Uniform RIP Bounds for Recovery of Signals with Partial Support Information by Weighted ℓ_{p}-Minimization

Huanmin Ge^{1}, Wengu Chen ${ }^{2}$ and Michael K. $\mathrm{Ng}^{3, *}$
${ }^{1}$ School of Sports Engineering, Beijing Sport University, Beijing 100084, China.
${ }^{2}$ National Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China.
${ }^{3}$ Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong, SAR, China.

Received 7 April 2022; Accepted 6 September 2023

Abstract

In this paper, we consider signal recovery in both noiseless and noisy cases via weighted $\ell_{p}(0<p \leq 1)$ minimization when some partial support information on the signals is available. The uniform sufficient condition based on restricted isometry property (RIP) of order $t k$ for any given constant $t>d$ ($d \geq 1$ is determined by the prior support information) guarantees the recovery of all k-sparse signals with partial support information. The new uniform RIP conditions extend the state-of-the-art results for weighted ℓ_{p}-minimization in the literature to a complete regime, which fill the gap for any given constant $t>2 d$ on the RIP parameter, and include the existing optimal conditions for the ℓ_{p}-minimization and the weighted ℓ_{1}-minimization as special cases.

AMS subject classifications: 94A12, 94A15, 94A08
Key words: Compressed sensing, weighted ℓ_{p} minimization, stable recovery, restricted isometry property.

1 Introduction

In compressed sensing, a central goal is to efficiently recover sparse signals $x \in \mathbb{R}^{n}$ from a relatively small number of linear measurements, i.e.

$$
\begin{equation*}
y=A x+e \tag{1.1}
\end{equation*}
$$

where $\boldsymbol{y} \in \mathbb{R}^{m}, \boldsymbol{A} \in \mathbb{R}^{m \times n}(m \ll n)$ is a sensing matrix and $\boldsymbol{e} \in \mathbb{R}^{m}$ denotes a vector of measurement errors. It has been a research focus in applied mathematics, statistics, and machine

[^0]learning, with abundant applications ranging from medical imaging to speech recognition and video coding. A series of fast algorithms have been developed to recover the signal x from a relatively small number of linear measurements (1.1). The ℓ_{p}-minimization with $0<p \leq 1$ is among the most well-known algorithms for the reconstruction of the $\operatorname{signal} x$
\[

$$
\begin{align*}
& \min _{x \in \mathbb{R}^{n}}\|x\|_{p}^{p} \tag{1.2}\\
& \text { s.t. } \quad A x-y \in \mathcal{B},
\end{align*}
$$
\]

where \mathcal{B} is a set determined by the noise structure and $\|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}$. For the noiseless case, $\mathcal{B}=\{\mathbf{0}\}$.

In this paper, we consider the weighted ℓ_{p}-minimization $(0<p \leq 1)[7-9,11-15,17$, 18,20] to recover the signal x from (1.1), when some prior information is included in the estimates of the support of x or some estimates of largest coefficients of x. For instance, video and audio signals exhibit strong correlation over temporal frames, which can be used to estimate a portion of the support based on previously decoded frames. The main idea inherited in the weighted ℓ_{p}-minimization is to make the entries of x, which are expected to be large, be penalized less in the weighted objective function by introducing a weight vector $\mathbf{w} \in[0,1]^{n}$. The weighted ℓ_{p}-minimization is formulated as follows:

$$
\begin{align*}
& \min _{x \in \mathbb{R}^{n}}\|x\|_{p, \mathbf{w}}^{p} \tag{1.3}\\
& \text { s.t. } \quad A x-y \in \mathcal{B},
\end{align*}
$$

where

$$
\|x\|_{p, \mathbf{w}}=\left(\sum_{i=1}^{n} \mathrm{w}_{i}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}
$$

In particular, the weighted ℓ_{p}-minimization (1.3) reduces to the well-known weighted ℓ_{1}-minimization used for the signal recovery when $p=1$, i.e.

$$
\begin{align*}
& \min _{x \in \mathbb{R}^{n}}\|x\|_{1, \mathbf{w}} \tag{1.4}\\
& \text { s.t. } \quad A x-y \in \mathcal{B} .
\end{align*}
$$

Let $\widetilde{T} \subseteq[n]=\{1,2, \ldots, n\}$ be a known support estimate of x. The weight vector \mathbf{w} in this paper is taken by

$$
\mathrm{w}_{i}= \begin{cases}\omega, & i \in \widetilde{T} \tag{1.5}\\ 1, & i \in \widetilde{T}^{c}\end{cases}
$$

for some fixed $\omega \in[0,1]$.
The signal recovery based on partially known support is introduced in $[2,15,20]$. In $[2,14,16,19,20]$, the known support information is incorporated using weighted ℓ_{1} minimization with zero weights on the known support \widetilde{T}, i.e. $\omega=0$ in (1.5). Friedlander et al. [9] extended the weighted ℓ_{1}-minimization to nonzero weights, i.e. $\omega \in[0,1]$
in (1.5), and derived its stable and robust recovery guarantees based on restricted isometry property, which is one of the most widely used frameworks in compressed sensing proposed in [5]. RIP based signal recovery has been extensively studied via the weighted ℓ_{p}-minimization (1.3) in the literature, see [7-10,14, 15, 17, 20].

Definition 1.1. For a matrix $A \in \mathbb{R}^{m \times n}$ and an integer $1 \leq k \leq n, A$ is said to satisfy the RIP of order k if there exists a constant $\delta_{k} \in[0,1)$ such that

$$
\begin{equation*}
\left(1-\delta_{k}\right)\|\boldsymbol{x}\|_{2}^{2} \leq\|\boldsymbol{A} \boldsymbol{x}\|_{2}^{2} \leq\left(1+\delta_{k}\right)\|\boldsymbol{x}\|_{2}^{2} \tag{1.6}
\end{equation*}
$$

holds for all k-sparse signals $\boldsymbol{x} \in \mathbb{R}^{n}$. A signal $\boldsymbol{x} \in \mathbb{R}^{n}$ is called k-sparse if the number of its nonzero entries is k at most. The smallest constant δ_{k} is called the restricted isometry constant (RIC) of order k for A.

Note that when k is not an integer, δ_{k} is defined as $\delta_{\lceil k\rceil}$ in [4], where $\lceil k\rceil$ denotes an integer satisfying $k<\lceil k\rceil<k+1$.

This paper is devoted to developing a uniform RIP bound on $\delta_{t k}$ for the exact recovery of signals with partial support information via the weighted ℓ_{p}-minimization (1.3) with $0<p \leq 1$ for all $t>d$ where $d \geq 1$ is determined by the prior support information. We provide the state-of-the-art results for weighted ℓ_{p}-minimization in the literature to a complete regime, which fill the gap for $t>2 d$ on $\delta_{t k}$ based signal recovery conditions, and include the optimal results for the ℓ_{1}-minimization in [4] and the ℓ_{p}-minimization with $0<p<1$ in [21,23] as special cases. Our main tool is to study a crucial sparse decomposition technique adapted to the RIP analysis of the weighted $\ell_{p}(0<p \leq 1)$ minimization.

On the other hand, the stable recovery guarantees based on $\delta_{t k}$ for all $t>d$ for noisy observations or non-sparse signals with suitable assumptions are provided. Our results for stable recovery of non-sparse signals are new for the weighted $\ell_{p}(0<p \leq 1)$ minimization, compared to the recent work in [10]. Here we deduce an upper error bound using some new transformations.

The rest of the paper is organized as follows. In Section 2, we recall some technical lemmas for the (weighted) ℓ_{p}-minimization with $0<p \leq 1$. In Section 3, we first present uniform sufficient conditions for the recovery of sparse signals with prior support information in the noiseless case. Then the error bounds of signal stable recovery are developed in ℓ_{2} bounded noise case or non-sparse signals. Finally, the conclusion of the paper is presented in Section 5 .

2 Preliminaries

In this section, we first recall some technical lemmas for the analysis of the weighted ℓ_{p}-minimization (1.3) with $0<p \leq 1$.

The following two lemmas have been used in [10]. The first one concerns elementary ℓ_{p} inequality.

Lemma 2.1 ([10, Lemma V.1]). Let p and q be two positive numbers. Then
(I) $\|x\|_{p} \leq\|x\|_{2}|\operatorname{supp}(x)|^{(2-p) /(2 p)}$, if $0<p<2$,
(II) $\|x\|_{p}^{p} \leq\left(\|x\|_{2}^{2}\right)^{1 / q}\left(\|x\|_{p_{1}}^{p_{1}}\right)^{1-1 / q}$, if $p q>2$ and $q>1$, where $p_{1}=(p-2 / q)(q /(q-1))$.

The second lemma states some properties on a function $g(z)=p z^{2 / p} / 2+z-(2-p) \Lambda / 2$.
Lemma 2.2 ([10, Lemma V.2]). For $0<p \leq 1$ and $\Lambda>0$, the function $g(z)=p z^{2 / p} / 2+z-$ $(2-p) \Lambda / 2$ is monotonically increasing in $(0, \infty)$. In addition, the following statements hold:
(I) If $0<\Lambda \leq 2 /(2-p)$, there exists a unique point $z_{0} \in((1-p) \Lambda,(1-p / 2) \Lambda) \subseteq(0,1)$ such that $g\left(z_{0}\right)=0$.
(II) If $2 /(2-p)<\Lambda<(2+p) /(2-p)$, there exists a unique point $z_{0} \in((1-p) \Lambda, 1) \subseteq(0,1)$ such that $g\left(z_{0}\right)=0$.
(III) If $\Lambda \geq(2+p) /(2-p)$, there does not exist a point $z_{0} \in(0,1)$ such that $g\left(z_{0}\right)=0$.

The third lemma is an important lifting inequality established in [3].
Lemma 2.3 ([3]). Suppose $n \geq r, \tau \geq 0, a_{1} \geq a_{2} \geq \cdots \geq a_{n} \geq 0$, and $\sum_{i=1}^{r} a_{i}+\tau \geq \sum_{i=r+1}^{n} a_{i}$. Then for all $\sigma \geq 1$,

$$
\sum_{i=r+1}^{n} a_{i}^{\sigma} \leq r\left(\left(\frac{1}{r} \sum_{i=1}^{r} a_{i}^{\sigma}\right)^{\frac{1}{\sigma}}+\frac{\tau}{r}\right)^{\sigma} .
$$

The cone constraint inequality obtained in [11, Inequality (14)] is an essential extension of [9, Inequality (21)], which will play a key role for analyzing the weighted $\ell_{p^{-}}$ minimization (1.3). See the following lemma.
Lemma 2.4. For any two vectors $x, \hat{x} \in \mathbb{R}^{n}$ and $h=\hat{x}-x$, if $\|\hat{x}\|_{p, \mathrm{w}}^{p} \leq\|x\|_{p, \mathrm{w}}^{p}$ with the weight vector \mathbf{w} defined in (1.5), then

$$
\begin{align*}
\left\|\boldsymbol{h}_{\Gamma^{c}}\right\|_{p}^{p} \leq & \omega\left\|\boldsymbol{h}_{\Gamma}\right\|_{p}^{p}+(1-\omega)\left\|\boldsymbol{h}_{(\widetilde{T} \cup \Gamma) \backslash(\widetilde{T} \cap \Gamma)}\right\|_{p}^{p} \\
& +2\left(\omega\left\|x_{\Gamma^{c}}\right\|_{p}^{p}+(1-\omega)\left\|x_{\widetilde{T_{c}} \cap \Gamma \Gamma^{c}}\right\|_{p}^{p}\right) \tag{2.1}
\end{align*}
$$

for any index set $\Gamma \subseteq[n]$.
A well-known property on RICs with different orders (see for example [3,Lemma 4.1]) is stated as follows.

Lemma 2.5. Suppose $\boldsymbol{A} \in \mathbb{R}^{m \times n}, k \geq 2$ is an integer, $s>1$ and sk is an integer. Then $\delta_{s k} \leq(2 s-1) \delta_{k}$.
A key tool established in [4,22], which represents points in a polytope by convex combinations of k-sparse signals, initiates a process of improving and sharping RIP bounds for signal recovery via the (weighted) ℓ_{1}-minimization. The sparse representation of a polytope is extended in [23] to adapt $l_{p}(0<p \leq 1)$ case, see the following lemma.

Lemma 2.6 ([23, Lemma 2.2]). For $x \in \mathbb{R}^{n}$ which satisfies $|\operatorname{supp}(x)|=K,\|x\|_{p}^{p} \leq L \zeta^{p}$ and $\|x\|_{\infty} \leq \zeta$ with $L \leq K$ being a positive integer, ζ being a positive constant and $0<p \leq 1$, then x can be represented as the convex combination of L-sparse vectors, i.e.

$$
\boldsymbol{x}=\sum_{i=1}^{N} \lambda_{i} \boldsymbol{u}_{i}
$$

where $\lambda_{i}>0, \sum_{i=1}^{N} \lambda_{i}=1$ and $\left\|\boldsymbol{u}_{i}\right\|_{0} \leq L$. Furthermore,

$$
\begin{equation*}
\sum_{i=1}^{N} \lambda_{i}\left\|\boldsymbol{u}_{i}\right\|_{2}^{2} \leq \min \left\{\frac{n}{L}\|x\|_{2}^{2}, \zeta^{p}\|x\|_{2-p}^{2-p}\right\} \tag{2.2}
\end{equation*}
$$

We have used the key sparse representation tool with $0<p \leq 1$ and obtained the following state-of-the-art RIP condition for sparse signal recovery via the weighted $\ell_{p}{ }^{-}$ minimization (1.3), which includes the existing optimal result in [6, Theorem 1].

Theorem 2.1 ([10, Theorem III.1]). For $\boldsymbol{y}=\boldsymbol{A x}$, let $\boldsymbol{x} \in \mathbb{R}^{n}$ be k-sparse with $T=\operatorname{supp}(\boldsymbol{x})$ and the support estimate $\widetilde{T} \subseteq[n]$. Define $\rho \geq 0$ and $0 \leq \alpha \leq 1$ with $\alpha \rho \leq 1$ such that $|\widetilde{T}|=\rho k$ and $|\widetilde{T} \cap T|=\alpha \rho k$. If \boldsymbol{A} satisfies RIP with

$$
\delta_{t k}< \begin{cases}\frac{1}{\sqrt{p^{2}+(2-p)^{2} \chi^{\frac{2}{2-p}} /(t-d)}-(1-p)}, & d<t \leq d+\frac{2-p}{2+p} \chi^{\frac{2}{2-p}}, \tag{2.3}\\ \frac{z_{0}}{(2-p) \chi^{\frac{2}{2-p}} /(t-d)-z_{0}}, & d+\frac{2-p}{2+p} \chi^{\frac{2}{2-p}<t \leq 2 d,}\end{cases}
$$

where

$$
\begin{align*}
& d= \begin{cases}1, & \omega=1 \\
1+\max \{0,1-2 \alpha\} \rho, & 0 \leq \omega<1,\end{cases} \tag{2.4}\\
& \chi=\omega+(1-\omega)(1+\rho-2 \alpha \rho)^{\frac{2-p}{2}}, \tag{2.5}
\end{align*}
$$

and

$$
z_{0} \in\left(\frac{1-p}{t-d} \chi^{\frac{2}{2-p}}, \min \left\{1, \frac{2-p}{2(t-d)} \chi^{\frac{2}{2-p}}\right\}\right)
$$

is the only positive solution of the equation

$$
\begin{equation*}
\frac{p}{2} z^{\frac{2}{p}}+z-\frac{2-p}{2(t-d)} x^{\frac{2}{2-p}}=0, \tag{2.6}
\end{equation*}
$$

then the weighted ℓ_{p}-minimization (1.3) with the weight vector \mathbf{w} defined in (1.5) and $0<p \leq 1$ recovers x exactly.

