dx — © / div upCh S dx.
2 Ja 2 Jao

Inserting VY, in the last term of the left-hand side and C}, in the first term of the
right-hand side of the previous relation lead to

a/ V(C — Cj) - VS dx + 1o / (Cp — O} Sy, dx
Q Q

f/ it v(Ctt - C) Sy dx

(52) 1“

= 5/ divu, " (CyT — Cp)Spdx + / (up! —uy) - VO,S), dx
Q Q

1 )
+ 5/ div(utt — up)CL S, dx.
Q

Finally, by inserting VC' in the second term of right-hand side and using the Green’s
formula and the antisymmetric property, we get

a/ V(Ch — C}?Ll) . VSh dx + 79 / (Ch — CZJFI)Sh dx
Q Q

1 . 1 .
(53) = 5 / (u;fl - uh) . V(Ch - C)Sh dx + 5 / (ufl - uh) . VCSh dx
Q Q
1

A 1 ,
— = / (Wit —uyp,) - VS (Cy — C)dx — / (Wit —uy,) - VS, C dx.
2 Jo 2 Ja

By taking Sy, = C, — C; ™, we obtain
alCh = G0 < S¢ ||u;1+1 - uhHL3(Q)d Ch = Clio
Sg i+1
(54) T [ = | 2 qa [Clwrs @)
1 i
+ 5 1€ Lo (0) Huh+1 - uh||L2(Q)d'

Finally, we get by using relation (16):

Z_ sof. - 1€ L=

. Cit'lua <3 |2erh™/°10 = Cilua + [Clwraco) + 578()
-

oy - uh||L2(Q)d :
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Furthermore, by taking the difference between the first equations of problems (V)
and (Vopi) with vi, = ul™ —uy, € Vj,, we get

2 Hum-l Y Huz+1

5
“’LHLz e~ Huh uhHLz(Q at g uhHL2(Q)d

w2 [ K- itoxs 2 [ il = i D (a — wx
P Jo

5 / (Jup ™ — upug) - (wt —ay)dx

/ (Ch) — £(Cp))-(ui = up) dx.

Q

By using the relation (13) and an inverse inequality we obtain,

¥ > Y >
Hqu uh”L2(Q)d D) [y, — uhHL2(Q)d
K ,
e e L ARERA A
o I I Bl

+ CfISS|C;L - C}L|1,Q Hu;l ot uhHLQ(Q)d

< L8 ) [ = gy 7 = 0l

+¢£,99|C} — Chlia Huﬁfl - lthLZ(Q).i .

1
We denote by c2 = éc?Ll(f, g) and we use the relation ab < —a® + %bz with
p

2e

= Hn o g

Y[R [ S e
(58) LRt PO (e

< /ff? gt - u,',HLz(md + MI% Cul? o-
‘We then choose
(59) % > lfl‘ih—d,
and denote by ¢z = % - lﬁhd > 0, to conclude that

I = w2y — 2k~ il
(60 e g L =

< Mw;l Chli -

uwKo,
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Combining (60) with (55) and using the a priori error estimate (27), we get

S = e = 3 =
e gy L o =
o < M/;m(cf“;g%)f 2;61h =D/ 4 |Clyris iy + |C”§§°<Q) i
= -
Thus, Assumptions (48) and (50) allow us to get
G e - )
" e = gy P [ g <0

Finally, (59) is clearly satisfied if v > ..
Thus, the last inequality gives (if Hu}l — uhHLZ(Q)d #0)

[up™ — |2y < [|uj, — up|r2()a,

so we deduce the convergence of the sequence (ui™ —u,) in L?(2)? and then the
convergence of the sequence uf, in L?(Q)<.

Finally, by taking the limit of equation (62), we get that the sequence uZH converges
to uy, in L2(2)%. The convergence of the concentration can be deduced from relation

(55) and concerning the pressure, we refer to Theorem 4.2 in [36]. O

Remark 3.5. In order to show the convergence of the algorithm, the assumptions
of Theorems 3.3 and 3.4 require the smallness of the exact concentration C (see
relation(48)) and the condition (49) which requires that v must be bigger than a
constant that is difficult to compute and depending on the mesh step h. Further-
more, Relation (50) demands that h must be smaller than a constant depending on
the exact concentration C where (u,p, C) is the solution of (P).

4. A posteriori error estimation

The a posteriori analysis controls the overall discretization error of a problem
by providing error indicators that are easy to compute. Once these error indicators
are constructed, their efficiency can be proven by bounding each indicator by the
local error.

As usual, for a posteriori error estimates, we introduce the following notations.
We denote by

e I'i the set of edges (when d = 2) or faces (when d = 3) of  that are not
contained in 0f).

e I'Y the set of edges (when d = 2) or faces (when d = 3) of x which are
contained in 0f).

For every element x in 7p, we denote by w, the union of elements K of 7} such
that k N K # ¢. Furthermore, for every edge (when d = 2) or face (when d = 3) e
of the mesh 7j,, we denote by

e w,. the union of elements of T adjacent to e.

e []. the jump through e € I} .
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In this and the next sections, the a posteriori error estimates are established for
slightly smoother solutions.

4.1. Upper error bound. In order to establish upper bounds, we introduce, on
every edge (d = 2) or face (d = 3) e of the mesh, the function

1, . i
(63) P ) [w;t! - n. ifeely,
h1 =

z+1 . b
u,"-n ifeel}.

A standard calculation shows that the solutions of problems (V) and (Vyp)
satisfy for all (v,q,5) € X x M x Y and (vp,qpn, Sn) € Xp X My, X Yy:
(64)

a | V(C—-Cithy - vSdx +/

(u~VC)de—/( Vot S dx
Q Q

Q
) 1 ) )
+7‘O/C’de—ro/C’fflde—f/divu}j'lC’,’flde

Z /g gn)(S — Sth** Z / VOt ] (S — Sp) ds

KETH r e€drNT

+ /(aac;'jl utt.veptt - div u, Ot — O+ ) (S — Sk)dx |

(65)
H/K‘ u— ) vdx+é/<\u\u—|uh|u’“ vdx+/Vp i) - vdx
P Ja P Ja
=2 [/( Vph =y ) - PR
KETH e P

- §| Dt £,(CL)) - (v — vi) dx
—|—’y/( L uh) -VdX+/ (£(.,C) — £,(0)) ~vdx+/ (£.(C) — £,(C})) - vdx
+ [ (@€ - £.C}) - via],

and

00 [ Vota-uiix= 3 [ [a-a)dvait i 3 [ oo aas),

KETh f e€Ok

where gp, is an approximation of g and f}, is an approximation of f. The approxi-
mations gp, and f;, are constants on each element x of 7, given by :

