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Abstract. In this paper, we revisit some nonoverlapping domain decomposition meth-
ods for solving diffusion problems with discontinuous coefficients. We discover some
interesting phenomena, that is, the Dirichlet-Neumann algorithm and Robin-Robin al-
gorithms may make full use of the ratio of coefficients in some special cases. Detailedly,
in the case of two subdomains, we find that their convergence rates are O(ν1/ν2)
if ν1 < ν2, where ν1,ν2 are coefficients of two subdomains. Moreover, in the case of
many subdomains with red-black partition, the condition number bounds of Dirichlet-
Neumann algorithm and Robin-Robin algorithm are 1+ǫ(1+log(H/h))2 and C+ǫ(1+
log(H/h))2, respectively, where ǫ equals min{νR/νB,νB/νR} and νR,νB are the coef-
ficients of red and black domains. By contrast, Neumann-Neumann algorithm and
Dirichlet-Dirichlet algorithm could not obtain such good convergence results in these
cases. Finally, numerical experiments are preformed to confirm our findings.

AMS subject classifications: 65N30, 65N55
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1 Introduction

Diffusion problem is a quite important model which is encountered in many physical
problems and practical application fields. It is of great significance to solve diffusion
equations numerically. One of the difficulties is that the diffusion coefficients are usually
strongly discontinuous. A natural choice to overcome the difficulty is to use nonover-
lapping domain decomposition (DD) methods to solve such kind of problems. Actu-
ally, there are lots of literature in the study of solving strong discontinuous problems
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by nonoverlapping DD methods. For instance, Mandel and Brezina [6] develop a bal-
ancing domain decomposition method for steady-state diffusion problem. In [4], a FETI
algorithm is proposed and it is proved that the bounds on the rate of convergence are
independent of possible jumps of the coefficients. In [8, 9], Sarkis design Schwarz pre-
conditioners for discontinuous coefficients problems by using both conforming and non-
conforming elements. In [3], a Robin-Robin preconditioner is proposed for advection-
diffusion problems with discontinuous coefficients. For more study of this aspect, we
refer to [7, 11] and the references cited therein.

We may find that the algorithms in most of the literature achieve convergence rates
or condition number bounds independent of the jumps of coefficients. Wether there is
a better result? For general cases, it could not be improved. However, we find a bet-
ter result in some special cases, that is, the discontinuous coefficients may accelerate the
convergence of Dirichlet-Neumann (D-N) algorithm and Robin-Robin (R-R) algorithm
in the case of two subdomains and the case of many subdomains with red-black par-
tition. Detailedly, if we suppose ν1,ν2 are the discontinuous coefficients in the case of
two subdomains, then the convergence rates of the D-N algorithm and the R-R algorithm
will completely depend on the ratio of the smaller coefficient to the larger coefficient, i.e.
ν1/ν2 if ν1 <ν2. Here we should clear that unlike the discontinuous coefficients case, the
convergence rates of D-N algorithm and R-R algorithm are bounded by a constant which
is independent of mesh size h and less than 1 strictly in the case ν1 equals ν2. In the case
of many subdomains with red-black partition, the D-N algorithm and the R-R algorithm
are always regarded as preconditioned methods and the corresponding condition num-
ber bounds are 1+ǫ(1+log(H/h))2 and C+ǫ(1+log(H/h))2, respectively, where ǫ only
depends on the ratio of the coefficients of red domains and black domains. Gander and
Dubois [2] also find a similar phenomenon in the case of two symmetric subdomains.
But they use the Fourier analysis to analyze it, as a result, their result is hard to extend
to general cases. Meanwhile, we estimate the convergence rate by analyzing the spectra
radium of error reduction operators and analyzing the condition numbers of precondi-
tioned systems. Finally, all the results are confirmed by numerical experiments.

The paper is organized as follows: In Section 2, we introduce the model problem
and domain decomposition methods. In Section 3, we analyze the influence of coeffi-
cients on convergence rates in the case of two subdomains with subdomains symmetric
and nonsymmetric. In Section 4, the preconditioned systems in the case of many subdo-
mains with red-black partition are described and the bounds on the condition numbers
are given. Finally, we perform several numerical experiments to verify our conclusions.

2 Model problems and domain decomposition algorithms

We consider the following elliptic problem with discontinuous coefficients:
{

−∇·(ν(x)∇u)= f , in Ω,

u=0, on ∂Ω,
(2.1)
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where Ω is a bounded, two-dimensional polygonal domain and the diffusion coefficient
ν(x) is a piecewise constant function

ν(x)=

{
ν1, x∈Ω1,

ν2, x∈Ω2.

Here Ω1,Ω2 are nonoverlapping subdomains which form a decomposition of Ω and Γ

denotes their common interface, i.e. Γ=∂Ω1∩∂Ω2.
Let Th be a quasi-uniform and regular triangulation of Ω with the mesh size h and

assume that interface Γ does not cut through any elements of Th. Let W⊂H1
0(Ω) be a P1

conforming finite element space over Th. Besides, we need the following finite element
spaces,

Wi =W∩H1(Ωi), W0
i =W∩H1

0(Ωi), i=1,2,

and the space of the interface Γ,
VΓ =W|Γ.

Then, the weak form of (2.1) is as follows: Find u∈W, such that

a(u,v)=( f ,v) ∀v∈W,

where

ai(u,v)=
∫

Ωi

νi∇u·∇v ∀u,v∈Wi, i=1,2,

( f ,v)i =
∫

Ωi

f v ∀v∈Wi, i=1,2,

and
a(u,v)= a1(u,v)+a2(u,v), ( f ,v)=( f ,v)1+( f ,v)2.

We also use the following bilinear form on the interface,

〈u,v〉=
∫

Γ
uv ∀u,v∈VΓ.

The model problem may be written equivalently in the following multidomain formula-
tion: 




−ν1∆u= f , in Ω1,

u1=u2, on Γ,

ν1
∂u1

∂n1
=−ν2

∂u2

∂n2
, on Γ,

−ν2∆u= f , in Ω2.

The second and the third equations corresponding to Dirichlet and Neumann boundary
conditions are imposed to ensure the continuity of the solution and the flux across the
interface Γ. To solve the multidomain problem, we have the following three iterative
methods and we would like to write them into weak forms.
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Algorithm 2.1 (The Dirichlet-Neumann Algorithm [11]). Given u0
Γ(=0)∈VΓ, compute as

the following steps until converge:

Step 1: solve the Dirichlet problem in Ω1,





a1(u
n+1
1 ,v)=( f ,v)1, ∀v∈W0

1 ,

un+1
1 =0, on ∂Ω1\Γ,

un+1
1 =un

Γ, on Γ;

Step 2: solve the Neumann problem in Ω2,

a2(u
n+1
2 ,v)=( f ,v)2−

〈
ν1

∂un+1
1

∂n1
,v
〉

=( f ,v)2+( f ,T1γ0v)1−a1(u
n+1
1 ,T1γ0v) ∀v∈W2,

where Ti : VΓ→Wi is an arbitrary extension operator and γ0 :W1→VΓ is the trace operator;

Step 3: get the next iterate by a relaxation,

un+1
Γ = θun+1

2 +(1−θ)un
Γ on Γ,

with an appropriate θ.