3 Main results

In this section, we present RIP bounds for the signal recovery via the weighted ℓ_{p}-minimization (1.3) with $0<p \leq 1$ in both noiseless and l_{2} bounded noise cases.

3.1 Noiseless case

In noiseless case, we obtain a uniform recovery condition based on $\delta_{t k}$ with $t>d$ for the exact recovery of the sparse signals x from $y=A x$ via the weighted ℓ_{p}-minimization (1.3) with $0<p \leq 1$ and $\mathcal{B}=\{\mathbf{0}\}$.
Theorem 3.1. Let $\boldsymbol{y}=A \boldsymbol{x}$ for a k-sparse vector $\boldsymbol{x} \in \mathbb{R}^{n}$ with $T=\operatorname{supp}(\boldsymbol{x})$, and $\widetilde{T} \subseteq[n]$ be a support estimate of x. Define $\rho \geq 0$ and $0 \leq \alpha \leq 1$ with $\alpha \rho \leq 1$ such that $|\widetilde{T}|=\rho k$ and $|\widetilde{T} \cap T|=\alpha \rho k$. Given the weight vector $\mathbf{w} \in[0,1]^{n}$ as defined in (1.5) and $0<p \leq 1$, if th is an integer and

$$
\begin{align*}
& 1-\delta_{t k}^{2}-p \chi^{\frac{2}{p}}(2(t-d))^{-\frac{2-p}{p}}\left(\frac{\sqrt{p^{2} \delta_{2(t-d) k}^{2}+4(1-p) \delta_{t k}^{2}}+(2-p) \delta_{2(t-d) k}}{1+\delta_{2(t-d) k}}\right)^{\frac{2-2 p}{p}} \\
& \quad \times\left(2 \delta_{t k}^{2}-p \delta_{2(t-d) k}^{2}+\delta_{2(t-d) k} \sqrt{p^{2} \delta_{2(t-d) k}^{2}+4(1-p) \delta_{t k}^{2}}\right)>0 \tag{3.1}
\end{align*}
$$

for some $t>d$, where d and χ are defined in (2.4) and (2.5), respectively, then the weighted $\ell_{p^{-}}$ minimization (1.3) with $\mathcal{B}=\{\mathbf{0}\}$ recovers \boldsymbol{x} exactly.

The proof of Theorem 3.1 can be found in Section 4.2. We first provide some remarks for the case $d<t \leq 2 d$.

For $d<t \leq 2 d, \delta_{2(t-d) k} \leq \delta_{\text {tk }}$ by the monotonicity of RICs. By some simple calculation, it is easy to see that the quantity

$$
\begin{aligned}
& \left(\frac{\left.(2-p) \delta_{2(t-d) k}+\sqrt{p^{2} \delta_{2(t-d) k}^{2}+4(1-p) \delta_{t k}^{2}}\right)}{1+\delta_{2(t-d) k}}\right)^{\frac{2-2 p}{p}} \\
& \quad \times\left(2 \delta_{t k}^{2}-p \delta_{2(t-d) k}^{2}+\delta_{2(t-d) k} \sqrt{p^{2} \delta_{2(t-d) k}^{2}+4(1-p) \delta_{t k}^{2}}\right)
\end{aligned}
$$

is monotonically increasing in $\delta_{2(t-d) k}$. Then

$$
1-\delta_{t k}^{2}-p \chi^{\frac{2}{p}}(2(t-d))^{-\frac{2-p}{p}}\left(\frac{2(2-p) \delta_{t k}}{1+\delta_{t k}}\right)^{\frac{2-2 p}{p}}\left(2(2-p) \delta_{t k}^{2}\right)>0
$$

guarantees the condition (3.1) holds. Therefore, we have the following corollary.
Corollary 3.1. Let $\boldsymbol{y}=\boldsymbol{A x}$ for a k-sparse vector $\boldsymbol{x} \in \mathbb{R}^{n}$ with $T=\operatorname{supp}(\boldsymbol{x})$ and the support estimate $\widetilde{T} \subseteq[n]$. Let α and ρ be the same as in Theorem 3.1. If A satisfies RIP with

$$
\begin{equation*}
\delta_{t k}<\tilde{\delta}(p, t, d, \chi) \tag{3.2}
\end{equation*}
$$

for $d<t \leq 2 d$, where d and χ are respectively defined in (2.4) and (2.5), and

$$
\tilde{\delta}(p, t, d, \chi) \in\left[\left(1+2 p \chi^{\frac{2}{p}}\left(\frac{2-p}{2-p}\right)^{\frac{2-p}{p}}\right)^{-\frac{1}{2}}, 1\right)
$$

is the unique position solution of the equation

$$
\begin{equation*}
\delta=\left(1+p \chi^{\frac{2}{p}}\left(\frac{2-p}{t-d}\right)^{\frac{2-p}{p}}\left(\frac{\delta}{1+\delta}\right)^{\frac{2-2 p}{p}}\right)^{-\frac{1}{2}} \tag{3.3}
\end{equation*}
$$

then the weighted ℓ_{p}-minimization (1.3) with the weight vector \mathbf{w} defined in (1.5) and $0<p \leq 1$ recovers x exactly.

Remark 3.1. As pointed out before, the state-of-the-art result based on $\delta_{t k}$ with $d<t \leq 2 d$ for the exact recovery of the sparse signal x from $y=A x$ has been developed in our previous paper [10]. See Theorem 2.1. The following facts have a direct bearing on the matter and deserve our careful discussion. When $d<t \leq d+(2-p) \chi^{2 /(2-p)} /(2+p)$, the condition (2.3) is weaker than (3.2). When $d+(2-p) \chi^{2 /(2-p)} /(2+p)<t \leq 2 d$, the condition (2.3) is equivalent to (3.2). In fact, the Eq. (3.3) can be written as

$$
\frac{p}{2}\left(\frac{2-p}{t-d} \frac{\delta}{1+\delta} x^{\frac{2}{2-p}}\right)^{\frac{2}{p}}+\frac{2-p}{t-d} \frac{\delta}{1+\delta} x^{\frac{2}{2-p}}-\frac{2-p}{2(t-d)} x^{\frac{2}{2-p}}=0 .
$$

Then $\tilde{\delta}(p, t, d, \chi)$ in (3.2) satisfies

$$
\tilde{\delta}(p, t, d, \chi)=\frac{z_{0}}{(2-p) \chi^{\frac{2}{2-p}} /(t-d)-z_{0}}
$$

for the unique positive solution

$$
z_{0} \in\left(\frac{1-p}{t-d} x^{\frac{2}{2-p}}, \min \left\{1, \frac{2-p}{2(t-d)} \chi^{\frac{2}{2-p}}\right\}\right)
$$

of (2.6), which infers that (3.2) is exactly the condition (2.3). When $d<t \leq d+(2-p) /(2+p)$ $\times \chi^{2 /(2-p)}$, we will prove that

$$
\tilde{\delta}(p, t, d, \chi)=\frac{z_{0}}{(2-p) \chi^{\frac{2}{2-p}} /(t-d)-z_{0}}<\frac{1}{\sqrt{p^{2}+(2-p)^{2} \chi^{\frac{2}{2-p}} /(t-d)}-(1-p)} .
$$

That is to show that

$$
z_{0}<\frac{2-p}{(t-d)\left(\sqrt{p^{2}+(2-p)^{2} \chi^{\frac{2}{2-p}} /(t-d)}+p\right)} \chi^{\frac{2}{2-p}}
$$

which is obvious since $z_{0}<1$ and

$$
\frac{\chi^{\frac{2}{2-p}}}{t-d} \frac{2-p}{\sqrt{p^{2}+(2-p)^{2} \chi^{\frac{2}{2-p}} /(t-d)}+p} \geq 1
$$

for $d<t \leq d+(2-p) \chi^{2 /(2-p)} /(2+p)$.
When $\omega=1$, we have $\chi=1$ in (2.5) and $d=1$ in (2.4), then the condition (3.2) reduces to a sufficient condition in [6, Theorem 1] for sparse signal recovery via the ℓ_{p}-minimization (1.2), which includes the sharp sufficient condition [23, Theorem 1.2].

Corollary 3.2. Let $\boldsymbol{y}=\boldsymbol{A x}$ for a k-sparse vector $\boldsymbol{x} \in \mathbb{R}^{n}$ with $T=\operatorname{supp}(x)$. If A satisfies RIP with

$$
\begin{equation*}
\delta_{t k}<\tilde{\delta}(p, t, 1,1) \tag{3.4}
\end{equation*}
$$

for $1<t \leq 2$, where

$$
\tilde{\delta}(p, t, 1,1) \in\left[\left(1+2 p\left(\frac{2-p}{2(t-1)}\right)^{\frac{2-p}{p}}\right)^{-\frac{1}{2}}, 1\right)
$$

is the unique positive solution of the equation

$$
\delta=\left(1+p\left(\frac{2-p}{t-1}\right)^{\frac{2-p}{p}}\left(\frac{\delta}{1+\delta}\right)^{\frac{2-2 p}{p}}\right)^{-\frac{1}{2}}
$$

then the ℓ_{p}-minimization (1.2) with $0<p \leq 1$ and $\mathcal{B}=\mathbf{0}$ recovers x exactly.
Remark 3.2. When $\omega=1$, the condition (3.2) reduces to (3.4), and the condition (2.3) reduces to

$$
\delta_{t k}< \begin{cases}\frac{1}{\sqrt{p^{2}+(2-p)^{2} /(t-1)}-(1-p)}, & 1<t \leq 1+\frac{2-p}{2+p} \tag{3.5}\\ \frac{z_{0}}{(2-p) /(t-d)-z_{0}}, & 1+\frac{2-p}{2+p}<t \leq 2\end{cases}
$$

for the unique positive solution

$$
z_{0} \in\left(\frac{1-p}{t-d} \chi^{\frac{2}{2-p}}, \min \left\{1, \frac{2-p}{2(t-d)} x^{\frac{2}{2-p}}\right\}\right)
$$

of the equation

$$
\begin{equation*}
\frac{p}{2} z^{\frac{2}{p}}+z-\frac{2-p}{2(t-1)}=0, \tag{3.6}
\end{equation*}
$$

which is sufficient for sparse signal recovery via the ℓ_{p}-minimization. By Remark 3.1, the condition (3.5) in [10] is equivalent to (3.4), which is sharp for sparse signal recovery via the ℓ_{p}-minimization (1.2) when $1+(2-p) /(2+p)<t \leq 2$, see [$6, \operatorname{Remark} 10$]. When $1<t \leq 1+(2-p) /(2+p)$, the condition (3.5) in [10] is weaker than (3.4).

Remark 3.3. For $t=2$, the condition (3.5) or (3.4) is the sharp sufficient condition [23, Theorem 1.2]. That is,

$$
\delta_{2 k}<\frac{\eta_{0}}{2-p-\eta_{0}},
$$

where $\eta_{0} \in(1-p, 1-p / 2)$ is the only positive solution of the equation

$$
\frac{p}{2} z^{\frac{p}{2}}+z-1+\frac{p}{2}=0
$$

It is worth to point out that the uniform condition (3.1) in Theorem 3.1 involves both $\delta_{t k}$ and $\delta_{2(t-d) k}$ for $0<p \leq 1$. It is a little surprise that the uniform condition (3.1) involves only $\delta_{t k}$ for $p=1$ and it reduces to the state-of-the-art condition in [8, Theorem 3.1, Remark 3.1] for the exact recovery of x. See the following Corollary 3.3, which can be easily inferred from Theorem 3.1.
Corollary 3.3. For $\boldsymbol{y}=\boldsymbol{A x}$, let $\boldsymbol{x} \in \mathbb{R}^{n}$ be k-sparse with $T=\operatorname{supp}(\boldsymbol{x})$ and the support estimate $\widetilde{T} \subseteq[n]$. Let α and ρ be the same as in Theorem 3.1. If A satisfies RIP with

$$
\begin{equation*}
\delta_{t k}<\sqrt{\frac{t-d}{t-d+\chi^{2}}} \tag{3.7}
\end{equation*}
$$

for some $t>d$, where d is defined in (2.4) and χ is defined in (2.5) with $p=1$, then the weighted ℓ_{1}-minimization (1.4) with $\mathcal{B}=\{0\}$ exactly recovers \boldsymbol{x}.
Remark 3.4. Note that the sufficient condition (3.7) is tight under certain cases, see [8, Theorem 3.2].

For the most classical case $p=1$ and $\omega=1$, then $\chi=1$ in (2.5), $d=1$ in (2.4) and the uniform condition (3.1) in Theorem 3.1 reduces to the sharp sufficient condition [4, Theorem 1.1].
Corollary 3.4. Let $\boldsymbol{y}=A \boldsymbol{x}$ for a k-sparse vector $\boldsymbol{x} \in \mathbb{R}^{n}$. If

$$
\begin{equation*}
\delta_{t k}<\sqrt{\frac{t-1}{t}} \tag{3.8}
\end{equation*}
$$

for some $t>1$, then \boldsymbol{x} can be exactly recovered by the ℓ_{p}-minimization (1.2) with $p=1$ and $\mathcal{B}=\{\mathbf{0}\}$.
Now we consider the general case $t>d$. When $\omega=1$ or $\alpha=1 / 2$, it is clear that $\chi=1$ in (2.5) and $d=1$ in (2.4). And the uniform RIP conditions (3.1) reduces to the uniform result for the ℓ_{p}-minimization [21, Theorem 1].
Corollary 3.5. Assume that $\boldsymbol{y}=A \boldsymbol{x}$ where $\boldsymbol{x} \in \mathbb{R}^{n}$ is a k-sparse signal. If tk is an integer and

$$
\begin{align*}
& 1-\delta_{t k}^{2}-p(2(t-1))^{-\frac{2-p}{p}}\left(\frac{(2-p) \delta_{2(t-1) k}+\sqrt{p^{2} \delta_{2(t-1) k}^{2}+4(1-p) \delta_{t k}^{2}}}{1+\delta_{2(t-1) k}}\right)^{\frac{2-2 p}{p}} \\
& \quad \times\left(2 \delta_{t k}^{2}-p \delta_{2(t-1) k}^{2}+\delta_{2(t-1) k} \sqrt{p^{2} \delta_{2(t-1) k}^{2}+4(1-p) \delta_{t k}^{2}}\right)>0 \tag{3.9}
\end{align*}
$$

for some $t>1$, then the ℓ_{p}-minimization (1.2) with $\mathcal{B}=\{0\}$ and $0<p \leq 1$ exactly recovers x.