1
VC €Y,V €T, 1(C)|x = m/f( C)(x) dx
Since f; is cg, Lipschitz, we clearly have the following property :
(67) |1£n(C1) — fh(CZ)”LZ(,;) <e¢f ||C — CZHLQ(R) V(C1,C2) €Y xY.
From the error equations (64)-(66), we deduce the following error indicators for

each k € Tp:

(68) ) = Juptt =

(8)’
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(L i
(69) e = 1G5 = G o (o),
. . _ 1 . _ .
10 =hy |[aACT —uitt - VOET — S diva T O - oG+ gy
2 L2(x)
(70) 1 s -
T3 Z hé ||alvey 'n]eHLz(e) ’
eeamrfl
(71)
7 [ 7 — i ﬁ i A i
i = ” U =yt = ug) - ER gt = Slug 6|
p p L2(k)
and
(Ds) s il
(72) Nei = P Hd“’u HL?’(K) + Z h3 quh 1”L3(e)

e€Ok
The above indicators are of two types:

(1) n,iLll) and 77( 2); indicators of linearization (or iteration).

(2) 77,(51), nffZQ and n( ),

The first type expresses the errors between the exact and numerical solutions of
two consecutive iterations while the second type gives the error provided from the
discretization method (here the finite element method). One of the most important
applications of these indicators in the adaptive mesh method (as we will see in the
last section of this paper).

In order to establish the upper bound, we need to first bound the numerical
solution uZH in L5(2) in terms of the exact solution which is the subject of the
next lemma.

: indicators of discretization.

Lemma 4.1. Let the mesh satisfy (14), under the assumptions of Theorem 3.1,
Theorem 3.3, Theorem 3.4, there exists an integer ig depending on h such that for
all i > 19, the numerical velocity uZ+1 satisfies the following bound :

(73) Hul—i_lHLG(Q)d < él(u7pa C)
where ¢ is a constant depending on the exact solution (u,p,C) of problem (V).

Proof. Let (u,p,C) be the solution of problem (V,), (un, s, Ch) be the solution of
(Van) and (ujt,pitt, O3+ the solution of (V).

By using (16) (for p = 6) and the bound (29), the term [u}""|1s(q) can be
bounded as following;:

(74) Huh+1||L6(Q < [fui™ - uhHLG(Q)d + [[unll Lo ()

S CIh_d/3 Hu;':rl - uhHLz(Q)d + é(uapv C)

As u?‘l converges to uy, in L2(Q)?, there exists an integer iy depending on h such
that for all i > ig we have
(75) ||I.IHF1 - uh”Lz(Q)d < hd/s.

Then inequality (74) and (75) give the desired result (73).
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Our main goal is to get an upper bound of the error between the exact solution
(u,p, C) of problem (V,) and the numerical solution (u}t*, pit C/™1) of (V) in
X x M x Y. In the next theorem we will bound the error of the velocity in L?(2)?
with the indicators. Unfortunately, we couldn’t bound the error u—uj"™ in L3(Q)?
by the indicators but we will bound a part v, of this error since we have (as we
will see later) the decomposition u — uffl = zg + v,.. Furthermore, we will bound
the error |lu—uj"! | £3(@ye but with the indicators to the power 2/3 (instead of the
power 1). The bound of the part v, of u — u}j‘l is crucial for the efficiency of the
method in the sense that the indicator n}?f) will be bounded locally by v, in L3
(that is the reason why we introduce the part v, of the velocity error).

We begin by introducing in the next lemma the part v, of u — uﬁflz

Lemma 4.2. There exists a velocity v, in L>(Q)? that solves the following varia-
tional problem:
(76)

Vg e M, /Vq~vrdx: Z (/(q—rhq)divu;‘fldx— Z (bi)l(q—rhq)ds)
Q

KETh R e€d, V¢
which satisfies the following bound:

(77) | Ve lls)e< c’2< Z (77,(@23))).

KETH

Proof. Using the equation (66) with ¢, = rpq, considering the inf-sup condition
(11), and the fact that the right hand side term is a continuous linear function of ¢,
we deduce the existence a velocity v, in X such that (76) is verified, and satisfying
the following bound:

1 ey
Ve lla@e< sup ——————| > [ 4= 71 [ ar20) | divug,™ [|zae)
qeM ||V‘1||L3/2(Q)3 neT;
(78) h
+ 3 i ool a = e ]|
e€Ok

Thus, from the properties of the operator r,, the regularity of 7;, and the following
Holder inequality, (p = 3/2,q = 3)
n n 1 n 1
ey < (o af) (300
k=1 k=1 k=1
we get after cubing the last equation:
Ds)\3
(79) Ve [Fo@yes ez o (),
KETH

with ¢o > 0 is a constant independent of h. Finally, we obtain the wanted result
by taking the cubic root of the previous inequality. O

The next theorem states the upper bound of the error between the exact solution
(u,p, C) of Problem (V,) and the iterative solution of Problem (Vp;):

Theorem 4.3. Under the assumptions of Lemma 4.1, we suppose in addition that
the ezact solution (u,C) of Problem (V) satisfies: u € L>=(Q)? and

« uwK,,
80 SYIC|w. C oo < —=at | .
(80) 61Clwrs@)+ || C llLe@)< P P
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Then, there exists an integer ig depending on h such that ¥i > ig, the solutions
(u,p,C) and (ufl,pzﬂ,Cﬁl) of problems (Vo) and (Vani) satisfy the following
upper bound of error by the posteriori estimator:

| u— uh +1 HLZ(Q)CL + HC CH—lHHl + || v HLB(Q)d

(81) < 53( S @5 0l + 0l +n,(f2)
KETH

1D i g = an ey + 1 £0,€) = £(C) llz2e) )

where ¢3 is a positive constant independent of h.

Proof. Let us start with the concentration equation (64) tested with S = C' — C}™!
and Sy, = Rp(S). It can be written as:
(82)
; 12
o|C = G, M i) + 70 [|C = CL | 2

) 1 ) )
/(u VC)de+/( AR C’;L+1)de+f/divuﬁj‘leflde
Q Q

+Z[/g an)(S — Shdxf— 3 / VO n).(S — S ds

KETH K e€drNT

+/(aac,i+1 utt . veptt - dwu,“C”+1 roCy + gn) (S — Sp)dx|.