Algorithm 2.2 (The Neumann-Neumann Algorithm [11]). Given u0
Γ(= 0)∈VΓ, compute

as the following steps until converge:

Step 1: solve the Dirichlet problems in Ωi, i=1,2,





ai(u
n+1
i ,v)=( f ,v)i, ∀v∈W0

i ,

un+1
i =0, on ∂Ωi\Γ,

un+1
i =un

Γ, on Γ,

Step 2: solve the Neumann problems in Ωi, i=1,2,

ai(w
n+1
i ,v)=δ†

i

〈
ν1

∂un+1
1

∂n1
+ν2

∂un+1
2

∂n2
,v
〉

=δ†
i

(
a1(u

n+1
1 ,T1γi

0v)−( f ,T1γi
0v)1+a2(u

n+1
2 ,T2γi

0v)−( f ,T2γi
0v)2

)
∀v∈Wi,

where δ†
1 and δ†

2 are positive weights with δ†
1+δ†

2 =1 and γi
0 :Wi→VΓ is the trace operator;

Step 3: get the next iterate by a relaxation,

un+1
Γ =un

Γ−θ(δ†
1 wn+1

1 +δ†
2wn+1

2 ),

with an appropriate θ.
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Algorithm 2.3 (The Dirichlet-Dirichlet Algorithm [11]). Given λ0
Γ(=0)∈VΓ, compute as

the following steps until converge:

Step 1: set λn
1 =−λn

2 =λn
Γ, solve the Neumann problems with in Ωi, i=1,2,

ai(u
n+1
i ,v)=( f ,v)i+〈λn

i ,v〉 ∀v∈H1
Γ(Ωi);

Step 2: solve the Dirichlet problem in Ωi, i=1,2,




ai(w
n+1
i ,v)=0, ∀v∈W0

i ,

wn+1
i =0, on ∂Ωi\Γ,

wn+1
i =δ†

i (u
n+1
1 −un+1

2 ), on Γ,

where δ†
1 and δ†

2 are positive weights with δ†
1+δ†

2 =1;

Step 3: get the next iterate by a relaxation,

λn+1
Γ =λn

Γ−θ
(

δ†
1ν1

∂wn+1
1

∂n1
+δ†

2ν2
∂wn+1

2

∂n2

)
,

with an appropriate θ.

The matching conditions may be changed equivalently by the combinations of the
Dirichlet and Neumann interface conditions as follows:





γ1u1+ν1
∂u1

∂n1
=γ1u2+ν2

∂u2

∂n1
=: g1, on Γ,

γ2u2+ν2
∂u2

∂n2
=γ2u1+ν1

∂u1

∂n2
=: g2, on Γ,

where the Robin parameters γ1,γ2 are positive numbers. Therefore, we have the follow-
ing Robin-Robin algorithm.

Algorithm 2.4 (The Robin-Robin Algorithm [1]). Given g0
1(=0)∈VΓ, γ1,γ2>0, compute

as the following steps until converge:

Step 1: solve the problem with Robin boundary condition in Ω1,

a1(u
n
1 ,v)+γ1〈un

1 ,v〉=( f ,v)1+〈gn
1 ,v〉 ∀v∈W1;

Step 2: update the interface condition,

gn
2 =(γ1+γ2)u

n
1−gn

1 on Γ;

Step 3: solve the problem with Robin boundary condition in Ω2,

a2(u
n
2 ,v)+γ2〈un

2 ,v〉=( f ,v)2+〈gn
2 ,v〉 ∀v∈W2;

Step 4: update the interface condition,

g̃n
1 =(γ1+γ2)u

n
2−gn

2 on Γ;

Step 5: get the next iterate by a relaxation,

gn+1
1 = θg̃n

1 +(1−θ)gn
1 ,

with an appropriate θ.
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3 Influence of discontinuous coefficients on convergence rates

In this section, we will explore the influence of discontinuous coefficients on convergence
rates and confirm the optimal parameters of the algorithms in the previous section.

First, we give some preliminaries. Define Hi :VΓ→Wi as follows:





ai(HiuΓ,v)=0, ∀v∈W0
i ,

HiuΓ=0, on ∂Ωi\Γ,

HiuΓ=uΓ, on Γ.

The operator Hi is known as the ‘discrete harmonic extension’. We note that the coeffi-
cient νi in ai(·,·) can be omitted because of the zero source term. Define Si to be a linear
operator as follows:

〈SiuΓ,vΓ〉= ai(HiuΓ,TivΓ) ∀vΓ ∈VΓ,

where Ti : VΓ →Wi is an arbitrary extension operator. Obviously, Si is symmetric and
positive definite. Then, we will give the error operators of the four DD algorithms in
the following lemma. Actually, the proof of the following lemma may be found in [11]
and [1]. For completeness, we give a brief proof here.

Lemma 3.1. The error operators of the D-N algorithm, N-N algorithm, D-D algorithm and R-R
algorithm are R1,R2,R3 and R4, respectively, where

R1= I−θS−1
2 (S1+S2),

R2= I−θ(D1S−1
1 D1+D2S−1

2 D2)(S1+S2),

R3= I−θ(D1S1D1+D2S2D2)(S
−1
1 +S−1

2 )

and

R4= I−θ(γ1 I−S2)(γ2 I+S2)
−1((γ2I+S2)(γ1 I−S2)

−1−(γ2 I−S1)(γ1 I+S1)
−1)

= I−θ(I−(γ1 I−S2)(γ2I+S2)
−1(γ2 I−S1)(γ1 I+S1)

−1).

Proof. To deduct the error operators, it is sufficient to consider the homogeneous case,
f ≡ 0, by linearity. For simplicity, we use the same letters to denote the functions and
corresponding errors in the proof without causing any confusion.

We first consider the D-N algorithm. From the definition of discrete harmonic exten-
sion and Step 1 of Algorithm 2.1, we know un+1

1 =H1un
Γ, then by the definition of Si and

Step 2 of Algorithm 2.1, we have

a2(u
n+1
2 ,T2γ0v)=−a1(u

n+1
1 ,T1γ0v)=−〈S1un

Γ,v〉 ∀v∈VΓ. (3.1)

Here we note that if we set v=0 in (3.1), we have

a2(u
n+1
2 ,w)=0 ∀w∈W0

2 , (3.2)



218 X. Na and X. Xu / Commun. Comput. Phys., 35 (2024), pp. 212-238

which reflects that un+1
2 =H2(u

n+1
2 |Γ). Therefore, it holds that

〈S2(u
n+1
2 |Γ),v〉=−〈S1un

Γ,v〉 ∀v∈VΓ.

Because S2 is a positive definite operator, we have

un+1
2 |Γ =−S−1

2 S1un
Γ. (3.3)

Combining (3.3) and Step 3 of Algorithm 2.1, we obtain the error operator of D-N algo-
rithm, i.e.

un+1
Γ = θun+1

2 |Γ+(1−θ)un
Γ

=−θS−1
2 S1un

Γ+(1−θ)un
Γ

=(I−θS−1
2 (S1+S2))u

n
Γ.

We next consider the N-N algorithm. From the definition of Si and Step 1, Step 2 of
Algorithm 2.2, we have

ai(w
n+1
i ,Tiγ0v)=δ†

i (〈S1un
Γ,v〉+〈S2un

Γ,v〉).