When $\alpha>1 / 2$ and $\omega \in[0,1)$, it is clear that $\chi<1$ from (2.5) and $d=1$ in (2.4). If $\chi<1$ and $d=1$, then the sufficient condition (3.9) implies the condition (3.1). Therefore, we have the following proposition.
Proposition 3.1. If $\alpha>1 / 2$ and $\omega \in[0,1)$, then the sufficient condition (3.1) of the weighted ℓ_{p}-minimization (1.3) is weaker than the condition (3.9) of the ℓ_{p}-minimization (1.2) for exact sparse recovery.

Here, we provide a frame diagram (Fig. 1) to summarize the remarks and corollaries following Theorem 3.1. And the conditions on $\delta_{t k}$ contain several quantities in the remarks and corollaries. Baraniuk et al. [1] provide a bound on RICs for a set of random matrices from concentration of measure. For these random measurement matrices, [1, Theorem 5.2] shows that

$$
P\left(\delta_{k}<\lambda\right) \geq 1-2\left(\frac{12 e n}{k \lambda}\right)^{k} \exp \left(-m\left(\frac{\lambda^{2}}{16}-\frac{\lambda^{3}}{48}\right)\right)
$$

holds for positive integer $k<m$ and $0<\lambda<1$. Then, for any known bound $\delta_{k}<\delta_{0}<1$, $\delta_{k}<\delta_{0}$ hold in high probability when

$$
m \geq \frac{k \log (n / k)}{\delta_{0}^{2} / 16-\delta_{0}^{3} / 48}
$$

Figure 1: The whole structure of bounds on $\delta_{t k}$ follows from Theorem 3.1.

For example, the lower bound of m to ensure $\delta_{t k}<\tilde{\delta}(p, t, d, \chi)$ in (3.2) to hold in high probability is

$$
m \geq \frac{k \log (n / k)}{\tilde{\delta}^{2}(p, t, d, \chi) / 16-\tilde{\delta}^{3}(p, t, d, \chi) / 48} .
$$

Next, we devote to developing a general RIP condition on $\delta_{t k}$ for $t \geq 2 d$ to achieve the recovery of sparse signals via the weighted ℓ_{p} minimization, which will fill the gap on $\delta_{t k}$ based signal recovery condition for $t>2 d$, compared with the work in [10].
Theorem 3.2. Let $\boldsymbol{y}=A x$ where $x \in \mathbb{R}^{n}$ is a k-sparse vector with $T=\operatorname{supp}(x)$, and $\widetilde{T} \subseteq[n]$ be a support estimate of x. Let α and ρ be the same as in Theorem 3.1. Given the weight vector $\mathbf{w} \in[0,1]^{n}$ defined in (1.5) and $0<p \leq 1$, if

$$
\begin{equation*}
\delta_{t k}<\delta(p, t, d, \chi) \tag{3.10}
\end{equation*}
$$

for some $t \geq 2 d$, where d and χ are respectively defined in (2.4) and (2.5) and $\delta(p, t, d, \chi)$ satisfying

$$
\begin{aligned}
& {\left[1+p\left(\frac{\chi^{\frac{2}{2-p}}}{2(t-d)}\right)^{\frac{2-p}{p}}\left(\frac{s(2-p)+\sqrt{s^{2} p^{2}+4(1-p)}}{4(t-d)} t\right)^{\frac{2-2 p}{p}}\right.} \\
& \left.\times\left(2-p s^{2}+s \sqrt{s^{2} p^{2}+4(1-p)}\right)\right]^{-\frac{1}{2}} \leq \delta(p, t, d, \chi)<1
\end{aligned}
$$

where $s=(3 t-4 d) / t$, is the unique positive solution of the following equation:

$$
\begin{align*}
z= & {\left[1+p\left(\frac{\chi^{\frac{2}{2-p}}}{2(t-d)}\right)^{\frac{2-p}{p}}\left(\frac{s(2-p)+\sqrt{s^{2} p^{2}+4(1-p)}}{1+s z} z\right)^{\frac{2-2 p}{p}}\right.} \\
& \left.\times\left(2-p s^{2}+s \sqrt{s^{2} p^{2}+4(1-p)}\right)\right]^{-\frac{1}{2}}, \tag{3.11}
\end{align*}
$$

then the weighted ℓ_{p}-minimization (1.3) with $\mathcal{B}=\{0\}$ recovers \boldsymbol{x} exactly.
The proof of Theorem 3.2 can be found in Section 4.3.
Remark 3.5. Let

$$
\begin{align*}
Q(d, z)= & \frac{2}{p}(t-d)^{\frac{2-p}{p}} \frac{1-z^{2}}{z^{2}}\left(\frac{s(2-p)+\sqrt{s^{2} p^{2}+4(1-p)}}{2(1+s z)} z\right)^{-\frac{2-2 p}{p}} \\
& \times\left(2-p s^{2}+s \sqrt{s^{2} p^{2}+4(1-p)}\right)^{-1} \tag{3.12}
\end{align*}
$$

Then the Eq. (3.11) can be written as $Q(d, z)=\chi^{p / 2}$.

Remark 3.6. For $\omega=1$ or $\alpha=1 / 2$, Theorem 3.2 reduces to [21, Theorem 2]. That is, when $\omega=1$ or $\alpha=1 / 2$, the condition (3.10) reduces to $\delta_{t k}<\delta(p, t, 1,1)$ for some $t \geq 2$, which is a state-of-the-art sufficient condition in [21, Theorem 2] for the sparse signal recovery via the ℓ_{p}-minimization, where $\delta(p, t, 1,1)$ is the unique positive solution of the equation $Q(1, z)=1$.

When $\alpha>1 / 2$ and $\omega \in[0,1)$, we have $\chi<1$ in (2.5) and $d=1$ in (2.4). Then, the condition (3.10) reduces to $\delta_{t k}<\delta(p, t, 1, \chi)$ where $\delta(p, t, 1, \chi)$ is the unique positive solution of the equation $Q(1, z)=\chi^{p / 2}$. By some simple calculation, the function $Q(1, z)$ is monotonically decreasing on $z \in(0,1]$. Therefore, $\delta(p, t, 1,1)<\delta(p, t, 1, \chi)$ when $\chi<1$. We establish the following proposition.

Proposition 3.2. If $\alpha>1 / 2$ and $\omega \in[0,1)$, then the sufficient condition $\delta_{t k}<\delta(p, t, 1, \chi)$ of the weighted ℓ_{p}-minimization (1.3) is weaker than the condition $\delta_{t k}<\delta(p, t, 1,1)$ of the ℓ_{p}-minimization (1.2) in [21, Theorem 2] for exact sparse recovery.

3.2 Noisy or non-sparse signal case

In the subsection, the origin signal x is not limited to be k-sparse, which is different from the sparse signals considered in [10]. We derive the following results, which complete the RIP based characterization for the recovery of signals via the weighted $\ell_{p^{-}}$ minimization (1.3).

First, we consider the stable recovery based on $\delta_{t k}$ with $d<t \leq d+(2-p) /(2+p) \chi^{2 /(2-p)}$ in the following theorem.

Theorem 3.3. Let $\boldsymbol{y}=A \boldsymbol{x}+\boldsymbol{e}$, where $\boldsymbol{x} \in \mathbb{R}^{n}$ and $\|\boldsymbol{e}\|_{2} \leq \varepsilon$. Let $T=\operatorname{supp}\left(\boldsymbol{x}_{k}\right)$ where \boldsymbol{x}_{k} is the best k-term approximation of x which only keeps the largest k entries in magnitude, and $\widetilde{T} \subseteq[n]$ be a support estimate of x_{k}. Define $\rho \geq 0$ and $0 \leq \alpha \leq 1$ with $\alpha \rho \leq 1$ such that $|\widetilde{T}|=\rho k$ and $|\widetilde{T} \cap T|=\alpha \rho k$. Given the weight vector $\mathbf{w} \in[0,1]^{n}$ defined in (1.5) and $0<p \leq 1$, suppose $\hat{\boldsymbol{x}}^{\ell_{2}}$ is a minimizer of (1.3) with $\mathcal{B}=\mathcal{B}^{l_{2}}(\varepsilon)=\left\{z \in \mathbb{R}^{m}:\|z\|_{2} \leq \varepsilon\right\}$. If A satisfies RIP with

$$
\begin{equation*}
\delta_{t k}<\frac{1}{\sqrt{p^{2}+(2-p)^{2} \chi^{\frac{2}{2-p}}}-(1-p)} \tag{3.13}
\end{equation*}
$$

for $d<t \leq d+(2-p) \chi^{2 /(2-p)} /(2+p)$ where χ and d are respectively defined in (2.5) and (2.4), then

$$
\begin{align*}
\left\|x-\hat{x}^{\ell_{2}}\right\|_{2} \leq & \sqrt{1+2^{\frac{2-2 p}{p}}} C_{1}\left(\sqrt{p^{2}+q \chi^{\frac{2}{2-p}}}+p\right)^{-1}\left(1-\delta_{t k}\left(\sqrt{p^{2}+q \chi^{\frac{2}{2-p}}}+p-1\right)\right)^{-1} \varepsilon \\
& +\sqrt{C_{2}^{2}+2^{\frac{2-2 p}{p}}\left(C_{2}+\left(2(d k)^{-\frac{2-p}{2}}\right)^{\frac{1}{p}}\right)^{2}}\left(\omega\left\|x_{T c}\right\|_{p}^{p}+(1-\omega)\left\|x_{\widetilde{T} c \cap c}\right\|_{p}^{p}\right)^{\frac{1}{p}} \tag{3.14}
\end{align*}
$$

where

$$
\begin{align*}
C_{1}=2 & \left(\sqrt{p^{2}+q \chi^{\frac{2}{2-p}}}+2 p-2\right) \sqrt{1+\delta_{t k}} \\
+ & \left(4\left(\sqrt{p^{2}+q \chi^{\frac{2}{2-p}}}+2 p-2\right)^{2}\left(1+\delta_{t k}\right)+8\left(\sqrt{p^{2}+q \chi^{\frac{2}{2-p}}}+p\right)\right. \\
& \left.\times\left(1-\delta_{t k}\left(\sqrt{p^{2}+q \chi^{\frac{2}{2-p}}}+p-1\right)\right)(1-p)\right)^{\frac{1}{2}}, \tag{3.15}
\end{align*}
$$

$q=q(t, d)=(2-p)^{2} /(t-d)$, and

$$
\begin{equation*}
C_{2}=\left(\left(\frac{2}{p}\left(\frac{\sqrt{p^{2}+q \chi^{\frac{2}{2-p}}}+p}{2}-1\right)\right)^{\frac{p}{2}}\left(\frac{(2-p) \chi^{\frac{2}{2-p}} \delta_{t k}}{(t-d)\left(1+\delta_{t k}\right)}\right)^{-\frac{2-p}{2}}-1\right)^{-\frac{1}{p}}\left(\frac{2}{k^{\frac{2-p}{2}} \chi^{\frac{2}{p}}}\right)^{\frac{1}{p}} . \tag{3.16}
\end{equation*}
$$

The proof of Theorem 3.3 can be found in Section 4.4.
Next, the stable recovery result based on $\delta_{t k}$ with $d+(2-p) \chi^{2 /(2-p)} /(2+p) \leq t<2 d$ is developed in the following theorem.
Theorem 3.4. Let $y=A x+\boldsymbol{e}$ where $\boldsymbol{x} \in \mathbb{R}^{n}$ and $\|\boldsymbol{e}\|_{2} \leq \varepsilon$. Let $T=\operatorname{supp}\left(\boldsymbol{x}_{k}\right)$ where \boldsymbol{x}_{k} is the best k-term approximation of x, and $\widetilde{T} \subseteq[n]$ be a support estimate of x_{k}. Define $\rho \geq 0$ and $0 \leq \alpha \leq 1$ with $\alpha \rho \leq 1$ such that $|\widetilde{T}|=\rho k$ and $|\widetilde{T} \cap T|=\alpha \rho k$. Given the weight vector $\mathbf{w} \in[0,1]^{n}$ defined in (1.5) and $0<p \leq 1$, suppose $\hat{\boldsymbol{x}}^{\ell_{2}}$ is a minimizer of (1.3) with $\mathcal{B}=\mathcal{B}^{l_{2}}(\varepsilon)=\left\{\boldsymbol{z} \in \mathbb{R}^{m}:\|\boldsymbol{z}\|_{2} \leq \varepsilon\right\}$. If A satisfies RIP with

$$
\begin{equation*}
\delta_{t k}<\frac{z_{0}}{(2-p) \chi^{\frac{2}{2-p}}-z_{0}} \tag{3.17}
\end{equation*}
$$

for $d+(2-p) \chi^{2 /(2-p)} /(2+p)<t \leq 2 d$, where

$$
z_{0} \in\left(\frac{1-p}{t-d} x^{\frac{2}{2-p}}, \min \left\{1, \frac{2-p}{2(t-d)} x^{\frac{2}{2-p}}\right\}\right)
$$

is the only positive solution of the equation

$$
\begin{equation*}
\frac{p}{2} z^{\frac{2}{p}}+z-\frac{2-p}{2(t-d)} x^{\frac{2}{2-p}}=0, \tag{3.18}
\end{equation*}
$$

then

$$
\begin{align*}
\left\|x-\hat{x}^{\ell_{2}}\right\|_{2} \leq & \frac{\sqrt{1+2^{\frac{2-2 p}{p}}} D_{1}}{1-\left((2-p) \chi^{\frac{2}{2-p}}-z_{0}(t-d)\right) \delta_{t k} /\left(z_{0}(t-d)\right)} \varepsilon \\
& +\sqrt{D_{2}^{2}+2^{\frac{2-2 p}{p}}\left(D_{2}+\left(2(d k)^{-\frac{2-p}{2}}\right)^{\frac{1}{p}}\right)^{2}}\left(\omega\left\|x_{T_{c} c}\right\|_{p}^{p}+(1-\omega)\left\|x_{\widetilde{T} c \cap T^{c}}\right\|_{p}^{p}\right)^{\frac{1}{p}} \tag{3.19}
\end{align*}
$$

where

$$
\begin{align*}
D_{1}= & 2\left(1-\frac{z_{0}(t-d)}{x^{\frac{2}{2-p}}}\right) \sqrt{1+\delta_{t k}} \tag{3.20}\\
& +2\left(\left(1-\frac{z_{0}(t-d)}{\chi^{\frac{2}{2-p}}}\right)^{2}\left(1+\delta_{t k}\right)+2\left(1-\frac{(2-p) \chi^{\frac{2}{2-p}}-z_{0}(t-d)}{z_{0}(t-d)} \delta_{t k}\right) \frac{1-p}{2-p} \frac{z_{0}(t-d)}{\chi^{\frac{2}{2-p}}}\right)^{\frac{1}{2}}, \\
D_{2}= & \left(z_{0}^{\frac{2-p}{2}}\left(\frac{(2-p) \chi^{\frac{2}{2-p}} \delta_{t k}}{\left(1+\delta_{t k}\right)(t-d)}\right)^{-\frac{2-p}{2}}-1\right)^{-\frac{1}{p}}\left(\frac{2}{k^{\frac{2-p}{2}} \chi}\right)^{\frac{1}{p}} . \tag{3.21}
\end{align*}
$$

The proof of Theorem 3.4 can be found in Section 4.5.
Finally, we consider the stable recovery of the signal x on the high order RIP $\delta_{t k}$ with $t \geq 2 d$.