By insterting uj"! in the first term in the right-hand side of equation (82) and
recalling that
S=C- C’;f% the first three terms of the right-hand side in the previous equation
can be written as :
(83)

i i 1 , )
—/(u~VC)de+/(u;l+1 ~VCZL+1)de+§/ divul it S dx
Q Q Q
= _/Q((u u;:'l) VC)(C—C;?_l)dX

) ) ) 1 ) ) )
- /Q(u;jl V(O =it (C -y dx + A divujtcit (o - ¢t dx.

By applying Green’s formula and using the fact that the fluid is incompressible,
the last two terms of (83) can be written as:

) . ) 1 ) . .
- /Q(u;jl V(C —Cih(C - Oty dx + 3 /Q divaitcit (o - oty dx

1 ) )
= 7/ divuj™c(C -ty dx
Q
1 .
=—5 [ div(u— wthe(C - oty dx
Q

=5 [=ui (veE - ot +ovie - ¢ ) ax
Q
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Thus, the right-hand side of Equation (83) can be written as

- [ (=) voyc -t ax
- [ it vie - e - 6 ax
(85)
/ divujt' it (C - ity dx
= /Q(“ ulty . (VO(C = CitY) — OV(C — Cith)) dx.
Using Holder inequality, the last term can be bounded by
- [ (=) vOyC - €t ax
- [ @it vie - - o) ax
+; /Q divul IO (C — O dx
< (8310 w0 + 1€ e ) [0 = 05 2 o 1€ = G o

Now, the last three terms of the right-hand side of (82) can be straightforwardly
bounded by

(87)
X — — i+1
’;U:h [ /K (9= 9n)(S = Sn)d eegmp /VO o(S = Sn)ds

- / (aACST —uitt . voitt — div w et — O 4 ) (S — Sh)dx}

, , , 1 L ,
< Z [(H aACT —uitt . vett — 5 divu ot = 1o Cr + gn |l p2
KETH
g~ gnllzage) |8 — Sn s

1 .
+3 S Ve ] 2l S = Sh il

e€okNI},

Then the fact that S, = Rj(S), the approximation properties of Ry, equations
(86) and (87), and the regularity of Ty, yield (by using the discrete Cauchy-Schwarz
inequality for the equation (87))

|

alC = iy < et 3 (02 + 2 1lg—gn I3a)))
KETh

1
+ 5 (561C w1 3(@) + 1C| o () [0 = "

1
A PPy
< Cll( Z (77,(31) +h [l 9= gn |lL2(x) ))
KETH

+ 5(S})?|C’|W1,s(sz) H1C g (@) 1o =0 2 g
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Next, we focus on the velocity equation. The velocity error equation (65) can be
written as

H/K‘ (u—uift). vdx—l—é/(|u|u—|u§l+1|uff1)-vdx
P Ja

/Vp pﬁfl -vdx

= B (i = g uit) - vdX+v/( 1 yi) - vdx
P Ja Q
(89) + Z / szJrl ( i+1 ui) IU’K 1 z+1
KETH K

— %u%\u?‘l + fh(Cfb)) (v —wvp)dx
+/ (f(.,C’) - fh(C)) -vdx+/ (fh(C’) - fh(C;)) -vdx

K

+L(fh(cg) —£(,C})) - va dx]

To simplify, we set zg = u— uﬁl — v, and we test (89) with v = zg and v, = 0.

By construction, (76) and (66) with ¢, = r,¢ imply that
(90) Vg e M, Vq-zgdx=0.
Q

Hence, (89) becomes
(91)

H/K*1z0~z0dx+ﬁ/K*1vr~zodx
P Ja P Ja
2 ) = g - / (lufu — [uf i) - v, dx
P Ja
7 i B ) 1 7
= [ =) = D[ (i i) a0 dx
Q P Ja
3 [ [ (v = )
KETH r
- ERht - ;luuw“ +£,(C})) - 2 dx

+/ (f(,C) —fh(C)) - Zo dX+/ (fh(C) —fh(C]Z.L)) A dX:|

We decompose the fourth term in the last equation as follows

/6/ (Juju — [u ity - v, dx

B/ Jul(u —ujt)- Vrd’”% / ([u] = [} ug - v dx.
Q
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Thus, equation (91) becomes by inserting +u in the second term of the right-hand
side, and by using the monotonicity of A

[ _
7/K 120+ 70 dx + e [u - IHHLS(QV
Q
SH/ |K*1vr||zo|dx+f/ |u|‘u-uﬁl+1||vr|dx
P Jo P Jo

0 vy [

ﬁ 7 7 7 [

(92) [t - ul ™ — llzol dx + [ o = i o
+Z JARR AR Y
KETH r

"K—l i1 p| ), [uit + £,(C)||zo] dx

/|f ) — fi( )||zo|dx+/|fh ) — £,.(C}) \|z0\dx}

o : i+1
By using the relation u — uj,

B,

= 70 + v, and applying (67), we obtain

120172y + em [[u = uZJrlHLS‘(Q)d

131§ Y;
< Ve[l 2y 120l L2 ()

5
*||u||L0 @ (llZoll2 ) + [[Vrllz2@)a) Vel L3 @)

5 i
5 Uvrllzz @ + llzoll 2oyl w ey Vel oy

+ 7yl - umlL?(Q)d 1Zoll 22 (c2)a
93 [3
(93) I — ey (1l o s + 2ol z2aye) 7ol 2y
B it
+ =}, —uh||L2(Q lull Lo )a 1Zoll 2 ()

+ Z (v i1 .UK 1 1+1 V(UZH—UZ)
KETh

ﬁ 1 7
- ;| up,|utt + £.(C) | 2y 120l 22 ()

+ 3 C) = £a(O)ll2mllZoll L2y + Y e lIC = Chll L2y 1ol L2 () -
KEThH KETh

Lemma 4.1 ensures that there exists an integer ¢y depending on h such that Vi >
1o, u}fl is bounded in L%(Q)?. Furthermore, we shall use the following inverse

inequality

luptt = wj oo (@ya < erh™ 2t — |l 22 0)e,

and the convergence of the sequence uf to u, in L?(Q2)? to deduce that we can
chose iy sufficiently large so that ||ujt! — uy, |2y < h¥? K, /2B¢r, and then

< uKm,

Hum - quLW(Q)d =95

. Therefore, equation (93) becomes by inserting C’,ifl
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to the last term

K
o ol aye + em [ =i |7 g

< 13:9Y;

B
[vellz2 (e [|ZollL2()e + ;Hu”LG(Q)d(”ZOHLQ(Q)d
+ Vel L2@)a) Vel Ls )a

B .
+ 561(11,]?, C)(HVT”LQ(Q)UZ + HZO||L2(Q)d)||VrHL3(Q)d

i i uKo,
+yluptt - wy, [l 22 () 1Zoll 2 () + 2 Vel z2()a 2ol L2 ()a
B 1+1 i
+ =[up™ = w2y [all Lee () 1Zol] L2 (0)a

/1/ _ . .
+ ) -Vt - K Lt = y(uptt - )
567_’1.