Similar to (3.2), we have wn+1
i =Hi(w

n+1
i |Γ). Therefore, it holds that

wn+1
i |Γ =S−1

i (δ†
i (S1+S2)u

n
Γ). (3.4)

By (3.4) and Step 3 of Algorithm 2.2, the error operator is obtained as follows:

un+1
Γ =un

Γ−θ(δ†
1S−1

1 (δ†
1(S1+S2)u

n
Γ)+δ†

2S−1
2 (δ†

2(S1+S2)u
n
Γ))

=
(

I−θ(D1S−1
1 D1+D2S−1

2 D2)(S1+S2)
)

un
Γ,

where Di=δ†
i I, i=1,2.

The error operator of D-D algorithm may be derived similar to the N-N algorithm.
By the definitions of Hi,Si and Steps 1,2 of Algorithm 2.3, we have

wn+1
i =Hi(δ

†
i (u

n+1
1 |Γ−un+1

2 |Γ))
=Hi(δ

†
i (S

−1
1 λn

1−S−1
2 λn

2))

=Hi(δ
†
i (S

−1
1 +S−1

2 )λn
Γ).

Then by the interface update condition in Step 3, we get

λn+1
Γ =

(
I−θ(D1S1D1+D2S2D2)(S

−1
1 +S−1

2 )
)

λn
Γ.

As to the R-R algorithm, for i=1,2, we have the following error equation,

ai(u
n
i ,Tiγ0v)+γi〈un

i |Γ,v〉= 〈gn
i ,v〉 ∀v∈VΓ.
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By the definitions of Hi,Si, i=1,2, we have

gn
i =(γi I+Si)u

n
i |Γ. (3.5)

Using the interface update in Step 2 of Algorithm 2.4 and (3.5), we have

gn
2 =(γ1+γ2)u

n
1 |Γ−gn

1

=(γ1+γ2)(γ1I+S1)
−1gn

1 −(γ1 I+S1)(γ1 I+S1)
−1gn

1

=(γ2 I−S1)(γ1 I+S1)
−1gn

1 . (3.6)

Then by the second interface update in Step 4 of Algorithm 2.4, (3.6) and (3.5), it holds
that

g̃n
1 =(γ1+γ2)u

n
2−gn

2

=(γ1+γ2)(γ2I+S2)
−1gn

2 −(γ2 I+S2)(γ2 I+S2)
−1gn

2

=(γ1 I−S2)(γ2 I+S2)
−1gn

2

=(γ1 I−S2)(γ2 I+S2)
−1(γ2I−S1)(γ1 I+S1)

−1gn
1 . (3.7)

At last, by the relaxation step and (3.7), we obtain the error operator of R-R algorithm, i.e.

gn+1
1 = θg̃n

1 +(1−θ)gn
1

=
(

I−θ(I−(γ1 I−S2)(γ2 I+S2)
−1(γ2 I−S1)(γ1I+S1)

−1)
)

gn
1

=
(

I−θ(γ1 I−S2)(γ2 I+S2)
−1((γ2 I+S2)(γ1 I−S2)

−1−(γ2I−S1)(γ1 I+S1)
−1)

)
gn

1 .

This completes the proof.

The next task is to analyze how the spectral radius of Ri rely on the discontinuous
coefficients ν1,ν2 and how to choose appropriate θ and δ†

i to accelerate the iterations.

3.1 Symmetric case

In this subsection, we suppose that Ω1 and Ω2 are symmetric with respect to Γ. Then we
have

S1/ν1 =S2/ν2. (3.8)

As a result, if (λ,v) is an eigenpair of S1/ν1, ν1λ and ν2λ will be the eigenvalues of S1 and
S2 corresponding to eigenvector v, respectively. Then it is easy to check that

λ(R1)=1−θ
(

1+
ν1

ν2

)
,

λ(R2)=1−θ
(
(δ†

1)
2
(

1+
ν2

ν1

)
+(δ†

2)
2
(

1+
ν1

ν2

))
,

λ(R3)=1−θ
(
(δ†

1)
2
(

1+
ν1

ν2

)
+(δ†

2)
2
(

1+
ν2

ν1

))
,

λ(R4)=1−θ
(

1− γ1−ν2λ

γ1+ν1λ
· γ2−ν1λ

γ2+ν2λ

)
,
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Figure 1: Ω is divided into two symmetric subdomains Ω1,Ω2 and their interface Γ.

where λ(T) denotes the eigenvalue of operator T.

We may find that the eigenvalues of R1,R2,R3 are independent of λ, thus we have

Theorem 3.1. In the symmetric case, the convergence rate of Algorithms 2.1, 2.2, 2.3 can be
reduced to 0 by choosing suitable θ, that is to say, the methods become direct solvers.

Proof. Set

θ1=
1

1+
ν1

ν2

,

θ2=
1

(δ†
1)

2
(
1+

ν2

ν1

)
+(δ†

2)
2
(
1+

ν1

ν2

) ,

θ3=
1

(δ†
1)

2
(
1+

ν1

ν2

)
+(δ†

2)
2
(
1+

ν2

ν1

) ,

and we get the conclusion.

Remark 3.1. For a general θ, the convergence behaviours will be quite different between
D-N algorithm and N-N algorithm, D-D algorithm.

For a θ near 1, the convergence rate of D-N algorithm relies on ν1/ν2 and if ν1 ≪ ν2,
the iteration will perform quite well. In other word, the D-N algorithm benefit from the
jump of discontinuous coefficients. But for N-N algorithm and D-D algorithm, we could
not obtain such a good property. The range of function

f (δ†
1)=(δ†

1)
2(1+ν2/ν1)+(1−δ†

1)
2(1+ν1/ν2)
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is [1,max{1+ν1/ν2,1+ν2/ν1}]. So N-N algorithm could not benefit from the discontinu-
ous coefficients. The optimal choice of δ†

1 ,δ†
2 is

δ†
1 =

ν
γ
1

ν
γ
1 +ν

γ
2

, δ†
2 =

ν
γ
2

ν
γ
1 +ν

γ
2

, γ∈ [1/2,∞).

Here, we choose γ=1/2, then

f (δ†
1)=

2(ν1+ν2)

(
√

ν1+
√

ν2)2
∈ (1,2)

and the convergence rate of N-N algorithm will be independent of ν1,ν2. The case of D-D
algorithm is similar.

For the Robin-Robin algorithm, we may find that the spectrum depends on the eigen-
value λ, which is different from other three algorithms. The following theorem can be
obtained by analyzing the function λ(R4).

Theorem 3.2. In the symmetric case, the convergence rate of Algorithm 2.4 is bounded by Cν1/ν2

by choosing γ1≥C1ν2h−1, 0<γ2≤ c0ν1 and θ= 2
2+ν1/ν2

.

Proof. Let
λ(R4)=1−θ(1+ω(λ)),

where

ω(λ)=−γ1−ν2λ

γ1+ν1λ
· γ2−ν1λ

γ2+ν2λ
.

The derivation of ω(λ) is

ω′(λ)=
(γ1+γ2)(ν1+ν2)(γ1γ2−ν1ν2λ2)

(γ1+ν1λ)2(γ2+ν2λ)2
. (3.9)

It is known [1, 12] that

λ∈
[

c0,C1h−1
]

,

then by choosing 0<γ2 ≤ c0ν1, γ1 ≥C1ν2h−1 and (3.9), ω(λ) attains the maximum value

at λ0=
√

γ1γ2

ν1ν2
and we have

ω(λ)∈
(

0,t2
(η−1/t

η+t

)2]
⊂ (0,t2),

where η=
√

γ1
γ2

, t=
√

ν1
ν2

. Then the optimal choice of θ is obtained by

1−θ+1−θ
(

1+
ν1

ν2

)
=0.