Theorem 3.5. Let $\boldsymbol{y}=\boldsymbol{A x}+\boldsymbol{e}$ where $\boldsymbol{x} \in \mathbb{R}^{n}$ and $\|\boldsymbol{e}\|_{2} \leq \varepsilon$. Let $T=\operatorname{supp}\left(\boldsymbol{x}_{k}\right)$ where \boldsymbol{x}_{k} is the best k-term approximation of \boldsymbol{x}, and $\widetilde{T} \subseteq[n]$ be a support estimate of x_{k}. Define $\rho \geq 0$ and $0 \leq \alpha \leq 1$ with $\alpha \rho \leq 1$ such that $|\widetilde{T}|=\rho k$ and $|\widetilde{T} \cap T|=\alpha \rho k$. Given the weight vector $\mathbf{w} \in[0,1]^{n}$ defined in (1.5) and $0<p \leq 1$, suppose $\hat{\boldsymbol{x}}^{\ell_{2}}$ is a minimizer of (1.3) with $\mathcal{B}=\mathcal{B}^{l_{2}}(\varepsilon)=\left\{z \in \mathbb{R}^{m}:\|z\|_{2} \leq \varepsilon\right\}$. If A satisfies RIP with (3.10), then

$$
\begin{align*}
&\left\|x-\hat{x}^{\ell_{2}}\right\|_{2} \leq \frac{\sqrt{1+2^{\frac{2-2 p}{p}}}}{2\left(\delta(p, t, d, \chi)-\delta_{t k}\right)} \delta^{2}(p, t, d, \chi) \\
& \varepsilon+\sqrt{E_{2}^{2}+\left(E_{2}+\left(2(d k)^{-\frac{2-p}{2}}\right)^{\frac{1}{p}}\right)^{2}} \tag{3.22}\\
& \times\left(\omega\left\|x_{T_{c} c}\right\|_{p}^{p}+(1-\omega)\left\|x_{\tilde{T}^{c} \cap T}\right\|_{p}^{p}\right)^{\frac{1}{p}}
\end{align*}
$$

where

$$
\begin{align*}
E_{1}= & \left(\frac{1}{\delta(p, t, d, \chi)}-\frac{1}{2}\left(\sqrt{(s p)^{2}+4(1-p)}-s p\right)\right) \sqrt{1+\delta_{t k}} \\
& +\left(\left(\frac{1}{\delta(p, t, d, \chi)}-\frac{1}{2}\left(\sqrt{(s p)^{2}+4(1-p)}-s p\right)\right)^{2}\left(1+\delta_{t k}\right)\right. \\
& \left.+2 \frac{\delta(p, t, d, \chi)-\delta_{t k}}{\delta^{2}(p, t, d, \chi)}\left(\sqrt{(s p)^{2}+4(1-p)}-s p\right)\right)^{\frac{1}{2}}, \tag{3.23}\\
& \left(\left(\frac{\delta(p, t, d, \chi)\left(1+s \delta_{t k}\right)}{\delta_{t k}(1+s \delta(p, t, d, \chi))}\right)^{1-p}-1\right)^{-\frac{1}{p}}\left(\frac{2}{k^{\frac{2-p}{2}} \chi^{\frac{2}{p}}}\right)^{\frac{1}{p}}, \tag{3.24}
\end{align*}
$$

where $s=(3 t-4 d) / t$.
The proof of Theorem 3.5 can be found in Section 4.6.

4 Proofs of main results

To simplify the proof of the main results, we develop in advance some elementary estimates based on technical lemmas in Section 2 for the analysis of the weighted ℓ_{p}-minimization with $0<p \leq 1$ and the weight vector $\mathbf{w} \in[0,1]^{n}$ defined in (1.5).

4.1 Some elementary estimates

For any vector $x \in \mathbb{R}^{n}$, define $x_{\max (k)}$ as x with all but the largest k entries in absolute value set to zero, and $x_{-\max (k)}=x-x_{\max (k)}$. For any index set $S \subset\{1,2, \ldots, n\}, x_{S}$ is defined to be the vector which equals to x on S, and zero elsewhere.

Combining Lemma 2.4 with Lemma 2.6, we first introduce the following estimates which will play a crucial role in establishing recovery conditions.

Lemma 4.1. For the vectors \hat{x} and x, suppose that $\|\hat{x}\|_{p, \mathrm{w}}^{p} \leq\|x\|_{p, \mathrm{w}}^{p}$. Let x_{k} be the best k-term approximation of x with $T=\operatorname{supp}\left(x_{k}\right)$, and $\widetilde{T} \subseteq[n]$ be a known support estimate of x. Define $\rho \geq 0$ and $0 \leq \alpha \leq 1$ with $\alpha \rho \leq 1$ such that $|\widetilde{T}|=\rho k$ and $|\widetilde{T} \cap T|=\alpha \rho k$. Let $h=\hat{x}-x$ and

$$
\begin{equation*}
\nu^{p}=\omega\left\|\boldsymbol{h}_{T}\right\|_{p}^{p}+(1-\omega)\left\|\boldsymbol{h}_{(\widetilde{T} \cup T) \backslash(\widetilde{T} \cap T)}\right\|_{p}^{p}+2\left(\omega\left\|\boldsymbol{x}_{T^{c}}\right\|_{p}^{p}+(1-\omega)\left\|\boldsymbol{x}_{\widetilde{T} \cap T^{c}}\right\|_{p}^{p}\right) . \tag{4.1}
\end{equation*}
$$

For $t>d$ and a positive integer $t k$, define two index sets

$$
\begin{align*}
& \mathrm{Y}_{1}=\left\{i \in \operatorname{supp}\left(h_{-\max (d k)}\right):\left|h_{i}\right|>\frac{v}{((t-d) k)^{\frac{1}{p}}}\right\}, \tag{4.2}\\
& \mathrm{Y}_{2}=\left\{i \in \operatorname{supp}\left(h_{-\max (d k)}\right):\left|h_{i}\right| \leq \frac{v}{((t-d) k)^{\frac{1}{p}}}\right\}, \tag{4.3}
\end{align*}
$$

where d is defined in (2.4). Then
(i) The vector $h_{\mathrm{Y}_{2}}$ can be represented as a convex combination of $\left((t-d) k-\left|\mathrm{Y}_{1}\right|\right)$-sparse vectors $\boldsymbol{u}^{(i)}$ with $\operatorname{supp}\left(\boldsymbol{u}^{(i)}\right) \subseteq \mathrm{Y}_{2}$, i.e.

$$
\begin{equation*}
\boldsymbol{h}_{\mathrm{Y}_{2}}=\sum_{i=1}^{N} \lambda_{i} \boldsymbol{u}^{(i)}, \tag{4.4}
\end{equation*}
$$

where N is a positive integer, $\lambda_{i}>0, \sum_{i=1}^{N} \lambda_{i}=1$, and

$$
\begin{equation*}
\sum_{i=1}^{N} \lambda_{i}\left\|\boldsymbol{u}^{(i)}\right\|_{2}^{2} \leq \frac{\chi^{\frac{2}{2-p}}}{t-d}\left(\left\|\boldsymbol{h}_{T_{d k}^{b}}\right\|_{2}^{p}+\frac{2\left(\omega\left\|x_{T^{c}}\right\|_{p}^{p}+(1-\omega)\left\|x_{\tilde{T} c} \cap T^{c}\right\|_{p}^{p}\right)}{k^{\frac{2-p}{2}} \chi}\right)^{\frac{2}{2-p}}\left(\left\|\boldsymbol{h}_{Y_{2}}\right\|_{2}^{2}\right)^{\frac{2-2 p}{2-p}} \tag{4.5}
\end{equation*}
$$

where $T_{d k}^{h}=\operatorname{supp}\left(\boldsymbol{h}_{\max (d k)}\right)$ and χ is defined in (2.5).
(ii) For the vectors $\boldsymbol{h}_{-\max (d k)}$ and $\boldsymbol{h}_{\mathrm{Y}_{2}}$, the following estimates hold:

$$
\begin{align*}
& \left\|\boldsymbol{h}_{-\max (d k)}\right\|_{2}^{2} \leq\left(\left\|\boldsymbol{h}_{\max (d k)}\right\|_{2}^{p}+\frac{2\left(\omega\left\|x_{T^{c}}\right\|_{p}^{p}+(1-\omega)\left\|x_{\tilde{T}^{c} \cap T^{c}}\right\|_{p}^{p}\right)}{(d k)^{\frac{2-p}{2}}}\right)^{\frac{2}{p}}, \tag{4.6}\\
& \left\|\boldsymbol{h}_{Y_{2}}\right\|_{2}^{2} \leq \frac{\chi^{\frac{2}{p}}}{(t-d)^{\frac{2-p}{p}}}\left(\left\|\boldsymbol{h}_{T_{d k}^{h}}\right\|_{2}^{p}+\frac{2\left(\omega\left\|x_{T^{c}}\right\|_{p}^{p}+(1-\omega)\left\|x_{\widetilde{T^{c} \cap T^{c}}}\right\|_{p}^{p}\right)}{k^{\frac{2-p}{2}} \chi}\right)^{\frac{2}{p}} . \tag{4.7}
\end{align*}
$$

Proof. (i) By $\|\hat{x}\|_{p, \mathrm{w}}^{p} \leq\|x\|_{p, \mathrm{w}}^{p}, h=\hat{x}-x$ and (2.1) in Lemma 2.4 with $\Gamma=T$, one has

$$
\begin{align*}
\left\|\boldsymbol{h}_{T^{c}}\right\|_{p}^{p} \leq & \omega\left\|\boldsymbol{h}_{T}\right\|_{p}^{p}+(1-\omega)\left\|\boldsymbol{h}_{(\widetilde{T} \cup T) \backslash(\widetilde{T} \cap T)}\right\|_{p}^{p} \\
& +2\left(\omega\left\|\boldsymbol{x}_{T^{c}}\right\|_{p}^{p}+(1-\omega)\left\|x_{\widetilde{T}^{c} \cap T^{c}}\right\|_{p}^{p}\right)=v^{p} \tag{4.8}
\end{align*}
$$

for $0 \leq \omega \leq 1$, where the equality is due to the definition of v^{p} in (4.1).
For the k-sparse signal x_{k} and $T=\operatorname{supp}\left(x_{k}\right)$, we have $|T| \leq k$ and $d \geq 1$ and $d k \in \mathbb{N}^{+}$ from the definition of d in (2.4). Then it follows that

$$
\begin{equation*}
\left\|\boldsymbol{h}_{-\max (d k)}\right\|_{p}^{p} \leq\left\|\boldsymbol{h}_{T^{c}}\right\|_{p}^{p} \leq v^{p}, \tag{4.9}
\end{equation*}
$$

by the inequality (4.8).
First, we will show a convex combination of sparse vectors for $h_{Y_{2}} \in \mathbb{R}^{n}$. By $T_{d k}^{h}=$ $\operatorname{supp}\left(\boldsymbol{h}_{\max (d k)}\right)$, the definitions of Y_{1} in (4.2) and Y_{2} in (4.3), it is obvious that

$$
\begin{equation*}
\left(T_{d k}^{h}\right)^{c}=\mathrm{Y}_{1} \cup \mathrm{Y}_{2}, \quad \mathrm{Y}_{1} \cap \mathrm{Y}_{2}=\varnothing \tag{4.10}
\end{equation*}
$$

For the vector $h_{Y_{1}}$

$$
\begin{equation*}
\left\|h_{Y_{1}}\right\|_{p}^{p}=\sum_{i \in \mathrm{Y}_{1}}\left|h_{i}\right|^{p} \geq\left|\mathrm{Y}_{1}\right| \frac{v^{p}}{(t-d) k} . \tag{4.11}
\end{equation*}
$$

By (4.9) and (4.10), one has

$$
\left\|\boldsymbol{h}_{Y_{1}}\right\|_{p}^{p} \leq\left\|\boldsymbol{h}_{Y_{1}}\right\|_{p}^{p}+\left\|\boldsymbol{h}_{Y_{2}}\right\|_{p}^{p}=\left\|\boldsymbol{h}_{-\max (d k)}\right\|_{p}^{p} \leq v^{p} .
$$