B, . .
- ;|u’h\uh“ + £,(C})l L2 (w) 120l £2()

+ > (. 0) = £(C) 22w l12ol| 2

KETh

+ 3 e G = Chllz2(o I Zoll 2y
KETH

+ > e 10— Cy M ey Izl 22 -
KETH

1 €
We use the decomposition ab < —a® + 5()2 for all the terms containing ||Z0||L2(Q)d

in the right-hand side of the prevzi?ous equation with e sufficiently small so that all
the terms of ||2o||2(q)« Will be dominated by the left-hand side. Then by using the
inequality [|v,|/z2qy¢ < |Q|1/6||VT||L3(Q)d, the regularity of 75, and by taking the
square root of the inequality, the following bound holds

(95)
ir1113/2
I 2o [l L2)a +em [[u— a7 Q)d
<& 1l ve sy + Z I i =, flree
KETH 5
+ 30 IVP + EE T (= ) + S g = (O]l
KETh P
+ > £.0) ffh<c> 2 + D2 NG = Chllanem )
KETh KETH

p .
+y/ NTmSQCfJC = C M)

where ¢ is a constant depending on the exact solution.
Thus we deduce from the relation u — uﬁl = zg + v,, the triangle inequality

[u—uitt L. @a<[u— utt —v, 2y + || Vi ||L2()e, using relations (95) and
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(77), and the following inequality:
[u— u?l | L2 (e

w o3 0 40 0l B £, 0) = 0[O e )
KETH

p .
+ 4/ mé’gcm(} — C;L+1‘H1(Q)~

When substituted into (88), this estimate for the velocity error gives

1 5 ,
(o= 5 (S8UCIwr 30+ I C ooy )Msgcﬁ)w T

(97) <a( Y OB+l -
KEThH

+ 77,21;-1) + 77,(@%2) +hi 1 g—gn 2y + [ £(,C) = £(C) |l L2(w) ))

In view of (80), the concentration estimate in (81) follows from (97), and in turn,
the velocity estimate follows by substituting (97) into (96). O

Remark 4.4. We mention that the previous theorem gives the upper bound of the
error under the smallness condition of the exact concentration C (see relation(80)).
Furthermore, we note that the constant appearing the upper bound (81) (in Theorem
4.8) is non-computable, but this fact does not affect the adaptive mesh method (in
the numerical simulations section) which uses only the definition of the indicators.

Remark 4.5. Similarly to Theorem 3.12 in [35], the last theorem gives an upper

bound for the error u— uZH in L2(Q)?. But unfortunately, it gives an upper bound

of |lu— u;::rlHLB(Q)d with the indicators to the power of 2/3 (see relation (95)).
Let us now show the upper bound of the error of the pressure:

Theorem 4.6. We retain the assumptions of Theorem 4.3. There exists a positive

real number i1 depending on h such that Vi > iy, we have the following bound
(98)

|90 =) e < a3 8 + 08+l + gl
KETH

1D 4 g = an llzage) + 1 £0,€) = a(C) 12w ) ).

Proof. Let (u,p,C) and (uj"', pit! C*1) be the respective solutions of (V,) and
(Vani). We test equation (65) with v, = 0 to get
(99)

V(p-pith) - vdx

Q

__H -1 i+1 B i (yyitl

=—— [ K (u—u;,") -vdx—— [ (Juju—|uj|u;"") vdx
P Ja P Ja

+Z[/

(= Vi = = i) = 2 = D i+ ) v
KETH ®

+7/(uz+1 —u)) - de+/ (£(.C) = £,(0)) - vdx

K

+ [ e) - nich) -vax)
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By using the Cauchy-Schwarz inequality, we get
(100)

‘/V il _ )vdX‘SCHu W, |2+ [1ag, = w22 )0 1V 22 (@)

1/2 o
ter( ST G C) — Bl ag) IVl ey + @ (uu — Jul juitt) - vdx
Q

KETH
i+l i+1 Y 1 z+1
| = Vot = y(uj, —up™) - K
KETH

5 i i+1 f Cz 2 1/2
_;|uh|uh + £ (Co)l L2 [V 22 ()

) 1/2
tes( D01 C=Chlliagy ) IVllzz@ye,

kel

By using the relation [|v||2(qya < [Q'/%]|v||13(q)q, all the terms of the right hand
side of the previous bound can be treated as in the previous theorem except the
third one which can be bounded as following:

(= g ™ v) | < (Gl = g D, v)| 4 [ (o = ), v)|

(101) (Hll_'uhIhP(Q [[alfLs ()
+||u-h||L6(Q)leu uh HLZ(Q)d)HV”LB(Q)d

We consider equation (100). By using the following inequality
| u—uj, 22y <[ u— uj’ HL2(Q)d + | wtt =, [FEROLE

the fact that || uj, ||1s(q)s is bounded, the inf-sup condition (11) and Theorem 4.3,
we get the desired error bound on the pressure. (]

Remark 4.7. The bounds (81) and (98) represent our a posteriori error estimates
where we bound the error between the exact solution (u,p,C) of (V,) and the nu-

merical solution (wjt*, pitt CitY) of (Vani) by the indicators ﬁ,ng)7 n(Dl), 17,(32)

and 77,53). On the other hand, to get efficiency and bound the obtained indicators
which is the subject of the next subsection (Section 4.2), we need to derive an ad-
ditional error estimate (classical in this kind of problems) involving the exact and
the numerical solutions provided in the following theorem.

Theorem 4.8. Under the assumptions of Lemma 4.1 and if fo € L*(Q)?, there
exists an integer ig depending on h such that for all i > ig, the solutions (u,p) of
(Vo) and (u 1,+17p2+1) of (Vani) verify the following error inequality:

| ( (fufu = g, [ui™) + V(o = p, ™) 220y

(102) < (:2( S @5 400 a0+l
KETH

D 4 g = gn ez + 1 £0,€) = £(C) llz2e) )
where ¢3 > 0 is a constant independent of h.