That is θ= θ0 =
2

2+ν1/ν2
, and the convergence rate is bounded by 1−θ0(1+

ν1
ν2
)< ν1

2ν2
.

We may find that the Robin-Robin algorithm benefits from the jump of discontinuous
coefficients in the symmetric case.
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3.2 Nonsymmetric case

In the nonsymmetric case, the equality (3.8) is no longer available. Instead, the next
lemma is useful in the analysis.

Lemma 3.2. There exists positive constants ci,Ci, independent of h, such that for any v∈WΓ ,

ci|v|21,Ωi
≤‖v‖2

H1/2
00 (Γ)

≤Ci|v|21,Ωi
. (3.10)

By (3.10), we may get the equivalence between S1 and S2 while they no longer have
the same eigenvector. Therefore, none of the algorithms is a direct solver. Actually, the
algorithms could be divided into two groups according to their convergence behaviours.
The first group contains D-N algorithm and R-R algorithm. Both of them could benefit
from the jump of discontinuous coefficients. To be detailed, we have the following two
results.

Theorem 3.3. In the discontinuous coefficients case, the convergence rate of D-N algorithm will
be bounded by ν1

ν2
if ν1 ≪ν2.

Proof. We know

R1=1−θS−1
2 S=1−θS−1

2 (S1+S2),

and we just need to find the spectrum of S−1
2 S.

By (3.10), for any uΓ ∈WΓ,

λ(S−1
2 S)=

〈SuΓ,uΓ〉
〈S2uΓ,uΓ〉

, (3.11)

〈S2uΓ,uΓ〉≤〈SuΓ,uΓ〉≤
〈(

1+
C2

c1
· ν1

ν2

)
S2uΓ,uΓ

〉
. (3.12)

Figure 2: Ω is divided into two nonsymmetric subdomains Ω1,Ω2 and their interface Γ.
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Combining (3.11), (3.12), we have

λ(S−1
2 S)⊂

[
1,1+

C2

c1
· ν1

ν2

]
,

and the optimal choice of θ is θ0 =
2

2+
C2
c1
· ν1

ν2

. Then the convergence rate is bounded by

ν1
ν2

.

Theorem 3.4. In the discontinuous coefficients case, if ν1≪ν2, the convergence rate of the Robin-
Robin algorithm will be bounded by ν1

ν2
with γ1≥C0ν2h−1, 0<γ2≤ c0ν1.

Proof. We have

R4= I−θP−1
4 G,

where

P−1
4 =(γ1 I−S2)(γ2 I+S2)

−1,

G=(γ2I+S2)(γ1 I−S2)
−1−(γ2 I−S1)(γ1 I+S1)

−1.

For any g∈WΓ , it holds that [5]

γ2

γ1
‖g‖2

0,Γ+
γ1+γ2

γ2
1

|g|2S2
≤〈P4g,g〉≤ γ2

γ1
‖g‖2

0,Γ+
γ1+γ2

γ2
1

|g|2S2
, (3.13)

γ1+γ2

(2+δ)γ2
1

|g|2S1
+

γ1+γ2

γ2
1

|g|2S2
≤〈Gg,g〉≤ γ1+γ2

γ2
1

|g|2S1
+

2(γ1+γ2)

γ2
1

|g|2S2
, (3.14)

where δ is an arbitrary positive constant independent of h, and |·|2Si
= 〈Si·,·〉, i = 1,2.

Additionally, we have

|g|2Si
≤Cνih

−1‖g‖2
0,Γ. (3.15)

By (3.13), (3.14) and (3.15), we have the upper bound estimate, i.e.

〈Gg,g〉≤ γ1+γ2

γ2
1

|g|2S1
+

2(γ1+γ2)

γ2
1

|g|2S2

≤ C′(γ1+γ2)

γ2
1

(
1+C

ν1

ν2

)
|g|2S2

≤ (1+C
ν1

ν2
)〈P4g,g〉

with a suitable γ1≥Cν2h−1.
By trace theorem and Poincaré inequality, we have

‖g‖2
0,Γ ≤C|Hig|21,Ωi

≤ C

νi
|g|2Si

. (3.16)
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Then it follows (3.13), (3.14), (3.16) that

〈P4g,g〉≤ γ2

γ1
‖g‖2

0,Γ+
γ1+γ2

γ2
1

|g|2S2

≤ c0C

γ1
|g|2S1

+
γ1+γ2

γ2
1

|g|2S2

≤〈Gg,g〉

with a suitable γ2≤ c0ν1.
Therefore,

1≤λ(P−1
4 G)≤

(
1+C

ν1

ν2

)
. (3.17)

Here θ is selected to be 2
2+C

ν1
ν2

, and the convergence rate is bounded by ν1
ν2

.

Remark 3.2. In the two theorems above, we assume ν1 ≪ ν2 and get convergence rates
bounded by ν1

ν2
. If ν2 ≪ ν1, we could start the iterations of D-N algorithm and R-R algo-

rithm by computing the problem with Dirichlet boundary condition and Robin boundary
condition in Ω2. Then the convergence rates will be bounded by ν2

ν1
. While, for the case

ν1 = ν2, the convergence rates of D-N algorithm and R-R algorithms are bounded by a
constant which is independent of h and less than 1 strictly.

Unlike the first two algorithms, in the case of two subdomains, the N-N algorithm
and D-D algorithm could not take advantage of the discontinuous coefficients and their
common feature is that the convergence rate may be independent of the jump of coeffi-
cients with suitable weights.

Theorem 3.5. The convergence rate of the N-N algorithm and D-D algorithm may be indepen-
dent of ν1,ν2 by choosing suitable δ†

1 ,δ†
2 .

Proof. We have

R2= I−θP−1
2 S= I−θ(D1S−1

1 D1+D2S−1
2 D2)(S1+S2).

By (3.10), for any uΓ ∈WΓ, it holds that

λ(P−1
2 S)=

〈SuΓ,uΓ〉
〈P2uΓ,uΓ〉

, (3.18)

and

c1

C2
· ν2

ν1
≤ 〈S2uΓ,uΓ〉

〈S1uΓ,uΓ〉
≤ C1

c2
· ν2

ν1
, (3.19)

c2

C1
· ν1

ν2
≤ 〈S1uΓ,uΓ〉

〈S2uΓ,uΓ〉
≤ C2

c1
· ν1

ν2
. (3.20)
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Combining (3.18), (3.19), (3.20), we have

(δ†
1)

2
(

1+
c1

C2
· ν2

ν1

)
+(δ†

2)
2
(

1+
c2

C1
· ν1

ν2

)
≤λ(P−1

2 S)

≤ (δ†
1)

2
(

1+
C1

c2
· ν2

ν1

)
+(δ†

2)
2
(

1+
C2

c1
· ν1

ν2

)
. (3.21)

We denote the left and right sides of inequality (3.21) by λmin and λmax, then by choosing
θ= θ0 =

2
λmin+λmax

, we have

λ(R2)⊂
(
− λmax−λmin

λmax+λmin
,
λmax−λmin

λmax+λmin

)
=
(
− κ−1

κ+1
,
κ−1

κ+1

)
.