Combining (4.11) with the above inequality, we deduce that for $v>0$,

$$
\left|\mathrm{Y}_{1}\right| \leq(t-d) k .
$$

For the vector $h_{Y_{2}}$, it is easy to see that

$$
\begin{align*}
& \left\|\boldsymbol{h}_{\mathrm{Y}_{2}}\right\|_{\infty} \stackrel{(a)}{\leq} \frac{v}{((t-d) k)^{\frac{1}{p}}}, \tag{4.12}\\
& \left\|\boldsymbol{h}_{\mathrm{Y}_{2}}\right\|_{p}^{p} \stackrel{(b)}{=}\left\|\boldsymbol{h}_{-\max (d k)}\right\|_{p}^{p}-\left\|\boldsymbol{h}_{\mathrm{Y}_{1}}\right\|_{p}^{p} \stackrel{(c)}{\leq}\left((t-d) k-\left|\mathrm{Y}_{1}\right|\right) \frac{v^{p}}{(t-d) k^{\prime}},
\end{align*}
$$

where $(a),(b)$ respectively follows from (4.3), (4.10), (c) is due to (4.9) and (4.11). Applying Lemma 2.6 with $L=(t-d) k-\left|\mathrm{Y}_{1}\right|$ and $\zeta=v /((t-d) k)^{1 / p}$, we obtain the sparse expression (4.4)

$$
\boldsymbol{h}_{\mathrm{Y}_{2}}=\sum_{i=1}^{N} \lambda_{i} \boldsymbol{u}^{(i)},
$$

where $\lambda_{i}>0, \sum_{i=1}^{N} \lambda_{i}=1$, every $\boldsymbol{u}^{(i)}$ is $\left((t-d) k-\left|Y_{1}\right|\right)$-sparse and $\operatorname{supp}\left(\boldsymbol{u}^{(i)}\right) \subseteq \mathrm{Y}_{2}$. Furthermore, by (2.2),

$$
\begin{align*}
\sum_{i=1}^{N} \lambda_{i}\left\|\boldsymbol{u}^{(i)}\right\|_{2}^{2} & \leq \min \left\{\frac{n}{L}\left\|\boldsymbol{h}_{Y_{2}}\right\|_{2}^{2}, \frac{v^{p}}{k(t-d)}\left\|\boldsymbol{h}_{Y_{2}}\right\|_{2-p}^{2-p}\right\} \leq \frac{v^{p}}{k(t-d)}\left\|\boldsymbol{h}_{Y_{2}}\right\|_{2-p}^{2-p} \\
& \leq \frac{v^{p}}{k(t-d)}\left(\left\|\boldsymbol{h}_{Y_{2}}\right\|_{2}^{2}\right)^{\frac{2-2 p}{2-p}}\left(\left\|\boldsymbol{h}_{Y_{2}}\right\|_{p}^{p}\right)^{\frac{p}{2-p}} \\
& \leq \frac{v^{p}}{k(t-d)}\left(\left\|\boldsymbol{h}_{Y_{2}}\right\|_{2}^{2}\right)^{\frac{2-2 p}{2-p}}\left(\left((t-d) k-\left|Y_{1}\right|\right) \frac{v^{p}}{k(t-d)}\right)^{\frac{p}{2-p}} \\
& \leq \frac{v^{\frac{2 p}{2-p}}}{k(t-d)}\left(\left\|\boldsymbol{h}_{Y_{2}}\right\|_{2}^{2}\right)^{\frac{2-2 p}{2-p}}, \tag{4.13}
\end{align*}
$$

where the third inequality is from Lemma 2.1(II), and the fourth inequality follows from (4.12).

For v^{p} in (4.1), we deduce that

$$
\begin{align*}
& v^{p}=\omega\left\|\boldsymbol{h}_{T}\right\|_{p}^{p}+(1-\omega)\left\|\boldsymbol{h}_{(T \cup \widetilde{T}) \backslash(T \cap \widetilde{T})}\right\|_{p}^{p}+2\left(\omega\left\|\boldsymbol{x}_{T^{c}}\right\|_{p}^{p}+(1-\omega)\left\|\boldsymbol{x}_{\widetilde{T} c \cap T^{c}}\right\|_{p}^{p}\right) \\
& \leq \omega|T|^{\frac{2-p}{2}}\left\|\boldsymbol{h}_{T}\right\|_{2}^{p}+(1-\omega)|(T \cup \widetilde{T}) \backslash(T \cap \widetilde{T})|^{\frac{2-p}{2}}\left\|\boldsymbol{h}_{(T \cup \widetilde{T}) \backslash(T \cap \widetilde{T})}\right\|_{2}^{p} \\
& +2\left(\omega\left\|x_{T^{c}}\right\|_{p}^{p}+(1-\omega)\left\|x_{\widetilde{T}^{c} \cap T^{c}}\right\|_{p}^{p}\right) \\
& \leq k^{\frac{2-p}{2}}\left(\omega+(1-\omega)(1+\rho-2 \alpha \rho)^{\frac{2-p}{2}}\right)\left\|\boldsymbol{h}_{T_{d k}^{h}}\right\|_{2}^{p}+2\left(\omega\left\|x_{T^{c}}\right\|_{p}^{p}+(1-\omega)\left\|x_{\widetilde{T} c \cap T^{c}}\right\|_{p}^{p}\right) \\
& =k^{\frac{2-p}{2}} \chi\left\|h_{T_{d k}^{d}}\right\|_{2}^{p}+2\left(\omega\left\|x_{T^{c}}\right\|_{p}^{p}+(1-\omega)\left\|x_{\widetilde{T} c \cap T^{c}}\right\|_{p}^{p}\right), \tag{4.14}
\end{align*}
$$

where the first inequality is from $0<p \leq 1$ and Lemma 2.1(I) and the second inequality follows from $|T| \leq k$ and $|(T \cup \widetilde{T}) \backslash(T \cap \widetilde{T})| \leq(1+\rho-2 \alpha \rho) k \leq d k$ and $T_{d k}^{h}=\operatorname{supp}\left(h_{\max (d k)}\right)$, and the last equality is due to the definition of χ in (2.5).

Then, substituting (4.14) into (4.13), we obtain

$$
\sum_{i} \lambda_{i}\left\|\boldsymbol{u}^{(i)}\right\|_{2}^{2} \leq \frac{\chi^{\frac{2}{2-p}}}{t-d}\left(\left\|\boldsymbol{h}_{T_{d k}^{h}}\right\|_{2}^{p}+\frac{2\left(\omega\left\|x_{T_{c} c}\right\|_{p}^{p}+(1-\omega)\left\|x_{\tilde{T} c} \cap T_{c}\right\|_{p}^{p}\right)}{k^{\frac{2-p}{2}} \chi}\right)^{\frac{2}{2-p}}\left(\left\|\boldsymbol{h}_{Y_{2}}\right\|_{2}^{2}\right)^{\frac{2-2 p}{2-p}},
$$

which is (4.5).
(ii) For the vector $h_{-\max (d k)}$, from (4.9) and v^{p} in (4.1) it follows that

$$
\begin{aligned}
\left\|\boldsymbol{h}_{-\max (d k)}\right\|_{p}^{p} & \leq \omega\left\|\boldsymbol{h}_{T}\right\|_{p}^{p}+(1-\omega)\left\|\boldsymbol{h}_{(T \cup \widetilde{T}) \backslash(T \cap \widetilde{T})}\right\|_{p}^{p}+2\left(\omega\left\|\boldsymbol{x}_{T^{c}}\right\|_{p}^{p}+(1-\omega)\left\|\boldsymbol{x}_{\widetilde{T}^{c} \cap T^{c}}\right\|_{p}^{p}\right) \\
& \leq\left\|\boldsymbol{h}_{\max (d k)}\right\|_{p}^{p}+2\left(\omega\left\|\boldsymbol{x}_{T^{c}}\right\|_{p}^{p}+(1-\omega)\left\|\boldsymbol{x}_{\widetilde{T}^{c} \cap T^{c}}\right\|_{p}^{p}\right)
\end{aligned}
$$

where we use the facts that $|T| \leq k$ and $|(T \cup \widetilde{T}) \backslash(T \cap \widetilde{T})| \leq(1+\rho-2 \alpha \rho) k \leq d k$ in the second inequality. By the above inequality and Lemma 2.3, we obtain that

$$
\begin{aligned}
\left\|\boldsymbol{h}_{-\max (d k)}\right\|_{2}^{2} & \leq d k\left(\frac{\left\|\boldsymbol{h}_{\max (d k)}\right\|_{2}^{p}}{(d k)^{\frac{p}{2}}}+\frac{2\left(\omega\left\|\boldsymbol{x}_{T^{c}}\right\|_{p}^{p}+(1-\omega)\left\|\boldsymbol{x}_{\widetilde{T}^{c} \cap T^{c}}\right\|_{p}^{p}\right)}{d k}\right)^{\frac{2}{p}} \\
& =\left(\left\|\boldsymbol{h}_{\max (d k)}\right\|_{2}^{p}+\frac{2\left(\omega\left\|\boldsymbol{x}_{T^{c}}\right\|_{p}^{p}+(1-\omega)\left\|\boldsymbol{x}_{\widetilde{T}^{c} \cap T^{c}}\right\|_{p}^{p}\right)}{(d k)^{\frac{2-p}{2}}}\right)^{\frac{2}{p}}
\end{aligned}
$$

which is (4.6). For the vector $\boldsymbol{h}_{\mathrm{Y}_{2}}$, there is

$$
\begin{aligned}
\left\|\boldsymbol{h}_{Y_{2}}\right\|_{2}^{2} & \leq\left\|\boldsymbol{h}_{\mathrm{Y}_{2}}\right\|_{\infty}^{2-p}\left\|\boldsymbol{h}_{\mathrm{Y}_{2}}\right\|_{p}^{p} \leq\left\|\boldsymbol{h}_{Y_{2}}\right\|_{\infty}^{2-p}\left\|\boldsymbol{h}_{-\max (d k)}\right\|_{p}^{p} \leq\left(\frac{v^{p}}{(t-d) k}\right)^{\frac{2-p}{p}} v^{p} \\
& \leq \frac{\chi^{\frac{2}{p}}}{(t-d)^{\frac{2-p}{p}}}\left(\left\|\boldsymbol{h}_{T_{d k}^{h}}\right\|_{2}^{p}+\frac{2\left(\omega\left\|\boldsymbol{x}_{T^{c}}\right\|_{p}^{p}+(1-\omega)\left\|\boldsymbol{x}_{\widetilde{T}^{c} \cap T^{c}}\right\|_{p}^{p}\right)}{k^{\frac{2-p}{2}} \chi}\right)^{\frac{2}{p}}
\end{aligned}
$$

where the second and third inequalities are respectively due to $\left\|\boldsymbol{h}_{\mathrm{Y}_{2}}\right\|_{p}^{p} \leq\left\|\boldsymbol{h}_{-\max (d k)}\right\|_{p}^{p} \leq \nu^{p}$ and $\left\|\boldsymbol{h}_{Y_{2}}\right\|_{\infty} \leq v /((t-d) k)^{1 / p}$ in (4.12), and the last inequality is due to (4.14).

The following two lemmas contains useful facts on RIP, whose prototype has been used in [21] for the analysis of the ℓ_{p}-minimization (1.2). The first one is based on Lemma 2.5 and its proof is omitted since it is very simple.
Lemma 4.2. Suppose the sense matrix $A \in \mathbb{R}^{m \times n}, t \geq 2 d, k$ and $t k$ are positive integers. Then

$$
\begin{equation*}
\delta_{t k} \leq \delta_{2(t-d) k} \leq \frac{3 t-4 d}{t} \delta_{t k} \tag{4.15}
\end{equation*}
$$

Lemma 4.3. Suppose $\delta_{t k}<B(t)$ can guarantee the exact recovery of k-sparse signals via some minimization method when $t k$ is a positive integer. If the RIC bound $B(t)$ is monotonically nondecreasing for $t>0$, then $\delta_{t k}<B(t)$ can also guarantee the exact recovery of k-sparse signals via the same minimization method when $t k$ is not an integer.
Proof. For completeness, we give the proof although it seems routine as in [4,21]. When $t k$ is not an integer, denote $t^{\prime}=\lceil t k\rceil / k$. Then $t^{\prime} k$ is an integer and $t \leq t^{\prime}$. Based on the definition of RIP for non-integer $t k$, one has $\delta_{t k}=\delta_{[t k\rceil}=\delta_{t^{\prime} k}$. We deduce that the condition $\delta_{t k}<B(t)$ implies $\delta_{t^{\prime} k}<B\left(t^{\prime}\right)$ since $B(t)$ is monotonically nondecreasing with $t>0$ and then $\delta_{t^{\prime} k}=\delta_{t k}<B(t) \leq B\left(t^{\prime}\right)$. Therefore, the desired result holds since $t^{\prime} k$ is an integer.

4.2 Proof of Theorem 3.1

Proof. Suppose that \hat{x} is a solution of the weighted ℓ_{p}-minimization (1.3) with $\mathfrak{B}=\{0\}$, then $\|\hat{x}\|_{p, \mathrm{w}}^{p} \leq\|x\|_{p, \mathrm{w}}^{p}$ and $A \hat{x}=y$. For the k-sparse signal x and $T=\operatorname{supp}(x)$, we have $|T| \leq k$ and $x_{T^{c}}=\mathbf{0}$.

Let $h=\hat{x}-x$. To prove that the weighted ℓ_{p}-minimization (1.3) exactly recovers the k-sparse signal x reduces to proving $h=\mathbf{0}$. Suppose that $\boldsymbol{h} \neq \mathbf{0}$ and $t k$ is an integer, we next show there is a contradiction under the condition (3.1). It deduces that the weighted ℓ_{p}-minimization (1.3) exactly recovers the k-sparse signal x.