Proof. Using the fact that u € L>(Q)?, then the first equation of system (P) allows
us to get Vp € L2(Q)?. Thus, the velocity error equation (65) is valid for all v in
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L2(2)4, and can be written as:
[ Gt = i i)+ V(o =53 ) - v

P

_ K -1 i+1

=—= | K '(u—u; ") -vdx
P Jo

X[ )
(103) KETH r
- %K‘luﬁl - §|u§l|u2+1 +£,(C})) - (v — vp) dx

+’y/(uz+17u}']l).vdx+/ (£(.,C) = £,(0)) - vdx

+/(fh(C)ffh(C§L)) ~vdx+/(fh(0f1)ff(.,0};)) ~vhdx},

By taking vi, = 0 and v = (§(|u|u — [ujlui™) + V(p — i), applying the
Cauchy-Schwarz inequality and simplifying by ||v|| L2(0)4> We get the result by using
Theorem 4.3.

4.2. Lower error bound. In order to establish the efficiency of the a posteriori
error estimates, we recall the following properties (see R. Verfirth,[40], Chapter 1).
For an element k of Ty, we consider the bubble function 1, (resp. e for the face
e) which is equal to the product of the d+ 1 barycentric coordinates associated with
the vertices of k (resp. of the d barycentric coordinates associated with the vertices
of e). We also consider a lifting operator L. defined on polynomials on e vanishing
on Oe into polynomials on the at most two elements k containing e and vanishing
on Ok \ e, which is constructed by affine transformation from a fized operator on
the reference element.

Property 4.9. Denoting by Pr(k) the space of polynomials of degree smaller than
r on k. The following properties hold:

cllvllos < Ilor’llos < ¢l[o]lo,s,

ol < chitH[vllo.x-

(104) Yo € Py(k), {

Property 4.10. Denoting by Pr(e) the space of polynomials of degree smaller than
r on e, we have

VuePe),  clvlloe < llvwe?lloe < ¢ lvflo.e,

and, for all polynomials v in Pr(e) wvanishing on Oe, if Kk is an element which
contains e,
[Levllon + he | Lev 1,6 Ché/2||v||0,e~

Let us start with the concentration errors indicators.

Theorem 4.11. Under the assumptions of Theorem 3.4 and Lemma 4.1, for all
Kk € Ty, we have:

(105) 722 < e[ = ul o) + 16 = Ci sy + D2 Pl = 9nllzage))

KRCwe
where ¢ is a positive constant depending on the exact solution but independent of h
and wy. Moreover, without any assumption we have:
L . .
(106) 02 < ||C = Cit | FIC - Ch

(k) HHl(N) :
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Proof. The bound (106) is obvious using a triangular inequality. In order to derive
(D1)
K,

1 . .
that divu = 0 and applying Green’s formula, the term —3 / div uﬁlHC;LHS dx
Q

a lower bound for the interior part of 7, '/, we start from equation (64). By using

can be written as:

1 ) )
— 5/Qdivu;fl(),gﬂsdx

1 ) )
= _5/ div(uj™ —u)C; S dx
Q

_ 7% /Q div(ui™! — w)(CiH! — Ry (C))S dx
(107) — % /Q div(uj™ — u)R,(0)S dx

_ %/ﬂ(u;ﬁ —u) - V(O — Ry (C))S dx

s /Q (Wi —u) - VS(CIL — Ry (C)) dx

+ % / (u™ =) - (VR(0))S + (VS)Ra(C)) dx.
Q

In view of (107), by taking S, = 0 and S = S, where in each element «, S, is the
localizing function:

) ) ) 1 ) . )
(108)  Se = (aACT —wy™ - VO = S diva T O = roCLT 4 gn) s,
extended by 0 outside &, hence equation (64) becomes:

, , , 1 o ,
/ (0ACE —wi - VO — L divaff G~ rCi 4 gn) e dx
K

:a/V(C—c;‘fl).vsﬁdxwo/(C—c;“)Sndx

K

+ /((u —uitl) . VO)S, dx + /(u;‘jl V(C = CI))S, dx

(109) .
- [lo-gsuix+ 5 [ @i - ) TE; - Ru(C)S, dx

1 . ,
v / (Wit —u) - VS,(CI! — Ry(C)) dx

* % / (u,"" —u) - (VEL(C))Sy + (VSk) R (C)) dx.



92 F. TRIKI, T. SAYAH, AND G. SEMAAN

In order to bound the right-hand-side of the previous equation, we start by bounding
the last three terms as following:

%/(u;‘jl — ) V(T — Ry(C))S, dx

1 . )
g [T - VS(C - Ru(C) dx

1 4
+ 3 /(UZH —u) - ((VR,(C))Sk + (VSk)Ry(C)) dx
1 i — A
<3 Ju =i o (er(6)er (3 2CH = Ru(C)| )
(110) + er(3)ephT 00 [Ch = Rh(C)HLB(K,)
+ e1(6)h 3 Ri(C)lwrs ey + crhi [ Ru(C)ll ey ) 150l 2oy
1 i — 3
< 5 Hll - uh+1HL2(H) (61(6)61(3)}1” d/2(|0h+1 - Ch|H1(m)
+[Ch — Clai(xy + |Ru(C) — Clai(x))
+er(B)erhi V(|G = Cull o
+11Ch = Cllps ey + I1RA(C) = Cllps()
+ cr(6)hy; | Ri(C) lwrswy + el 1RA (O] oo () ) 19l 12 ) -

Following Theorem 3.4 and as the sequence C}fl converges strongly to C, in H'(Q)
so there exists an integer ¢; depending on h such that for all i > i1, we have

(111) |IC; = Chlgiy <h and |GV = Cull oy < SEh-
Thus, using (111), the a priori error estimates, the regularity properties of the
operator Ry and the fact that the mesh is uniformly regular, we get:

3 [ =)V = Bal©)Sc i
1 ) .
(112) + 5 /(u;;rl —u)- VS,.@(C,ZLJr1 — Rp(C))dx

+3/mﬁ%ﬂn«wmmmwwuvxmmmmX

2
<érflu—up ., (RN 4 O 4 B3 ) (1Sl Loy

where ¢ is a positive constant depending on the exact solution but independent of
h.