We now analyze how κ=κ(δ†
1) changes with δ†

1 , where

κ(δ†
1)=

λmax

λmin
=

(δ†
1)

2(1+ c1
C2
· ν2

ν1
)+(δ†

2)
2(1+ c2

C1
· ν1

ν2
)

(δ†
1)

2(1+ C1
c2
· ν2

ν1
)+(δ†

2)
2(1+ C2

c1
· ν1

ν2
)

.

The derivation of κ(δ†
1) is

κ′(δ†
1)=

(
ν2
ν1
(C1

c2
− C2

c1
)− ν1

ν2
( c1

C2
− c2

C1
)
)

δ†
1(1−δ†

1)
(
(δ†

1)
2(1+ c1

C2
· ν2

ν1
)+(1−δ†

1)
2(1+ c2

C1
· ν1

ν2
)
)2

,

then we know the minimum value of κ(δ†
1) is attained at δ†

1 =0 or δ†
1 =1 according to the

symbol of the coefficient. However, in both the two cases, the N-N algorithm deterio-
rates to D-N algorithm. Although, we can choose a δ†

1 near 1 or 0 and it seems that the
convergence rate benefits from the discontinuous coefficients, we take it as an asymptotic
convergence behaviour and we prefer D-N algorithm. In fact, we may choose

δ†
1 =

√
ν1√

ν1+
√

ν2
, δ†

2 =

√
ν2√

ν1+
√

ν2
,

so that

κ≤
max{C1

c2
, C2

c1
}+1

min{ c2
C1

, c1
C2
}+1

,

which is independent of ν1 and ν2.
The proof of D-D algorithm is similar to that of N-N algorithm by setting

δ†
1 =

√
ν2√

ν1+
√

ν2
, δ†

2 =

√
ν1√

ν1+
√

ν2
.

This completes the proof.



226 X. Na and X. Xu / Commun. Comput. Phys., 35 (2024), pp. 212-238

Remark 3.3. From the analysis above, we find that the jump of discontinuous coefficients
could accelerate the iteration when using the D-N algorithm and the R-R algorithm in
the case of two subdomains as the ratio of the smaller coefficient to the larger one (ν1/ν2

when ν1 <ν2) dominate their convergence rates. By contrast, the N-N algorithm and the
D-D algorithm could not benefit from the ratio because the norms of Ω1,Ω2 need to be
controlled by each other.

4 The case of many subdomains

In this section, we further consider how the discontinuous coefficients influence the con-
vergence behaviours of these domain decomposition methods and wether the previous
properties still hold in the case of many subdomains with red-black partition.

Figure 3: The red-black partition of Ω into 4×4 subdomains. The grey blocks denote the black domains and
the white blocks denote the red domains. The black dots are cross points.

4.1 Preconditioned systems

The algorithms in the case of many subdomains in this paper rely on a red-black partition,
so we first introduce the geometric settings. Partition the domain Ω into two classes of
nonoverlapping subdomains ΩR,ΩB. The red domain is denoted by ΩR=

⋃
Ωi, i∈ΛR and

the black domain is denoted by ΩB=
⋃

Ωj, j∈ΛB, where ΛR,ΛB are the sets of subscripts
of subdomains which belong to class ΩR,ΩB, respectively. The size of subdomains is H.
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The intersection of subdomains in the same class is either empty or vertex. The interface
is Γ :=∂ΩR∩∂ΩB. The vertexes of subdomains, which do not belong to ∂Ω, are called the
cross points. Th is the triangulation same as the case of two subdomains. We assume that
the subdomains boundaries do not cut through any element in Th.

Based on the geometric settings, some function spaces are defined. Let W ∈ H1
0(Ω)

be the P1 conforming finite element space. Then let Wk,k∈ΛR∩ΛB,WR,WB be the spaces
which include the functions of W restricted to Ωk,ΩR,ΩB. W0

k ,W0
R,W0

B are the subspaces of
Wk,WR,WB that functions of W0

k ,W0
R,W0

B have vanishing traces on ∂Ωk,∂ΩR,∂ΩB, respec-
tively. The space on the interface Γ is defined to be VΓ=W|Γ. We also denote Vk :=W|∂Ωk

.
Besides, V∆ contains functions in VΓ who vanish at each node on cross points.

We then introduce some bilinear forms and operators in the case of many subdo-
mains. Define the bilinear form on the subdomain Ωk, k∈ΛR∪ΛB by

ak(uk,vk)=
∫

Ωk

νk∇uk ·∇vk ∀uk,vk ∈Wk.

Define local discrete harmonic extension operator Hk :Vk →Wk as follows:

{
ak(HkuΓ,vk)=0, ∀vk ∈W0

k ,

HkuΓ =uΓ, on Γ,

where uΓ∈Vk. Here we also note that the constant coefficient νk does not affect the result
HkuΓ. The local Schur complement operator Sk : Vk→Vk is defined as follows:

〈Skuk,vk〉= ak(Hkuk,Tkvk) ∀vk ∈Vk,

where Tk is an arbitrary extension operators. We may see that Sk is a symmetric and
positive semi-definite operator, therefore it may induce a semi-norm of Vk, i.e. |·|2Sk

:=

〈Sk·,·〉 (if ∂Ωk∩∂Ω 6=φ, Sk will be positive definite and it induces a norm).

Based on the local bilinear forms and operators, we could define global operators.
Define the bilinear form on ΩR by

aR(uR,vR)= ∑
k∈ΛR

∫

Ωk

∇uR ·∇vR ∀uR,vR ∈WR.

Define discrete harmonic extension operator HR :VΓ→WR as follows:

{
aR(HRuΓ,vR)=0, ∀vR ∈W0

R,

HRuΓ =uΓ, on Γ.

Then the Schur complement operator SR :VΓ→VΓ could be defined, i.e.

〈SRuΓ,vΓ〉= aR(HRuΓ,TRvΓ) ∀vΓ ∈VΓ,
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where TR : VΓ →WR is an arbitrary extension operator. From the geometric settings, we
may see that ΩR consists of Ωk,k∈ΛR and they are connected by cross points. Therefore,
SR is a symmetric and positive definite operator and it induces a norm of VΓ, i.e. |·|2SR

=
〈SR·,·〉. Similarly, we may define aB(·,·),HB and SB. The Schur complement operator of
the whole subdomains is defined as the sum of SR and SB, that is, S=SR+SB.

At last, we give the definitions of Schur complement operators of V∆. Define S̃ : V∆→
V∆ as follows:

〈S̃u∆,u∆〉= min
u∈VΓ,u|Γ∆

=u∆

〈Su,u〉,

where Γ∆ denotes the degrees of freedom on Γ except cross points. From the minimiza-
tion property and the fact that S is symmetric and positive definite, we know that S̃ is
also a symmetric and positive definite operator and it induces a norm of V∆. Similarly,
S̃R,S̃B could be defined and they hold the same properties as S̃.

Now we are in a position to introduce algorithms in the case of many subdomains.
We use the following Schur complement system in this paper:

S̃uΓ = f̃∆.

The D-N algorithm and N-N algorithm could provide preconditioners for this system,
which are P−1

DN = S̃−1
B and P−1

NN = DRS̃−1
R DR+DBS̃−1

B DB, respectively. Here, DR,DB are
scaling operators.