If $\boldsymbol{h}_{T^{c}}=\mathbf{0}$, then \boldsymbol{h} is a k-sparse vector. Since the sensing matrix \boldsymbol{A} satisfies the RIP of order $t k$ with $t>d \geq 1$ and (3.1) implies $\delta_{t k}<1$, we deduce that $\boldsymbol{h}=\mathbf{0}$. It is in contradiction with the assumption $\boldsymbol{h} \neq \mathbf{0}$. Therefore, in the following proof, we assume that $\boldsymbol{h}_{T^{c}} \neq \mathbf{0}$. In this case, the proof is divided into three main steps as follows.
Step 1: Using Lemma 4.1, we present a convex combination of some sparse vectors for $h_{Y_{2}}$, where Y_{2} is defined in (4.3). By $\|\hat{x}\|_{p, \mathrm{w}}^{p} \leq\|x\|_{p, \mathrm{w}}^{p}$ and Lemma 4.1, one has that

$$
\begin{equation*}
\boldsymbol{h}_{\mathrm{Y}_{2}}=\sum_{i=1}^{N} \lambda_{i} \boldsymbol{u}^{(i)}, \tag{4.16}
\end{equation*}
$$

where $\lambda_{i}>0, \sum_{i=1}^{N} \lambda_{i}=1, \boldsymbol{u}^{(i)}$ is $\left((t-d) k-\left|Y_{1}\right|\right)$-sparse and $\operatorname{supp}\left(\boldsymbol{u}^{(i)}\right) \subseteq \mathrm{Y}_{2}$. And

$$
\begin{align*}
\sum_{i=1}^{N} \lambda_{i}\left\|\boldsymbol{u}^{(i)}\right\|_{2}^{2} & \leq \frac{\chi^{\frac{2}{2-p}}}{t-d}\left(\left\|\boldsymbol{h}_{T_{d k}^{h}}\right\|_{2}^{p}\right)^{\frac{2}{2-p}}\left(\left\|\boldsymbol{h}_{Y_{2}}\right\|_{2}^{2}\right)^{\frac{2-2 p}{2-p}} \\
& \leq \frac{\chi^{\frac{2}{2-p}}}{t-d}\left(\frac{\left\|\boldsymbol{h}_{Y_{2}}\right\|_{2}^{2}}{\left\|\boldsymbol{h}_{T_{d k}^{h} \cup Y_{1}}\right\|_{2}^{2}}\right)^{\frac{2-2 p}{2-p}}\left\|\boldsymbol{h}_{T_{d k}^{h} \cup Y_{1}}\right\|_{2}^{2} \tag{4.17}
\end{align*}
$$

which follows from (4.5) and $\boldsymbol{x}_{T^{c}}=\mathbf{0}$. In addition, the inequality (4.7) with

$$
\omega\left\|x_{T^{c}}\right\|_{p}^{p}+(1-\omega)\left\|x_{\tilde{T}^{c} \cap T^{c}}\right\|_{p}^{p}=0
$$

holds. Then

$$
\begin{equation*}
\left\|h_{Y_{2}}\right\|_{2}^{2} \leq \frac{\chi^{\frac{2}{p}}}{(t-d)^{\frac{2-p}{p}}}\left\|h_{T_{d k}^{d}}\right\|_{2}^{2} \leq \frac{\chi^{\frac{2}{p}}}{(t-d)^{\frac{2-p}{p}}}\left\|h_{T_{d k}^{h} \cup Y_{1}}\right\|_{2}^{2} \tag{4.18}
\end{equation*}
$$

Step 2: Show an inequality on $\left\|h_{T_{d k}^{h} \cup Y_{1}}\right\|_{2}^{2}$ to estimate its upper bound based on the following important identity firstly presented in [4]:

$$
\begin{align*}
& \sum_{i=1}^{N} \lambda_{i}\left\|A\left(\sum_{j=1}^{N} \lambda_{j} \boldsymbol{v}^{(j)}-c v^{(i)}\right)\right\|_{2}^{2}+\frac{1-2 c}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \lambda_{i} \lambda_{j}\left\|A\left(\boldsymbol{v}^{(i)}-v^{(j)}\right)\right\|_{2}^{2} \\
& \quad-(1-c)^{2} \sum_{i=1}^{N} \lambda_{i}\left\|A v^{(i)}\right\|_{2}^{2}=0 \tag{4.19}
\end{align*}
$$

where $c \leq 1 / 2$ and $v^{(i)}=h_{T_{d k}^{h}} \cup Y_{1}+\mu u^{(i)}$ for any $\mu \in \mathbb{R}$ is $t k$-sparse. In fact, $v^{(i)}-v^{(j)}=$ $\mu\left(\boldsymbol{u}^{(i)}-\boldsymbol{u}^{(j)}\right)$ and

$$
\begin{align*}
\sum_{j=1}^{N} \lambda_{j} \boldsymbol{v}^{(j)}-c \boldsymbol{v}^{(i)} & =(1-c) \boldsymbol{h}_{T_{d k}^{h} \cup Y_{1}}+\mu \sum_{j=1}^{N} \lambda_{j} \boldsymbol{u}^{(j)}-c \mu \boldsymbol{u}^{(i)} \\
& =(1-c) \boldsymbol{h}_{T_{d k}^{h} \cup Y_{1}}+\mu \boldsymbol{h}_{Y_{2}}-c \mu \boldsymbol{u}^{(i)} \\
& =(1-c-\mu) \boldsymbol{h}_{T_{d k}^{h}} \cup_{1}+\mu \boldsymbol{h}-c \mu \boldsymbol{u}^{(i)} . \tag{4.20}
\end{align*}
$$

Substituting (4.20) into the first term of the identity (4.19) and using the fact that $\boldsymbol{A} \boldsymbol{h}=$ $A \hat{x}-A x=y-y=0$, one has

$$
\begin{align*}
\sum_{i=1}^{N} \lambda_{i}\left\|A\left(\sum_{j=1}^{N} \lambda_{j} \boldsymbol{v}^{(j)}-c v^{i}\right)\right\|_{2}^{2} & =\sum_{i=1}^{N} \lambda_{i}\left\|A\left((1-c-\mu) \boldsymbol{h}_{T_{d k}^{h} \cup Y_{1}}-c \mu \boldsymbol{u}^{(i)}\right)\right\|_{2}^{2} \\
& \leq\left(1+\delta_{t k}\right) \sum_{i=1}^{N} \lambda_{i}\left\|(1-c-\mu) \boldsymbol{h}_{T_{d k}^{h} \cup Y_{1}}-c \mu \boldsymbol{u}^{(i)}\right\|_{2}^{2} \\
& =\left(1+\delta_{t k}\right)\left((1-c-\mu)^{2}\left\|\boldsymbol{h}_{T_{d k}^{h} \cup Y_{1}}\right\|_{2}^{2}+c^{2} \mu^{2} \sum_{i=1}^{N} \lambda_{i}\left\|\boldsymbol{u}^{(i)}\right\|_{2}^{2}\right) \tag{4.21}
\end{align*}
$$

where the inequality follows from $(1-c-\mu) \boldsymbol{h}_{T_{d k}^{h} \cup Y_{1}}-c \mu u^{(i)}$ is $t k$-sparse and A satisfies the RIP of order $t k$, and the last equality is due to $\operatorname{supp}\left(\boldsymbol{u}^{(i)}\right) \subseteq \mathrm{Y}_{2}$ and (4.10) implying

$$
\begin{equation*}
\left\langle\boldsymbol{h}_{T_{d k}^{h k}} \cup Y_{1}, \boldsymbol{u}^{(i)}\right\rangle=0 . \tag{4.22}
\end{equation*}
$$

For the second term of the identity (4.19), from the fact

$$
\boldsymbol{v}^{(i)}-\boldsymbol{v}^{(j)}=\mu\left(\boldsymbol{u}^{(i)}-\boldsymbol{u}^{(j)}\right),
$$

it follows that

$$
\begin{align*}
& \frac{1-2 c}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \lambda_{i} \lambda_{j}\left\|\boldsymbol{A}\left(\boldsymbol{v}^{(i)}-\boldsymbol{v}^{(j)}\right)\right\|_{2}^{2} \\
= & \frac{1-2 c}{2} \mu^{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \lambda_{i} \lambda_{j}\left\|\boldsymbol{A}\left(\boldsymbol{u}^{(i)}-\boldsymbol{u}^{(j)}\right)\right\|_{2}^{2} \\
\leq & \left(1+\delta_{2(t-d) k}\right) \mu^{2} \frac{1-2 c}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \lambda_{i} \lambda_{j}\left\|\boldsymbol{u}^{(i)}-\boldsymbol{u}^{(j)}\right\|_{2}^{2} \\
= & \left(1+\delta_{2(t-d) k}\right) \mu^{2}(1-2 c)\left(\sum_{i=1}^{N} \lambda_{i}\left\|\boldsymbol{u}^{(i)}\right\|_{2}^{2}-\left\|\sum_{i=1}^{N} \lambda_{i} \boldsymbol{u}^{(i)}\right\|_{2}^{2}\right) \\
= & \left(1+\delta_{2(t-d) k}\right) \mu^{2}(1-2 c)\left(\sum_{i=1}^{N} \lambda_{i}\left\|\boldsymbol{u}^{(i)}\right\|_{2}^{2}-\left\|\boldsymbol{h}_{Y_{2}}\right\|_{2}^{2}\right), \tag{4.23}
\end{align*}
$$

where the inequality is from that \boldsymbol{u}_{i} is $\left(k(t-d)-\left|Y_{1}\right|\right)$-sparse and $t>d$, the last equality is due to $h_{Y_{2}}=\sum_{i=1}^{N} \lambda_{i} \boldsymbol{u}^{(i)}$.

Furthermore, it follows from $v^{(i)}$ is $t k$-sparse for the third term of the identity (4.19) that

$$
\begin{align*}
(1-c)^{2} \sum_{i=1}^{N} \lambda_{i}\left\|\boldsymbol{A} \boldsymbol{v}^{(i)}\right\|_{2}^{2} & \geq\left(1-\delta_{t k}\right)(1-c)^{2} \sum_{i=1}^{N} \lambda_{i}\left\|\boldsymbol{v}^{(i)}\right\|_{2}^{2} \\
& =\left(1-\delta_{t k}\right)(1-c)^{2}\left(\left\|\boldsymbol{h}_{T_{d k}^{h}} Y_{1}\right\|_{2}^{2}+\mu^{2} \sum_{i=1}^{N} \lambda_{i}\left\|\boldsymbol{u}^{(i)}\right\|_{2}^{2}\right), \tag{4.24}
\end{align*}
$$

where the equality is from the definition of $v^{(i)}$, i.e.

$$
\boldsymbol{v}^{(i)}=h_{T_{d k}^{h} \cup Y_{1}}+\mu \boldsymbol{u}^{(i)}
$$

and (4.22). Substituting the inequalities (4.21), (4.23) and (4.24) into the identity (4.19) with any $\mu \in \mathbb{R}$, one has

$$
\begin{align*}
0 \leq & \left(\left(1+\delta_{t k}\right)(1-c-\mu)^{2}-\left(1-\delta_{t k}\right)(1-c)^{2}\right)\left\|\boldsymbol{h}_{T_{d k}^{h}} \cup Y_{1}\right\|_{2}^{2} \\
& +\left(\left(1+\delta_{t k}\right) c^{2} \mu^{2}+\left(1+\delta_{2(t-d) k}\right)(1-2 c) \mu^{2}-\left(1-\delta_{t k}\right)(1-c)^{2} \mu^{2}\right) \sum_{i=1}^{N} \lambda_{i}\left\|\boldsymbol{u}^{(i)}\right\|_{2}^{2} \\
& -\left(1+\delta_{2(t-d) k}\right)(1-2 c) \mu^{2}\left\|h_{Y_{2}}\right\|_{2}^{2} \\
= & \left(\left(1+\delta_{t k}\right)\left\|\boldsymbol{h}_{T_{d k}^{h}} \cup Y_{1}\right\|_{2}^{2}+\left(\left(2 c^{2}-2 c+1\right) \delta_{t k}+(1-2 c) \delta_{2(t-d) k}\right) \sum_{i=1}^{N} \lambda_{i}\left\|\boldsymbol{u}_{i}\right\|_{2}^{2}\right. \\
& \left.-\left(1+\delta_{2(t-d) k}\right)(1-2 c)\left\|h_{Y_{2}}\right\|_{2}^{2}\right) \mu^{2} \\
& -2(1-c)\left(1+\delta_{t k}\right)\left\|h_{T_{d k}^{h} \cup Y_{1}}\right\|_{2}^{2} \mu+2 \delta_{t k}(1-c)^{2}\left\|\boldsymbol{h}_{T_{d k}^{h} \cup Y_{1}}\right\|_{2}^{2} \\
\leq & \left(\left(1+\delta_{t k}\right)+\left(\left(2 c^{2}-2 c+1\right) \delta_{t k}+(1-2 c) \delta_{2(t-d) k} \frac{\chi^{\frac{2}{2-p}}}{t-d}\left(\frac{\left\|h_{Y_{2}}\right\|_{2}^{2}}{\left\|h_{T_{d k}^{h} \cup Y_{1}}\right\|_{2}^{2}}\right)^{\frac{2-2 p}{2-p}}\right.\right. \\
& \left.\quad-\left(1+\delta_{2(t-d) k}\right)(1-2 c) \frac{\left\|h_{Y_{2}}\right\|_{2}^{2}}{\left\|\boldsymbol{h}_{T_{T k}^{h} \cup Y_{1}}\right\|_{2}^{2}}\right)\left\|\boldsymbol{h}_{T_{d k}^{h} \cup Y_{1}}\right\|_{2}^{2} \mu^{2} \\
& -2(1-c)\left(1+\delta_{t k}\right)\left\|h_{T_{d k}^{h} \cup Y_{1}}\right\|_{2}^{2} \mu+2 \delta_{t k}(1-c)^{2}\left\|h_{T_{d k}^{h}} \cup Y_{1}\right\|_{2^{\prime}}^{2} \tag{4.25}
\end{align*}
$$

where the last inequality is from (4.17).

Step 3: We show that there is a contradiction for (4.25) under the condition (3.1). Set a second-order function $f(\mu)$ for any $\mu \in \mathbb{R}$,

$$
\begin{align*}
f(\mu)=(& \left(1+\delta_{t k}\right)+\left(\left(2 c^{2}-2 c+1\right) \delta_{t k}+(1-2 c) \delta_{2(t-d) k}\right) \frac{\chi^{\frac{2}{2-p}}}{t-d}\left(\frac{\left\|h_{Y_{2}}\right\|_{2}^{2}}{\left\|\boldsymbol{h}_{T_{d k}^{h} \cup Y_{1}}\right\|_{2}^{2}}\right)^{\frac{2-2 p}{2-p}} \\
& \left.-\left(1+\delta_{2(t-d) k}\right)(1-2 c) \frac{\left\|h_{Y_{2}}\right\|_{2}^{2}}{\left\|\boldsymbol{h}_{T_{d k}^{h} \cup Y_{1}}\right\|_{2}^{2}}\right) \mu^{2} \\
& -2(1-c)\left(1+\delta_{t k}\right) \mu+2 \delta_{t k}(1-c)^{2}, \tag{4.26}
\end{align*}
$$

where

$$
\begin{equation*}
c=\frac{1}{2}-\frac{\sqrt{p^{2} \delta_{2(t-d) k}^{2}+4(1-p) \delta_{t k}^{2}}-p \delta_{2(t-d) k}}{4 \delta_{t k}}, \tag{4.27}
\end{equation*}
$$

and $\left\|\boldsymbol{h}_{Y_{2}}\right\|_{2}^{2} /\left\|\boldsymbol{h}_{T_{d k}^{h} \cup Y_{1}}\right\|_{2}^{2}$ is a parameter. By (4.18), then

$$
0 \leq \frac{\left\|\boldsymbol{h}_{Y_{2}}\right\|_{2}^{2}}{\left\|\boldsymbol{h}_{T_{k k}^{h} \cup Y_{1}}\right\|_{2}^{2}} \leq(t-d)^{-\frac{2-p}{p}} \chi^{\frac{2}{p}}
$$

And by the assumption that $\left\|h_{T_{d k}^{h}} \cup Y_{1}\right\|_{2} \neq 0$, the above inequality (4.25) is equivalent to

$$
\begin{equation*}
f(\mu) \geq 0, \quad \mu \in \mathbb{R} . \tag{4.28}
\end{equation*}
$$