In view of (112), using Holder inequality, the inverse inequalities and Lemma
4.1, the left-hand-side of (109) can be bounded as follows:

) ) ) 1 ) ) )

/ (aANCIF — it . veitt — 5 div WOt — g CI 4 gi) 2, dx
K

< [ach[|C =G gy t o |C = O

(113) —I—C[(G)h;d/g Hu—uZHHLQ(K) |VC‘W13(N)

||H1(n)

£, p, C)er (50 )|C = CE | + 9 = 9l 2o
+ El(h’(ffd)/? + h;d/6 4 h;d/S 4 h;l) Hu — uﬁj‘lHLQ(n)} ”SK”L?(N) .



A POSTERIORI ERROR ESTIMATES FOR THE COUPLING SYSTEM 93

We then get the bound for the first part of 77,(51) by using Property 4.9 and multi-
plying the previous inequality by h.

Finally, we estimate the surface part of nfle) by testing (64) with S, = 0 and
S = S, where S, is the localizing function defined by

g - L. (Q[VCZ+1 . n]ewe) on kUK,
10 on O\ (k UK'),

and k and £’ are the two elements adjacent to e. Then (64) reduces to

a/[VC,ifl -1, ds

e

. . . 1 4 , .
= / (aAC,ZL‘H — uﬁj‘l . VC,T'1 ~5 div uZHC;‘H — 7“00,1[*'1 + gn)Se dx
KUK/

(114) +/ (9 — gn)Sedx — ro/ (C—Cyt)S,. dx
kUK’ KUK’

) 1 ) )
- a/ V(C—Cit) - VSedx + = / divujttCitt s, dx
KUK/ K

Uk’

+/ (uitt-v(Citt — €))S. dx +/ (0t —u) - VO)S. dx.
KUK/ K

Uk’

In view of the continuity properties of £, in Property 4.10, a bound for the above
left-hand side is derived by the same arguments; for instance, by combining it with
(16), we have on the elements x sharing e:

H‘CG(U)HLG(K) < 601(6)h;d/3hé/2 ||v||L2(e) .
Thus, by applying (113), we obtain

1 ,
(115)  hZ [[a[VC - nl|
<c(fu- u2+1|}L2(KUn’) +1C = Cy i auwy + he llg — 9nll 2 wunr) )

which gives the desired result. O

Now, we turn to the velocity error indicators.

Theorem 4.12. Let (u,p,C) and (u,', pit', Ci1) be the respective solutions to
problems (V) and (Vari). We have the following bounds of the indicators: for each
element k € Tp,

(116) n;(e,Lz'l) < Hu_uézHLZ(K,) + Hu_u;;1+1||L2(K,)7
and
(117) 77,233) <c ||VT||L3(wk) ’

where ¢ is a positive constant independent of h.

Proof. The bound (116) is a simple consequence of the definition of nffil) and a

triangle inequality. In order to prove (117), we consider first Equation (66) with
qn = 0 and

(= = (divujt)e.  onk,
" 0 on Q\x,
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where v, is the bubble functions on a given element x € 7,. We obtain by using
relation (90) the following equation:

(118) /(divu”l) (. dX—/qu v, dx.

Using the property 4.9, the Cauchy-Schwarz inequality, and the relation [|v[ ., <
/6
K1Y 19y < B 195y Lead 0

(119) "divul+1"L2(n < chi Vel 2
< RO v o -
Then we get by considering the first inverse inequality (16) with p = 3, and by
multiplying by h,
: i+1
(120) hm Hleu - HLS(,{) < e HVT”Ls(H ’

which corresponds to the first divergence part of the indicator 77( 13).

Again, we consider equation (66) with g, = 0 and
g=q, = EE,I{ (‘bz,ﬂ/)e) on {’{7 K’,}7
© 0 on Q\(k UK'),

where 1), is the bubble function of e and ' denotes the other element of 7; that
share e with k. We get the following equation:

/(%,1)21/)6 ds = / div u;j_lqe dx — Ve - vy dx
€ KUK/

KUK/

Properties 4.9 and 4.10 allow us to get the following bound:

||¢(;L71HL2(€) = C(hé/z Hle uz+1||LZ(NUK ) + hf?l/Q HVT”LQ(KUK/) )

By using the second inverse inequality 16, the relation |[v||r2(0) < [£]Y5]|Val| L300
and that the family of triangulation is uniformly regular, we obtain the bound:

12) Bl e < el v i | + 19 o)

Hence, we bound the part of nm- Ds) corresponding to ¢j, ;. Relations (120) and (121)
give (117). O

Theorem 4.13. Under the assumptions of Lemma 4.1, we have the following bound
(122)

mer < e(n + llu— l+1IIL2(wN>+H*(IU\ = [ ™) + V(e = 9yl 2

£ C) = (Ol L2y + K™ = Ky s w,) +ea, [|C = C;L+1||H1(w )

where ¢ is a constant independent of the mesh step but depends on the exact solution
(u,p), and Kh_1 is an approzimation of K1 which is a constant tensor in each
element.

Proof. Let us now prove relation (4.13). We consider equation (65) with v;, = 0,
and

vV =V,
i i i —1. B i i
_ ( - VPhH - V(UhJr1 —u) — %Kh luh+1 - ;|uh|uh+1 + fh(Oh))¢n on kK,
0 on Q\s.
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Therefore
ST =t =) = L = D 6 (Gl P
= /(K_ Shultt o vdx + = /K —uith) - vax
P K
+é/(|u|u—|uh|ul+1) vdx+/V(p Pt - vdx
P Jk K

_W/K( wit! —ul) .vdx,+/(f(.,C) —£,(0)) - vdx
+ [0 - 1ch) -vax

By using Lemma 4.1, the bound (67) and Properties 4.9-4.10, we get the following
bound:

H SR )~ G = D i ()
< o

B 7 1 7,
n Hp('“'“ ~ ub a4 Vi — gt

L2(x)

MJn

Kh ||L3(H) + u,;b+1HL2(fi)

(123)

L?(r)
+ Y Hul+1 u;z"Lz(R) + ||f(7 O) - fh(C)HLZ(n) + cfy ||C - Clim+1||H1(,€) )

Finally, we obtain the result by using the following triangle inequality, and Lemma
4.1:

i i i L B i i
| = VPt = y(up —uj,) — *K fup - ;luﬂuhﬂ + £, (CR) | 2 ()
7 7 M z 5 [ 7 i
(124) < [IVpE 4 () — ) + K fuptt + ;Illhluh+1 — £h(Ch)l L2 (x)

7 _
+;||K _Kh1||L3 n)”uh HLG(,‘-@)

O

Remark 4.14. The efficiency of the a posteriori error estimates is given by the
lower bounds (105), (116), (117) and (4.13). We note that the constants appearing
in these lower bounds are mon-computable as they depend on the constant of the a
priori error estimate of Theorem 3.1.