The system of flux is
Fλ=d,

where F=S−1
R +S−1

B , d=S−1
B fB−S−1

R fR. For the flux system, the D-D algorithm provide a
preconditioner P−1

DD=DRSRDR+DBSBDB.
Similar to the case of two subdomains, the system of Robin boundary data gR is

GgR =((γB I+SB)(γR I−SB)
−1−(γB I−SR)(γR I+SR)

−1)gR = f ⋆

and the R-R preconditioner is P−1
RR =(γR I−SB)(γB I+SB)

−1.
The right hand sides f̃∆,d, f ⋆ will be illustrated in detail in the last subsection.

4.2 Condition number estimate

In this subsection, we analyze the condition numbers of these preconditioned systems.
For simplicity, we consider the red-black checkerboard case, i.e.

ν(x)=

{
νR, ∀x∈ΩR,

νB, ∀x∈ΩB,

then the scaling operators DR and DB will be δ†
R I and δ†

B I, respectively. We also assume
that νR <νB.

As to D-N algorithms and R-R algorithm, we have following conclusions.
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Theorem 4.1. For the D-N algorithm, we have

〈S̃Bu∆,u∆〉≤〈S̃u∆,u∆〉≤
(

1+C
νR

νB

(
1+log

H

h

)2
)
〈S̃Bu∆,u∆〉 ∀u∆ ∈V∆. (4.1)

Therefore, the condition number of D-N algorithm is bounded as follows:

κ(P−1
DNS̃)≤1+C

νR

νB

(
1+log

H

h

)2
. (4.2)

Proof. Suppose

〈S̃u∆,u∆〉= min
u∈VΓ,u|Γ∆

=u∆

〈Su,u〉= 〈SuΓ,uΓ〉= 〈SRuΓ,uΓ〉+〈SBuΓ,uΓ〉,

then the lower bound may be obtained by the definition of S̃B, i.e.

〈S̃Bu∆,u∆〉= min
u∈VΓ,u|Γ∆

=u∆

〈SBu,u〉≤〈SBuΓ,uΓ〉≤〈S̃u∆,u∆〉.

On the other hand, suppose

〈S̃Bu∆,u∆〉= min
u∈VΓ,u|Γ∆

=u∆

〈SBu,u〉= 〈SBũΓ,ũΓ〉,

then

〈S̃u∆,u∆〉≤〈SũΓ,ũΓ〉= 〈SRũΓ,ũΓ〉+〈SBũΓ,ũΓ〉. (4.3)

Therefore, to prove the upper bound, we need to control 〈SRũΓ,ũΓ〉 by 〈SBũΓ,ũΓ〉. Let
ΠH : VΓ→VΓ be the linear interpolation operator on the coarse grid, where ΠHv(x)=v(x)
for any cross point x. Then by Lemma 3.1 and Lemma 3.3 in [?], we have

〈SRũΓ,ũΓ〉= ∑
i∈ΛR

νi|HiũΓ|21,Ωi

≤ ∑
i∈ΛR

νi

(
|Hi(ũΓ−ΠHũΓ)|21,Ωi

+|HiΠHũΓ|21,Ωi

)

≤CνR ∑
i∈ΛR

∑
j∈Λi

(
‖(ũΓ−ΠHũΓ)‖2

H1/2
00 (Γij)

+|ũΓ(xij0)−ũΓ(xij1)|2
)

≤CνR ∑
j∈ΛB

∑
i∈Λ j

(
‖(ũΓ−ΠHũΓ)‖2

H1/2
00 (Γji)

+|ũΓ(xji0)−ũΓ(xji1)|2
)

≤CνR ∑
j∈ΛB

ν−1
j

(
1+log

H

h

)2
〈SjũΓ,ũΓ〉

≤C
νR

νB

(
1+log

H

h

)2
〈SBũΓ,ũΓ〉. (4.4)
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Combining (4.3) and (4.4), we get the upper bound. The estimate of condition number is
as follows:

κ(P−1
DNS̃)=

λmax(P−1
DNS̃)

λmin(P−1
DNS̃)

≤1+C
νR

νB

(
1+log

H

h

)2
.

This completes the proof.

Theorem 4.2. For the R-R algorithm, we assume γR≥CνBh−1 and 0<γB≤cνR H, then it holds
that

c〈PRRg,g〉≤〈Gg,g〉≤C

(
1+

νR

νB
(1+log

H

h
)2

)
〈PRRg,g〉. (4.5)

Thus,

κ(P−1
RR G)≤C

(
1+

νR

νB
(1+log

H

h
)2

)
.

Proof. For the preconditioned system, we have the following estimates,

γB

γR
‖g‖2

0,Γ+
γR+γB

γ2
R

|g|2SB
≤〈PRRg,g〉≤ γB

γR
‖g‖2

0,Γ+
2(γR+γB)

γ2
R

|g|2SB
, (4.6)

and

γR+γB

(2+δ)γ2
R

|g|2SR
+

γR+γB

γ2
R

|g|2SB
≤〈Gg,g〉≤ γR+γB

γ2
R

|g|2SR
+

2(γR+γB)

γ2
R

|g|2SB
, (4.7)

where δ>0 is an constant independent of h,H. For the details, we refer to [5].
By (4.6) and (4.7), we may get the upper bound estimate, i.e.

〈Gg,g〉≤ γR+γB

γ2
R

|g|2SR
+

2(γR+γB)

γ2
R

|g|2SB

≤ γR+γB

γ2
R

(
2+C

νR

νB
(1+log

H

h
)2

)
|g|2SB

(4.8)

≤C

(
1+

νR

νB
(1+log

H

h
)2

)
〈PRRg,g〉. (4.9)

The L2 norm of g on the interface may be estimated by trace theorem, i.e.

‖g‖2
0,∂Ωi

≤CH|Hig|21,Ωi
+CH−1‖Hig‖2

0,Ωi
, i∈ΛR,

‖g‖2
0,∂Ωj

≤CH|Hjg|21,Ωj
+CH−1‖Hjg‖2

0,Ωj
, j∈ΛB.

Summing over all the subdomains, we get

‖g‖2
0,Γ ≤CH(|HRg|21,ΩR

+|HBg|21,ΩB
)+CH−1(‖HRg‖2

0,ΩR
+‖HBg‖2

0,ΩB
)

≤CH−1(|HRg|21,ΩR
+|HBg|21,ΩB

), (4.10)
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by using Poincaré inequality and the fact that H≤H−1. Then by the choice of γR,γB and
assumption νR <νB, the lower bound could be obtained as follows,

〈PRRg,g〉≤ γB

γR
‖g‖2

0,∆+
2(γR+γB)

γ2
R

|g|2SB

≤C
νR

γR
(|HRg|21,ΩR

+|HBg|21,ΩB
)+

2(γR+γB)

γ2
R

|g|2SB

≤C
1

γR
|g|2SR

+
(

C
νR

νBγR
+

2(γR+γB)

γ2
R

)
|g|2SB

≤max

{
C
(2+δ)γR

γR+γB
,2+

νR

νB
· γR

γR+γB

}
〈Gg,g〉

≤C〈Gg,g〉. (4.11)

The condition number is then bounded by using (4.8) and (4.11).