The discriminant of the function (4.26) is

$$
\begin{align*}
\Delta=4(1-c)^{2}\left(1+\delta_{t k}\right)^{2}-8((1 & \left.+\delta_{t k}\right)+\left(\left(2 c^{2}-2 c+1\right) \delta_{t k}+(1-2 c) \delta_{2(t-d) k}\right) \\
& \times \frac{\chi^{\frac{2}{2-p}}}{t-d}\left(\frac{\left\|\boldsymbol{h}_{Y_{2}}\right\|_{2}^{2}}{\left\|h_{T_{d k}^{h} \cup Y_{1}}\right\|_{2}^{2}}\right)^{\frac{2-2 p}{2-p}} \\
& \left.-\left(1+\delta_{2(t-d) k}\right)(1-2 c) \frac{\left\|\boldsymbol{h}_{Y_{2}}\right\|_{2}^{2}}{\left\|\boldsymbol{h}_{T_{d k}^{h} \cup Y_{1}}\right\|_{2}^{2}}\right) \delta_{t k}(1-c)^{2} \tag{4.29}
\end{align*}
$$

with the parameters $\left\|h_{Y_{2}}\right\|_{2}^{2} /\left\|\boldsymbol{h}_{T_{d k}^{h}} \cup Y_{1}\right\|_{2}^{2} \in\left[0,(t-d)^{-(2-p) / p} \chi^{2 / p}\right]$ and c in (4.27). By some simple analysis, Δ gets minimum value denoting $\Delta_{\text {min }}$ at

$$
\frac{\left\|h_{Y_{2}}\right\|_{2}^{2}}{\left\|h_{T_{d k}^{h} \cup Y_{1}}\right\|_{2}^{2}}=\left(\frac{\sqrt{p^{2} \delta_{2(t-d) k}^{2}+4(1-p) \delta_{t k}^{2}}+(2-p) \delta_{2(t-d) k}}{2\left(1+\delta_{2(t-d) k}\right)(t-d)} \chi^{\frac{2}{2-p}}\right)^{\frac{2-p}{p}} \leq \frac{\chi^{\frac{2}{p}}}{(t-d)^{\frac{2-p}{p}}} .
$$

Furthermore,

$$
\begin{aligned}
& \Delta_{\min }=4(1-c)^{2}\left(1-\delta_{t k}^{2}-p \chi^{\frac{2}{p}}(2(t-d))^{-\frac{2-p}{p}}\right. \\
& \times\left(\frac{\sqrt{p^{2} \delta_{2(t-d) k}^{2}+4(1-p) \delta_{t k}^{2}}+(2-p) \delta_{2(t-d) k}}{1+\delta_{2(t-d) k}}\right)^{\frac{2-2 p}{p}} \\
&\left.\times\left(2 \delta_{t k}^{2}-p \delta_{2(t-d) k}^{2}+\delta_{2(t-d) k} \sqrt{p^{2} \delta_{2(t-d) k}^{2}}\right)\right)>0
\end{aligned}
$$

where the last inequality is from the condition (3.1). Therefore,

$$
\Delta>0
$$

for any $\left\|h_{Y_{2}}\right\|_{2}^{2} /\left\|h_{T_{d k}^{h}} \cup Y_{1}\right\|_{2}^{2} \in\left[0,(t-d)^{-(2-p) / p} \chi^{2 / p}\right]$. Then there must be $\mu_{0} \in \mathbb{R}$ such that $f\left(\mu_{0}\right)<0$ which contradicts with (4.28). The proof is complete.

4.3 The proof of Theorem 3.2

Proof. By [21, Remark 5], it is clear that the function

$$
g(z)=\left(\sqrt{p^{2} z^{2}+4(1-p) \delta_{t k}^{2}}+\frac{(2-p) z}{1+z}\right)^{\frac{2-2 p}{p}}\left(2 \delta_{t k}^{2}-p z^{2}+z \sqrt{p^{2} z^{2}+4(1-p) \delta_{t k}^{2}}\right)
$$

is monotonically nondecreasing with $z \geq 0$. For $t \geq 2 d$, Lemma 4.2 says that $\delta_{2(t-d) k} \leq s \delta_{t k}$, then

$$
g\left(\delta_{2(t-d) k}\right) \leq g\left(s \delta_{t k}\right),
$$

where $s=(3 t-4 d) / t$, and

$$
1-\delta_{t k}^{2}-p\left(\frac{\chi^{\frac{2}{2-p}}}{2(t-d)}\right)^{\frac{2-p}{p}} g\left(\delta_{2(t-d) k}\right) \geq 1-\delta_{t k}^{2}-p\left(\frac{\chi^{\frac{2}{2-p}}}{2(t-d)}\right)^{\frac{2-p}{p}} g\left(s \delta_{t k}\right) .
$$

When $t k$ is an integer, we only need to prove that

$$
1-\delta_{t k}^{2}-p\left(\frac{\chi^{2 /(2-p)}}{2(t-d)}\right)^{\frac{2-p}{p}} g\left(s \delta_{t k}\right)>0
$$

by Theorem 3.1. We next prove that it is true under the condition (3.10). It reduces to proving that the continuous function

$$
h(z)=1-z^{2}\left(1+p\left(\frac{\chi^{\frac{2}{2-p}}}{2(t-d)}\right)^{\frac{2-p}{p}}\left(\frac{\sqrt{s^{2} p^{2}+4(1-p)}+s(2-p)}{1+s z} z\right)^{\frac{2-2 p}{p}}\right.
$$

$$
\begin{equation*}
\left.\times\left(2-p s^{2}+s \sqrt{s^{2} p^{2}+4(1-p)}\right)\right) \tag{4.30}
\end{equation*}
$$

for $z \in[0,1]$ satisfies $h(z)>0$ when $z<\delta(p, t, d, \chi)$. From (3.11), it follows that $h(\delta(p, d, t, \chi))=$ 0 . Next, we prove that $\delta(p, d, t, \chi)$ is the only solution of $h(z)=0$. Since z and $z /(1+$ $s z)$ are both monotonically increasing with $z, h(z)$ is monotonically decreasing with z. Furthermore, one has that $h(0)=1$ and

$$
\begin{aligned}
h(1)= & -p\left(\frac{\chi^{\frac{2}{2-p}}}{2(t-d)}\right)^{\frac{2-p}{p}}\left(\frac{\sqrt{s^{2} p^{2}+4(1-p)}+s(2-p)}{1+s}\right)^{\frac{2-2 p}{p}} \\
& \times\left(2-p s^{2}+s \sqrt{s^{2} p^{2}+4(1-p)}\right)<0 .
\end{aligned}
$$

Then, there is a unique positive solution of $h(z)=0$ with $z \in(0,1)$. Then, by the fact $h(\delta(p, d, t, \chi))=0, \delta(p, d, t, \chi)$ is the only solution of $h(z)=0$. And $h(z)>h(\delta(p, d, t, \chi))=0$ when $z<\delta(p, d, t, \chi)$. In addition, based on $\delta(p, d, t, \chi)<1$, it is clear that

$$
\frac{\delta(p, d, t, \chi)}{1+s \delta(p, d, t, \chi)}<\frac{t}{4(t-d)}
$$

Then, by (3.11), we have that

$$
\begin{aligned}
\delta(p, d, t, \chi) \geq[1+ & p\left(\frac{\chi^{\frac{2}{2-p}}}{2(t-d)}\right)^{\frac{2-p}{p}}\left(\frac{\sqrt{s^{2} p^{2}+4(1-p)}+s(2-p)}{4(t-d)} t\right)^{\frac{2-2 p}{p}} \\
& \left.\times\left(2-p s^{2}+s \sqrt{s^{2} p^{2}+4(1-p)}\right)\right]^{-\frac{1}{2}}
\end{aligned}
$$

When $t k$ is not an integer, we have the following proof. Since the partial derivative with respect to t in both sides of (3.11)

$$
\begin{aligned}
\frac{\partial z}{\partial t}= & \frac{1-z^{2}}{2 z(t-d)\left(2-p s^{2}+s \sqrt{s^{2} p^{2}+4(1-p)}\right)}\left(1+\frac{1-z^{2}}{z^{2}}\left(\frac{1+p s z}{p(1+s z)}\right)\right)^{-1} \\
& \times\left(\frac{2-p s^{2}+s \sqrt{s^{2} p^{2}+4(1-p)}}{p}(2-p)-\frac{8 d(1-p)(t-d)}{t^{2} p(1+s z)}\right. \\
& \quad \times\left(\frac{2-p s^{2}+s \sqrt{s^{2} p^{2}+4(1-p)}}{s(2-p)+\sqrt{s^{2} p^{2}+4(1-p)}} \frac{(2-p) \sqrt{s^{2} p^{2}+4(1-p)}+s p^{2}-4(1-p) z}{\sqrt{s^{2} p^{2}+4(1-p)}}\right)
\end{aligned}
$$

$$
\begin{align*}
& \left.\quad-\frac{\left(\sqrt{s^{2} p^{2}+4(1-p)}-2 p s\right)^{2}}{\sqrt{s^{2} p^{2}+4(1-p)}} \cdot \frac{4 d(t-d)}{t^{2}}\right) \\
& \geq \\
& \quad \frac{1-z^{2}}{2 z(t-d)\left(2-p s^{2}+s \sqrt{s^{2} p^{2}+4(1-p)}\right)}\left(1+\frac{1-z^{2}}{z^{2}}\left(\frac{1+p s z}{p(1+s z)}\right)\right)^{-1} \tag{4.31}\\
& \quad \times \frac{1+(1-p)^{2}}{\sqrt{s^{2} p^{2}+4(1-p)}+s p} \cdot \frac{2}{p}>0
\end{align*}
$$

for $t \geq 2 d$. Therefore, $\partial \delta(p, d, t, \chi) / \partial t$ is monotonically nondecreasing with $t \geq 2 d$. And using Lemma 4.3, it is clear that $\delta_{t k}<\delta(p, t, d, \chi)$ guarantees the exact recovery of k-sparse signals via the weighted ℓ_{p}-minimization (1.3) with $\mathcal{B}=\{\mathbf{0}\}$. We complete the proof.

4.4 Proof of Theorem 3.3

Proof. We first assume that $t k$ is an integer. Let $h=\hat{x}^{\ell_{2}}-x$. Since $\hat{x}^{\ell_{2}}$ is a solution of the weighted ℓ_{p}-minimization (1.3) with $\mathcal{B}=\mathcal{B}^{l_{2}}(\varepsilon)=\left\{z \in \mathbb{R}^{m}:\|z\|_{2} \leq \varepsilon\right\}$, then $\left\|A \hat{x}^{\ell_{2}}-y\right\|_{2} \leq \varepsilon$, and $\left\|\hat{\boldsymbol{x}}^{\ell_{2}}\right\|_{p, \mathbf{w}}^{p} \leq\|\boldsymbol{x}\|_{p, \mathbf{w}}^{p}$. Furthermore, from $\left\|\boldsymbol{A} \hat{\boldsymbol{x}}^{\ell_{2}}-\boldsymbol{y}\right\|_{2} \leq \varepsilon$ and $\|\boldsymbol{A x}-\boldsymbol{y}\|_{2} \leq \varepsilon$, it follows that

$$
\begin{equation*}
\|A \boldsymbol{h}\|_{2} \leq\left\|A \hat{\boldsymbol{x}}^{\ell_{2}}-\boldsymbol{y}\right\|_{2}+\|A \boldsymbol{x}-\boldsymbol{y}\|_{2} \leq 2 \varepsilon \tag{4.32}
\end{equation*}
$$

Next, we will complete the proof by the following two steps.
Step 1: $h_{Y_{2}}$ can be presented as a convex combination of some sparse signals by Lemma 4.1 with $\hat{x}=\hat{x}^{\ell_{2}}$, where Y_{2} is defined in (4.3). Applying $\left\|\hat{x}^{\ell_{2}}\right\|_{p, \mathrm{w}}^{p} \leq\|x\|_{p, \mathrm{w}}^{p}$ and Lemma 4.1 with $\hat{\boldsymbol{x}}=\hat{\boldsymbol{x}}^{\ell_{2}}$, one has $\boldsymbol{h}_{\mathrm{Y}_{2}}=\sum_{i=1}^{N} \lambda_{i} \boldsymbol{u}^{(i)}$, where $\boldsymbol{u}^{(i)}$ is $\left((t-d) k-\left|\mathrm{Y}_{1}\right|\right)$-sparse vector and for all $i, \operatorname{supp}\left(\boldsymbol{u}^{(i)}\right) \subseteq \mathrm{Y}_{2}, \lambda_{i}>0$ such that $\sum_{i=1}^{N} \lambda_{i}=1$. And

$$
\begin{equation*}
\sum_{i=1}^{N} \lambda_{i}\left\|\boldsymbol{u}^{(i)}\right\|_{2}^{2} \leq \frac{\chi^{\frac{2}{2-p}}}{t-d}\left(\left\|\boldsymbol{h}_{T_{d k}^{h} \cup Y_{1}}\right\|_{2}^{p}+\frac{2\left(\omega\left\|\boldsymbol{x}_{T^{c}}\right\|_{p}^{p}+(1-\omega)\left\|\boldsymbol{x}_{\widetilde{T}^{c} \cap T^{c}}\right\|_{p}^{p}\right)}{k^{\frac{2-p}{2}} \chi}\right)^{\frac{2}{2-p}}\left(\left\|\boldsymbol{h}_{\mathrm{Y}_{2}}\right\|_{2}^{2}\right)^{\frac{2-2 p}{2-p}} \tag{4.33}
\end{equation*}
$$