5. Numerical results

The main goal of this section is to validate the theoretical results of the previ-
ous sections, all numerical simulations are in two dimensions and performed using
Freefem++ (see [26]). We shall study two cases: the first one is an academic one
where the numerical solution is compared to the known exact one, the second case
treats the Lid-Driven cavity which is a very popular, and interesting one.

5.1. First test case. In this subsection, the domain ) is the unit square 0, 1[x]0, 1|
and all computations start on a uniform initial triangular mesh obtained by dividing
the domain into N? equal squares, each one subdivided into two triangles, so that
the initial triangulation consists of 2N? triangles. We apply the numerical scheme
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(Vani) to the exact solution (u,p,C) = (curly, p, C) where ¥, p, and C are given
by

(125) W(x,y) = e—&((m—oi5)2+(y—o.5)2)7

(126) p(z,y) = x(x —2/3)y(y — 2/3),

and

(127) C(z,y) = 2*(x — 1)y (y — 1)26*5((170-5)2+(y70.5)2)’

with the choice § = 50;y = B =10,a=p=p=1r9=1; K =1 and £,(C) =
(24 C,2 + 2sin(C)). Thus, we compute fo and g by using their expressions in
problem (P). For the choice of the parameter v, we refer to [35] where we compared
the numerical scheme for different values of the parameter . In addition, we take
N =20 on the initial mesh.

The algorithm starts with the initial guesses C,? =0 and u% = u%d where u?ld 18
calculated using the Darcy problem which corresponds to = 0.

The theory is tested by applying the numerical scheme (Vyp;) to the exact solution.
For a given mesh indezed by h, we consider the total errors:

llan —ul[z20) + [[V(pn — P)l|Lsr2 () + [|Ch — C||H1(Q))

Err2 = (
Iallz2 @) +1IVDllLsz@) + ICl a1 (@)

and

l[up, —ul|psQ) + [[V(pn = P)l|Ls/2(0) + [|Ch — C||H1(Q))

Err3 = (
lal[zs) + [[VPllLs/2) + [|CllH1 ()

where (up, pr, Cr) is the numerical solution (uzﬂ,pzﬂ,cgﬂ) obtained by the it-
erative scheme (Van;) after the convergence with respect to the index i.

It should be noted that the definition of Err2 takes into account the error of
the velocity in L?(Q)? which is the norm associated to the theoretical studies of the
previous sections, while the definition Err3 considers the error of the wvelocity in
L3(2)? where the velocity lives. In the following, we show comparisons of Err2 and
Err3 between the exact and the adaptive methods.

For the computation of the numerical solution by using the scheme (Vyp;), it is
convenient to compute the following global indicators:

= (3 (R + 02D + 7))
KeTy,

and
1
i = (3 () + o))
KeTy,

where the indicators 7755;) and nﬁé;) with 1 € {1,2,3} and j € {1,2} are given in

equations (68)-(72). These indicators are used for the stopping criteria given by
the relation

(128) " < m

where ¥ = 0.01. This stopping criteria was first introduced, interpreted and dis-
cussed in [18] and [20], and then used in multiple works (see for instance [35]). In
fact, it balances the linearization and discretization indicators in the sense that for
a given mesh, it is useless to continue the iterations if (128) is verified.

For the adaptive mesh (refinement and coarsening), we use routines in Freefem++.
The indicators are used for mesh adaptation by the adapted mesh algorithm used

(D)

i
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in [35], but here we add the convection-diffusion-reaction equation and for reader’s
convenience, we prefered to recall the algorithm:
(1) Given (w},,C}),
(a) Solve the problem (Vapi) to compute (uj, pitt, Cith).
(b) Calculate nZ(D) and ngL). _
(2) If the stopping criterion (128) is satisfied, go to (3), else set u}, = uZH, C) =
Cytlph =it and go to (1).
(3)
(a) If nED) is smaller than a fized error tolerance ¢ = 1078, we stop the
iterations and the algorithm.
(b) Else we adapt the mesh using the indicators 77%?2~
(4) Seti=1i+1 and go to (1).
In Figure 1, we present the evolution of the mesh during the iterations (initial,
second and fifth refinement levels). We notice that the mesh is concentrated in
the region where the solution needs to be well described as the welocity is a ball
concentrated at the center of §2.

FIGURE 1. Evolution of the mesh during the refinement levels (ini-
tial, second and fifth).

Tables 1 and 2 show the rate of convergence of the errors Err2 and Err3 in
logarithmic scale for the uniform and adaptive methods with respect to the total
number of degree of freedom (TDOF).

TABLE 1. Uniform method: rate of the error Err2 and Err3 with
respect to the total degree of freedom in logarithmic scale.

TDOF | Err2 | rate TDOF | Err3 | rate
3.87 —-0.95 | — 3.87 —1.00 | —
4.28 —1.41 | —1.12 4.28 —1.46 | —1.12
4.57 —1.74 | —1.14 4.57 —1.76 | —1.03
4.79 —-1.98 | —1.09 4.79 —-1.99 | —1.04
4.98 —2.17 | —1.00 4.98 —2.18 | —1.00
5.13 —-2.32 | —1.00 5.13 —2.28 | —0.67
5.26 —2.43 | —0.85 5.26 —2.43 | —1.15
5.38 —2.54 | —0.92 5.38 —2.50 | —0.58
5.48 —2.63 | —0.90 5.48 —2.63| —1.3

To go far with our numerical studies, we plot and study the error curves (Err2
and Err3) between the exact and numerical solutions corresponding to our problem.
Figure 2 plots the comparison of the global error curves versus the total degree of
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TABLE 2. Adaptive method: rate of the error Err2 and Err3
with respect to the total degree of freedom in logarithmic scale.

TDOF | Err2 | rate TDOF | Err3 | rate
3.87 —-0.95 | — 3.87 —1.00 | -

4.09 —1.63 | —3.09 4.09 —-1.72 | =3.27
4.36 —-1.92 | —1.07 4.36 —1.98 | —0.96
4.65 —2.43 | —1.76 4.65 —2.56 | —2.00
5.08 —2.85 | —0.98 5.08 —2.98 | —0.98
5.48 —-3.19 | —0.85 5.48 —-3.32 | —0.85

freedom in logarithmic scale. We notice that the errors of the adaptive mesh method
are smaller than those given by the uniform method.