Remark 4.1. We may find that D-N algorithm and R-R algorithm could still benefit from
the jumps of the discontinuous coefficients. If νR ≪ νB, the condition numbers will be
bounded by a nearly constant, that is,

κ(P−1
DNS̃)≤1+O(ǫ),

and

κ(P−1
RR G)≤C(1+O(ǫ)),

where ǫ= νR
νB

.

Remark 4.2. For the case that coefficients are piecewise constants in red and black do-
mains, the condition number bounds will become

κ(P−1
DNS̃)≤1+Cǫ̃

(
1+log

H

h

)2
,

κ(P−1
RR G)≤C

(
1+ ǫ̃

(
1+log

H

h

)2)
,

where

ǫ̃=min
{νmax

R

νmin
B

,
νmax

B

νmin
R

}
.

Theorem 4.3. For the N-N algorithms, we have

κ(P−1
NN S̃)≤C

(
1+log

H

h

)2
(4.12)

by choosing suitable DR and DB.
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Proof. According to the definitions, we have

〈S̃u∆,u∆〉= min
u∈VΓ,u|Γ∆

=u∆

〈Su,u〉= 〈SuΓ,uΓ〉= 〈SRuΓ,uΓ〉+〈SBuΓ,uΓ〉

≥〈S̃Ru∆,u∆〉+〈S̃Bu∆,u∆〉.

Then we estimate the lower bound of eigenvalues of P−1
NN(S̃R+S̃B) instead of P−1

NNS̃. Since

S̃R,S̃B are both positive definite operators, it holds that

〈P−1
NN2(S̃R+S̃B)u∆,u∆〉

=
(
(δ†

R)
2+(δ†

B)
2
)
〈u∆,u∆〉+(δ†

R)
2〈S̃−1

R S̃Bu∆,u∆〉+(δ†
B)

2〈S̃−1
B S̃Ru∆,u∆〉

≥
(
(δ†

R)
2+(δ†

B)
2
)
〈u∆,u∆〉,

therefore, (
(δ†

R)
2+(δ†

B)
2
)
〈u∆,u∆〉≤〈P−1

NNS̃u∆,u∆〉. (4.13)

As δ†
R+δ†

B=1, it holds that (δ†
R)

2+(δ†
B)

2≥ 1
2 . The lower bound is obtained.

We then estimate the upper bound. By using (4.4), we have

〈S̃u∆,u∆〉≤
(

1+C
νR

νB

(
1+log

H

h

)2
)
〈S̃Bu∆,u∆〉, (4.14)

〈S̃u∆,u∆〉≤
(

1+C
νB

νR

(
1+log

H

h

)2
)
〈S̃Ru∆,u∆〉. (4.15)

Combining (4.14), (4.15), we get

λ(P−1
NN S̃)≤ (δ†

R)
2+(δ†

B)
2+C

(
(δ†

R)
2 νB

νR
+(δ†

B)
2 νR

νB

)(
1+log

H

h

)2
. (4.16)

Similar to the case of two subdomains, if we set δ†
R = 1 or 0, the method becomes D-N

algorithm actually. This is not a good choice. One of the optimal choices could be

δ†
R =

√
νR√

νR+
√

νB
, δ†

B =

√
νB√

νR+
√

νB
,

then the upper bound, independent of νR,νB is obtained as follows,

λ(P−1
NN2S̃)≤C

νR+νB

(
√

νR+
√

νB)2

(
1+log

H

h

)2
≤C

(
1+log

H

h

)2
. (4.17)

Combining (4.13) and (4.17), we get the conclusion (4.12).
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The conclusion and the proof of D-D algorithm is similar to that of N-N algorithms.
We have analyzed four kinds of domain decompositions in the case of many subdo-

mains with red-black partition. Similar to the case of two subdomains, we find that they
have two kinds of different behaviours. Why there is such a difference? Intuitively, the
D-N algorithm and R-R algorithm use information of half the subdomains to precondi-
tion the whole system while energy norms of ΩR and ΩB are controlled by each other in
the N-N algorithm and D-D algorithm. Therefore, in these special cases, D-N algorithm
and R-R algorithm may perform very well as they fully take advantage of the ratio νR

νB
but

N-N algorithm and D-D algorithm do not have such a good property. In fact, N-N algo-
rithm and D-D algorithm are more applicable in general cases by choosing appropriate
weights and their condition number bounds may be independent of the discontinuous
coefficients. For the details, we refer to [4, 6] and references therein.

4.3 Implementation of the algorithms

In the subsection, we will describe the implementation of the preconditioned systems
and right hand sides.

We first illustrate the implementation of S̃,S̃R and S̃B. Reorder the vectors of un-
knowns into the following form:

uT
R=

(
uR

I
T

uT
∆ uT

C

)
, uT

B =
(

uB
I

T
uT

∆ uT
C

)
, uT =

(
uT

I uT
∆ uT

C

)
,

then we have 


AI I AI∆ AIC

A∆I A∆∆ A∆C

ACI AC∆ ACC






uI

u∆

uC


=




f I

f∆

fC


.

The systems of uR,uB are similar. The Schur complement system on Γ∆ is as follows:

S̃u∆= f̃∆,

where

S̃=A∆∆−
(

A∆I A∆C

)(AI I AIC

ACI ACC

)−1(
AI∆

AC∆

)
,

and

f̃∆ = f∆−
(

A∆I A∆C

)(AI I AIC

ACI ACC

)−1(
f I

fC

)
.

Similarly, we may get S̃R,S̃B. In the following, we should know how S̃ and S̃−1
R ,S̃−1

B act

on a given vector u∆. To determine S̃u∆, we first solve the following coarse problem

SCCuC= f̂C,

where
SCC =ACC−ACI A−1

I I AIC,
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and
f̃C =AC∆u∆−ACI A−1

I I AI∆u∆.

Then we need to solve subdomain Dirichlet problems with boundary data given by u∆

and uC, and finally obtain S̃u∆. S̃Ru∆,S̃Bu∆ could be obtained in the same way. To com-
pute S̃−1

R u∆, we need to solve the following problem,




AR
II AR

I∆ AR
IC

AR
∆I AR

∆∆ AR
∆C

AR
CI AR

C∆ AR
CC






wI

w∆

wC


=




0
u∆

0


. (4.18)

By eliminating the unknowns of type I and ∆, we get the coarse problem

S̃R
CCwC= f̃ R

C ,

where

S̃R
CC =AR

CC−
(

AR
CI AR

C∆

)(AR
II AR

I∆

AR
∆I AR

∆∆

)−1(
AR

IC

AR
∆C

)
,

and

f̃ R
C =−

(
AR

CI AR
C∆

)(AR
II AR

I∆

AR
∆I AR

∆∆

)−1(
0

u∆

)
.

After solving wC, we may substitute it into (4.18) and solve local problems, then w∆ is the
desired vector S̃−1

R u∆. The implementation of S̃−1
B is similar.

Then we illustrate the implementation of SR and SB. We take SR as an example. Re-
order the vectors uR into the following form:

uT
R =

(
uR

I
T

uT
Γ

)
.

Then we have (
AR

II AR
IΓ

AR
ΓI AR

ΓΓ

)(
uR

I

uΓ

)
=

(
f R
I

f R
Γ

)
, (4.19)

By eliminating the interior component, we have

SRuΓ = fR,

where
SR=AR

ΓΓ−AR
ΓI AR

II
−1

AR
IΓ,

and
fR = f R

Γ −AR
ΓI AR

II
−1

f R
I .