L L L L L L L L L L L L L L L L
38 4 42 44 46 48 5 52 54 56 38 4 42 44 46 48 5 52 54 56
Total degree of freedom Total degree of freedom

F1GURE 2. Comparison of the errors Err2 and Err3 with respect
to the total degree of freedom in logarithmic scale.

In Table 3, we present the effectivity indices defined as :

L D
EI2= : g )_+n§ | '
= w2 + 1V = 2 lzerzg@) +11C = oy

and
L D

FEI3 = - . .
lw— s ) + 11V (0 = P ) Lare ) + 11C = Ci @)

with respect to the number of vertices during the refinement levels. Here (uZ"'l,pﬁ'l,

oithy, ngL) and nED) are computed with the scheme (Van;) after convergence on the
iterations ¢ (by using the stopping criteria (128)). As indicated above, the effectivity
indices EI12 and EI3 correspond respectively to the norms L*(Q)? and L3(Q)%. We
remark that the values of EI2 are between 28.39 and 1.03 while those of EI3 are
between 33.33 and 7.87.

TABLE 3. EI2 and FI3 with respect to the refinement levels.

Refinement Level nitial 1 2 3 4 5 6 7 8
Number of vertices 441 485 1481 4823 15088 | 44940 | 152709 | 269821 | 422767
EI2 28.39 14.20 5.72 4.55 3.20 1.83 1.03 1.27 1.14
EI3 38.83 | 24.40 | 12.26 | 18.17 | 13.15 9.98 7.87 10.17 9.88

Finally, Figure 8 show the map of the local effectivity index corresponding to EI2
(with local norm L? for the velocity) given as

D1 D D i
((1E)? + 82 + (nE)?)*
lw— w2 ) + IV (0 = 23 D) pere ey + 1€ = Cp Ml

on the entire mesh at the initial, first and second refinement levels.

EI2g =
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Isovalue

FIGURE 3. Map of the local effectivity index EI2g during the
refinement levels (first (left) and second (right)).

5.2. Second test case (Driven cavity): The driven cavity is a test of perfor-
mance algorithms in fluid problems. It was used in several works and among them
we cite [36, 37, 6]. In this subsection, we show numerical simulations corresponding
to this test in order to study the a posteriori error estimates and the efficiency of the
proposed method. We suppose that Q =]0,1[%, K =1, p =19 =1, 8 =20, v = 10,
fo = 0, £1(C) = (10C,10C) and g = 0. We complete the Darcy-Forchheimer
equation with the boundary condition u-n = 0 in 0X), and the convection-diffusion-
reaction equation with the boundary condition C = 16x%(x —1)? on the top 'y of Q
and C =0 on OOQ\I'y. Again, we consider an uniform initial mesh with N = 20 and
we begin by showing comparisons between the uniform and adaptive methods corre-
sponding to problem (Vap;). Figure 4 presents the evolution of the mesh during the
iterations. We can see that, from an iteration to another, the concentration of the
refinement is on the complex vorticity regions and at the top boundary correspond-
ing to y = 1. In Figures 5-(6), we consider the color velocity and concentration at

X

Davy;
O

g
RS>
KPR

%N

VAVAYA)
VX

KK

/\
N

V4

FIGURE 4. Evolution of the mesh during the refinement levels (ini-
tial, second and third).

the second refinement level. We remark that the solution is more important where
the refinement of the mesh is concentrated (see Figure /).
Now, we introduce the relative total errors (in L*(Q)? and L?(Q)? for the velocity)
to the indicator given by
D
Eiota = 771( )
oty = —— . ,
1w || 2() + [V (R )| Lsr2(0) + [|ChllH1 (@)

and

i

luhll 20y + 1V (0h ) Loz () + [|Chlli o

Etot3 =
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FIGURE 5. numerical FIGURE 6. numerical
velocity at the fourth concentration at the
refinement level. fourth refinement level.
(D)

where n,” is computed after convergence on the iterations i (by using the stopping
criteria (128)). In Figure 7, we plot the relative total errors Eiota and Eios for
the uniform and the adaptive methods. Note that Fioo and FEios represent the
global indicator errors (while Err2 and Err3 in the previous case represent the total
errors between the exact and numerical solutions). We remark, like the first test
case, that for the same total degree of freedom, the adaptive error is much smaller
than the uniform error.

Uniform error —+— Uniform error —+—
08 Adapt error —*— | 08 Adapt error —*—

Em2

L L L L L L L L L L
35 4 4.5 5 55 6 35 4 4.5 5 55 6
Total degree of freedom Total degree of freedom

FIGURE 7. Comparison of the errors F;,0 and Ejy,;3 with respect
to the total degree of freedom in logarithmic scale.

Finally to end this section, we will show comparisons between the different parts
of the discrete and iterative indicators for the adaptive method. We denote by:
(G=1,2,3andl=1,2),

(Dj)
b g |
2 Nl 2 ) + IV @) 2s2 0y + IChlla (@)
1
(D,) 2
(129) 7 (ZKGTh (771(,5 )2>
wpllz2@) + IV (R L320) + ||Chl a1 ()
and
(L)
EtLolt2 T ini i
w2z ) + IV @) Lsr20) + ||ChllE1 (0)
1
L 2
) (Zren (5?)

|2 () + 11V @3 £s/2 () + [1C a1
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Table 4 show the values of EL., and EtDogz during the refinement levels. We

remark that the contribution of the indicators of discretization nzig,j =1,2,3, are
of the same order while the indicators of linearization are very smaller as expected.

6.

TABLE 4. EtDO{Q and E%., in logaritmic scale with respect to the

refinement levels.

Refinement Level initial | first | second | third | fourth
Number of vertices || 441 485 1481 | 4323 | 15088
E£%2 -1.09 | -1.51| -1.82 | -2.12| -2.43
Et%fz -1.26 | -1.62| -1.97 | -2.28 | -2.59
Eioio 20.86 | -1.37| -1.65 | -1.88| -2.14
Bl 2.91 | -3.36 | -3.60 | -3.95| .08
Elz, 4.23 | -5.08| -5.66 | -6.17| -6.45
Conclusion

In this work, we introduced the variational formulation of the Darcy-Forchheimer
problem coupled with the convection-diffusion-reaction equation. We discretized the
problem by using finite element method. We then constructed indicators to evaluate
the errors of the numerical approximation. Finally, we performed several numeri-

cal

simulations where the indicators are used for mesh adaptation, confirming the

efficiency of the adaptive methods.
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