SB, fB are obtained in the same way.
The implementation of SR and SB acting on a given vector is realized by Gaus-

sian block elimination. And the implementation of S−1
R ,S−1

B ,(γRM+SR)
−1,(γBM+
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SB)
−1,(γRM−SB)

−1 acting on a vector may follow the same way of S̃−1
R with the right

hand side in the following form,

gT =
(
0 gT

∆ gT
C

)T
,

as they act on vectors of VΓ.
Now the only thing left is the right hand side of R-R system. In fact, the R-R algorithm

should be treated carefully and the system after simplification is

M
(
(γRM−SB)

−1−(γRM+SR)
−1)

)
MgR =M(γRM−SB)

−1 fB+M(γRM+SR)
−1 fR,

and P−1
RR =(γR+γB)(γBM+SB)

−1−M−1, where M is the mass matrix of VΓ.
So far, the implementation of the algorithms is completed.

5 Numerical experiments

In this section, we perform some numerical experiments to verify our conclusions. We
consider the following diffusion problem with zero Dirichlet boundary condition,

−∇·(ν(x)∇u)= f in Ω, (5.1)

where Ω=(0,1)2 and f =−2(x2+y2−x−y).
We first test the case of two subdomains with Ω1,Ω2 symmetric with respect to Γ=

{ 1
2}×(0,1), i.e. Ω1=(0, 1

2)×(0,1), Ω2=( 1
2 ,1)×(0,1). The iteration stops when the relative

error is less than tol=10−8. The weights of N-N algorithm and D-D algorithms are set to
be optimal and the Robin parameters of R-R algorithm are γ1=ν2/h and γ2=ν1.

Table 1 and Table 2 show the numbers of iterations of different algorithms with sev-
eral groups of parameters. θopt denotes the optimal θ mentioned above. We may find that

Table 1: Numbers of iterations of D-N algorithm and N-N algorithm with different parameters.

ν1 ν2 h
D-N N-N

θopt 1/2 1 θopt 1/3 2/3

10−2 102 1/16 1 27 3 1 18 16

10−4 104 1/16 1 27 1 1 17 17

10−6 106 1/16 1 27 1 1 17 17

10−2 102 1/32 1 27 3 1 18 16

10−4 104 1/32 1 27 1 1 17 17

10−6 106 1/32 1 27 1 1 17 17

10−2 102 1/64 1 27 3 1 18 16

10−4 104 1/64 1 27 2 1 17 17

10−6 106 1/64 1 27 1 1 17 17
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Table 2: The numbers of iterations of D-D algorithm and R-R algorithm with different parameters.

ν1 ν2 h
D-D R-R

θopt 1/3 2/3 θopt 1/2 1

10−2 102 1/16 1 18 16 2 27 2

10−4 104 1/16 1 17 17 1 27 1

10−6 106 1/16 1 17 17 1 27 1

10−2 102 1/32 1 18 16 2 27 2

10−4 104 1/32 1 17 17 1 27 1

10−6 106 1/32 1 17 17 1 27 1

10−2 102 1/64 1 18 16 2 27 2

10−4 104 1/64 1 17 17 1 27 1

10−6 106 1/64 1 17 17 1 27 1

Table 3: The numbers of iterations with different discontinuous coefficients.

ν1 ν2
D-N N-N D-D R-R

Γ1 Γ2 Γ1 Γ2 Γ1 Γ2 Γ1 Γ2

10−1 101 4 4 11 14 11 14 5 5

10−2 102 2 2 11 14 11 14 2 2

10−3 103 2 2 11 14 11 14 2 2

10−4 104 1 1 11 14 11 14 1 1

10−5 105 1 1 11 14 11 14 1 1

10−6 106 1 1 11 14 11 14 1 1

if we choose the optimal θ, D-N algorithm, N-N algorithm and D-D algorithm converge
in one step which corresponds to the zero convergence rate in Theorem 3.1. For D-N
algorithm and R-R algorithm, if θ is set to be 1, the convergence rate will thoroughly rely
on the ratio ν1/ν2 and the data in Table 1 and Table 2 confirm the conclusion because the
iteration counts decrease with the jump in the coefficient increases. For N-N algorithm
and D-D algorithm, we find that the iterations are not affected by the discontinuous coef-
ficients ν1,ν2 which supports the theoretical results. Besides, we note that all of them are
independent of mesh size h.

In the second experiment, we test the case of two subdomains with Ω1,Ω2 nonsym-
metric. The first interface Γ1 is set to be { 1

4}×(0,1) and the second case is Γ2={ 3
4}×(0,1).

The mesh size h is fixed to be 1/64. The relaxation parameter is always the optimal one
of symmetric case. The other settings are the same as the previous experiment.

In Table 3, the convergence of the different methods is shown for different coeffi-
cient ratios in nonsymmetric case. The D-N algorithm and R-R algorithm with optimal
θ converge very quickly. This is because their convergence rates are dominated by the
coefficient ratio and the smaller the ratio is, the faster the iteration converges. For the
N-N algorithm and D-D algorithm with optimal weights, the convergence rates are in-



X. Na and X. Xu / Commun. Comput. Phys., 35 (2024), pp. 212-238 237

Table 4: The numbers of iteration for 8×8 subdomains with νR =νB =1.

H
h D-N N-N D-D R-R

4 15 8 7 15

8 17 10 8 17

16 19 11 9 19

32 21 13 10 21

64 23 14 11 23

Table 5: The numbers of iteration for case of many subdomains with νR =νB =1 and fixed H
h =8.

N×N D-N N-N D-D R-R

4×4 9 5 4 10

8×8 17 10 8 17

16×16 20 10 8 20

24×24 20 10 8 20

32×32 20 10 7 20

Table 6: The numbers of iteration for 8×8 subdomains with different discontinuous coefficients.

νB νR D-N N-N D-D R-R

101 10−1 4 17 14 4

102 10−2 2 17 14 2

103 10−3 2 17 14 2

104 10−4 1 17 14 1

105 10−5 1 17 14 1

106 10−6 1 17 14 1

dependent of the discontinuous coefficients. In addition, by comparing the numbers of
iteration with Γ1,Γ2, we may see that the influence of using different interfaces is little.

At last, we test the case of many subdomains with coefficients red-black checkerboard
distribution. We use the PCG method and the terminal precision is chosen as 10−6. The
weights of N-N algorithm and D-D algorithm are optimal and the Robin parameters
γR,γB are set to be 16νB/h and νR H/2, respectively.

Table 4 shows the corresponding iteration numbers of the four algorithms when the
mesh is refined. The slight increases of the iteration numbers explain that the condition
number is growing slowly as H

h increases. Then we fix the degrees of freedom in each

subdomain, that is, H
h is a constant, we get the results in Table 5. We may see that the

iteration number of each algorithm is stable which reflects that the iteration numbers
rely only on H

h .

The results in Table 6 corresponds to the numerical experiment with fixed numbers
of subdomains, fixed H

h =8 and increasing jumps of the coefficients. We may see that the
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iteration numbers of D-N algorithms and R-R algorithm decrease rapidly as the jumps
increase which confirms our theory and the iteration numbers of N-N algorithms and
D-D algorithm are stable.
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