In addition, (4.6) and (4.7) hold.
Step 2: We will develop an upper bound on $\left\|\boldsymbol{h}_{T_{d k}^{h} \cup Y_{1}}\right\|_{2}$ based on the identity (4.19), where Y_{1} is defined in (4.2). For the first term of the identity (4.19), we deduce

$$
\begin{aligned}
& \sum_{i=1}^{N} \lambda_{i}\left\|A\left(\sum_{j=1}^{N} \lambda_{j} \boldsymbol{v}^{(j)}-c \boldsymbol{v}^{(i)}\right)\right\|_{2}^{2} \\
& \stackrel{(a)}{=} \sum_{i=1}^{N} \lambda_{i}\left\|A\left((1-c-\mu) \boldsymbol{h}_{T_{d k}^{h} \cup Y_{1}}+\mu \boldsymbol{h}-c \mu \boldsymbol{u}^{(i)}\right)\right\|_{2}^{2}
\end{aligned}
$$

$$
\begin{align*}
& =\sum_{i=1}^{N} \lambda_{i}\left\|\boldsymbol{A}\left((1-c-\mu) \boldsymbol{h}_{T_{d k}^{h} \cup Y_{1}}-c \mu \boldsymbol{u}^{(i)}\right)\right\|_{2}^{2}+\mu^{2}\|\boldsymbol{A} \boldsymbol{h}\|_{2}^{2} \\
& +2 \mu\left\langle A\left((1-c-\mu) \boldsymbol{h}_{T_{d k}^{h} \cup Y_{1}}-c \mu \sum_{i=1}^{N} \lambda_{i} \boldsymbol{u}^{(i)}\right), A \boldsymbol{h}\right\rangle \\
& \stackrel{(b)}{=} \sum_{i=1}^{N} \lambda_{i}\left\|\boldsymbol{A}\left((1-c-\mu) \boldsymbol{h}_{T_{d k}^{h}} \cup Y_{1}-c \mu \boldsymbol{u}^{(i)}\right)\right\|_{2}^{2} \\
& +(1-2 c) \mu^{2}\|\boldsymbol{A} \boldsymbol{h}\|_{2}^{2}+2(1-c) \mu(1-\mu)\left\langle\boldsymbol{A} \boldsymbol{T}_{T_{d k}^{h} \cup Y_{1}}, A h\right\rangle \\
& \stackrel{(c)}{\leq}\left(1+\delta_{t k}\right) \sum_{i=1}^{N} \lambda_{i}\left\|(1-c-\mu) \boldsymbol{h}_{T_{d k}^{h} \cup Y_{1}}-c \mu \boldsymbol{u}^{(i)}\right\|_{2}^{2} \\
& +(1-2 c) \mu^{2}\|A h\|_{2}^{2}+2(1-c) \mu(1-\mu)\left\|A h_{T_{d k}^{h k}} \cup Y_{1}\right\|_{2}\|A \boldsymbol{h}\|_{2} \\
& \stackrel{(d)}{\leq}\left(1+\delta_{t k}\right)\left((1-c-\mu)^{2}\left\|\boldsymbol{h}_{T_{d k}^{h} \cup Y_{1}}\right\|_{2}^{2}+c^{2} \mu^{2} \sum_{i=1}^{N} \lambda_{i}\left\|\boldsymbol{u}^{(i)}\right\|_{2}^{2}\right) \\
& +4(1-2 c) \mu^{2} \varepsilon^{2}+4(1-c) \mu(1-\mu) \sqrt{1+\delta_{t k}} \varepsilon\left\|h_{T_{d k}^{h}} \cup Y_{1}\right\|_{2^{\prime}} \tag{4.34}
\end{align*}
$$

where (a) is due to (4.20), (b) follows from $\boldsymbol{h}_{Y_{2}}=\sum_{i=1}^{N} \lambda_{i} \boldsymbol{u}^{(i)}$ and $\boldsymbol{h}=\boldsymbol{h}_{T_{d k}^{h} \cup Y_{1}}+\boldsymbol{h}_{Y_{2}}$, (c) comes from the fact that $(1-c-\mu) \boldsymbol{h}_{T_{d k}^{h} \cup Y_{1}}-c \mu u^{(i)}$ is $t k$-sparse and Hölder inequality, and (d) is because $h_{T_{d k}^{h} \cup Y_{1}}$ is $t k$-sparse and $\|A h\|_{2} \leq 2 \varepsilon$ in (4.32).

For the second term of the identity (4.19), by the monotonicity of RIP and $d<t \leq$ $d+(2-p) \chi^{2 /(2-p)} /(2+p)$, the inequality (4.23) reduces to

$$
\frac{1-2 c}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \lambda_{i} \lambda_{j}\left\|\boldsymbol{A}\left(\boldsymbol{v}^{(i)}-\boldsymbol{v}^{(j)}\right)\right\|_{2}^{2} \leq\left(1+\delta_{t k}\right) \mu^{2}(1-2 c)\left(\sum_{i=1}^{N} \lambda_{i}\left\|\boldsymbol{u}^{(i)}\right\|_{2}^{2}-\left\|\boldsymbol{h}_{Y_{2}}\right\|_{2}^{2}\right) .
$$

Substituting (4.24), (4.34) and the above inequality into the identity (4.19) with $c=p / 2$, we derive that

$$
\begin{aligned}
0 \leq & \left(1+\delta_{t k}\right)\left(\left(1-\frac{p}{2}-\mu\right)^{2}\left\|\boldsymbol{h}_{T_{d k}^{h}} \cup Y_{1}\right\|_{2}^{2}+\left(\frac{p^{2} \mu^{2}}{4}+\mu^{2}(1-p)\right) \sum_{i=1}^{N} \lambda_{i}\left\|\boldsymbol{u}^{(i)}\right\|_{2}^{2}-\mu^{2}(1-p)\left\|\boldsymbol{h}_{Y_{2}}\right\|_{2}^{2}\right) \\
& -\left(1-\delta_{t k}\right)\left(1-\frac{p}{2}\right)^{2}\left(\left\|\boldsymbol{h}_{T_{d k}^{h}} \cup Y_{1}\right\|_{2}^{2}+\mu^{2} \sum_{i=1}^{N} \lambda_{i}\left\|\boldsymbol{u}^{(i)}\right\|_{2}^{2}\right) \\
& +2(2-p) \mu(1-\mu) \sqrt{1+\delta_{t k} \varepsilon}\left\|\boldsymbol{h}_{T_{d k}^{h}} \cup Y_{1}\right\|_{2}+4(1-p) \mu^{2} \varepsilon^{2} \\
& (a) \\
\leq & \left.\left(1+\delta_{t k}\right)\left(1-\frac{p}{2}-\mu\right)^{2}-\left(1-\delta_{t k}\right)\left(1-\frac{p}{2}\right)^{2}\right)\left\|\boldsymbol{h}_{T_{d k}^{h} \cup Y_{1}}\right\|_{2}^{2} \\
& +2(2-p) \mu(1-\mu) \sqrt{1+\delta_{t k} \varepsilon}\left\|\boldsymbol{h}_{T_{d k}^{h}} \cup Y_{1}\right\|_{2}+4(1-p) \mu^{2} \varepsilon^{2}
\end{aligned}
$$

$$
\begin{align*}
& +\left(2 \delta_{t k} \frac{\chi^{\frac{2}{2-p}}}{t-d}\left(1-\frac{p}{2}\right)^{2}\left(\left\|\boldsymbol{h}_{T_{d k}^{h} \cup Y_{1}}\right\|_{2}^{p}+\frac{2\left(\omega\left\|x_{T_{c} c}\right\|_{p}^{p}+(1-\omega)\left\|x_{\widetilde{T} c \cap T_{c}}\right\|_{p}^{p}\right)}{k^{\frac{2-p}{2}} \chi}\right)^{\frac{2}{2-p}}\right. \\
& \left.\quad \times\left(\left\|h_{Y_{2}}\right\|_{2}^{2}\right)^{\frac{2-2 p}{2-p}}-\left(1+\delta_{t k}\right)(1-p)\left\|\boldsymbol{h}_{Y_{2}}\right\|_{2}^{2}\right) \mu^{2} \tag{4.35}
\end{align*}
$$

where (a) is due to (4.33).
We now consider the last term of the above inequality. Define the function

$$
\begin{align*}
g_{1}(v)= & 2 \delta_{t k} \frac{x^{\frac{2}{2-p}}}{t-d}\left(1-\frac{p}{2}\right)^{2} \\
& \times\left(\left\|h_{T_{d k}^{h} u Y_{1}}\right\|_{2}^{p}+\frac{2\left(\omega\left\|x_{T_{c}}\right\|_{p}^{p}+(1-\omega)\left\|x_{\tilde{T} \bullet \cap T}\right\|_{p}^{p}\right)}{k^{\frac{2-p}{2}} \chi}\right)^{\frac{2}{2-p}} v^{\frac{2-2 p}{2-p}} \\
& -\left(1+\delta_{t k}\right)(1-p) v \tag{4.36}
\end{align*}
$$

for

$$
v \in\left[0, \frac{\chi^{\frac{2}{p}}}{(t-d)^{\frac{2-p}{p}}}\left(\left\|h_{T_{d k}^{h} \cup Y_{1}}\right\|_{2}^{p}+\frac{2\left(\omega\left\|x_{T^{c}}\right\|_{p}^{p}+(1-\omega)\left\|x_{\widetilde{T} c \cap T^{c}}\right\|_{p}^{p}\right)}{k^{\frac{2-p}{2}} \chi}\right)^{\frac{2}{p}}\right] .
$$

By some simple calculation, we verify that $g_{1}(v) \leq g_{1}\left(v_{0}\right)$ with

$$
\begin{equation*}
v_{0}=\left(\frac{(2-p) \delta_{t k} \chi^{\frac{2}{2-p}}}{\left(1+\delta_{t k}\right)(t-d)}\right)^{\frac{2-p}{p}}\left(\left\|\boldsymbol{h}_{T_{d k}^{h} \cup Y_{1}}\right\|_{2}^{p}+\frac{2\left(\omega\left\|x_{T^{c}}\right\|_{p}^{p}+(1-\omega)\left\|x_{\tilde{T}_{c} \cap T^{c}}\right\|_{p}^{p}\right)}{k^{\frac{2-p}{2}} \chi}\right)^{\frac{2}{p}} . \tag{4.37}
\end{equation*}
$$

In addition, by $d<t \leq d+((2-p)(2+p)) \chi^{\frac{2}{2-p}}$, and

$$
\delta_{t k}<\frac{1}{u-(1-p)}
$$

in (3.13), where

$$
u=\sqrt{p^{2}+\frac{(2-p)^{2} \chi^{\frac{2}{2-p}}}{t-d}}
$$

we derive that

$$
v_{0}<\frac{\chi^{\frac{2}{p}}}{(t-d)^{\frac{2-p}{p}}}\left(\left\|h_{T_{d k}^{h} \cup Y_{1}}\right\|_{2}^{p}+\frac{2\left(\omega\left\|x_{T^{c}}\right\|_{p}^{p}+(1-\omega)\left\|x_{\widetilde{T} c \cap T^{c}}\right\|_{p}^{p}\right)}{k^{\frac{2-p}{2}} \chi}\right)^{\frac{2}{p}},
$$

and

$$
\begin{align*}
g_{1}\left(v_{0}\right)= & \frac{p}{2}\left(1+\delta_{t k}\right)\left(\frac{(2-p) \chi^{\frac{2}{2-p}} \delta_{t k}}{\left(1+\delta_{t k}\right)(t-d)}\right)^{\frac{2-p}{p}} \\
& \times\left(\left\|h_{T_{d k}^{h} \cup Y_{1}}\right\|_{2}^{p}+\frac{2\left(\omega\left\|x_{T^{c}}\right\|_{p}^{p}+(1-\omega)\left\|x_{\widetilde{T} c \cap T_{c}}\right\|_{p}^{p}\right)}{k^{\frac{2-p}{2}} \chi}\right)^{\frac{2}{p}} . \tag{4.38}
\end{align*}
$$

For (4.38), it follows from

$$
\delta_{t k}<\frac{1}{u-(1-p)}
$$

in (3.13) that

$$
\begin{aligned}
g_{1 \max }\left(v_{0}\right)< & \frac{p}{2}\left(1+\delta_{t k}\right)\left(\frac{(2-p) \chi^{\frac{2}{2-p}}}{(t-d)(u+p)}\right)^{\frac{2-p}{p}} \\
& \times\left(\left\|h_{T_{d k}^{h} \cup Y_{1}}\right\|_{2}^{p}+\frac{2\left(\omega\left\|x_{T^{c}}\right\|_{p}^{p}+(1-\omega)\left\|x_{\widetilde{T} c \cap T^{c}}\right\|_{p}^{p}\right)}{k^{\frac{2-p}{2}} \chi}\right)^{\frac{2}{p}} \\
\leq & \left(1+\delta_{t k}\right)\left(\frac{u+p}{2}-1\right) \\
& \times\left(\left\|h_{T_{d k}^{h} \cup Y_{1}}\right\|_{2}^{p}+\frac{2\left(\omega\left\|x_{T^{c}}\right\|_{p}^{p}+(1-\omega)\left\|x_{\widetilde{T} c \cap T^{c}}\right\|_{p}^{p}\right)}{k^{\frac{2-p}{2}} \chi}\right)^{\frac{2}{p}},
\end{aligned}
$$

where we use Lemma 2.2(III) with $\Lambda=\chi^{2 /(2-p)} /(t-d)$ and

$$
z=\frac{(2-p) \chi^{\frac{2}{2-p}} /(t-d)}{u+p}<1
$$

and

$$
d<t \leq d+\frac{2-p}{2+p} \chi^{\frac{2}{2-p}}
$$

in the second inequality. Furthermore, by the above inequality and (4.38), there is the fact that

$$
\begin{equation*}
\frac{p}{2}\left(\frac{(2-p) \chi^{\frac{2}{2-p}} \delta_{t k}}{\left(1+\delta_{t k}\right)(t-d)}\right)^{\frac{2-p}{p}}<\frac{u+p}{2}-1 . \tag{4.39}
\end{equation*}
$$

Let

$$
\mu=\frac{2-p}{u+p},
$$

we derive that

$$
\begin{align*}
& \quad\left(1+\delta_{t k}\right)\left(1-\frac{p}{2}-\mu\right)^{2}-\left(1-\delta_{t k}\right)\left(1-\frac{p}{2}\right)^{2}+\left(1+\delta_{t k}\right)\left(\frac{u+p}{2}-1\right) \mu^{2} \\
& =\left(\frac{2-p}{u+p}\right)^{2}-\frac{(2-p)^{2}}{u+p}+\delta_{t k}\left(\left(1-\frac{p}{2}-\frac{2-p}{u+p}\right)^{2}+\left(1-\frac{p}{2}\right)^{2}\right) \\
& \quad \quad+\left(1+\delta_{t k}\right)\left(\frac{u+p}{2}-1\right)\left(\frac{2-p}{u+p}\right)^{2} \\
& = \tag{4.40}\\
& \frac{u+p}{2}\left(-1+\delta_{t k}(u+p-1)\right) \mu^{2}<0,
\end{align*}
$$

where the inequality follows from

$$
\delta_{t k}<\frac{1}{u-(1-p)}
$$

By (4.35) and the function $g_{1}(v)$ in (4.36), one has that

$$
\begin{aligned}
& \left(\left(1+\delta_{t k}\right)\left(1-\frac{p}{2}-\mu\right)^{2}-\left(1-\delta_{t k}\right)\left(1-\frac{p}{2}\right)^{2}+\left(1+\delta_{t k}\right)\left(\frac{u+p}{2}-1\right) \mu^{2}\right)\left\|\boldsymbol{h}_{T_{d k}^{h} \cup Y_{1}}\right\|_{2}^{2} \\
& \quad+2(2-p) \mu(1-\mu) \sqrt{1+\delta_{t k}} \varepsilon\left\|h_{T_{d k}^{h} \cup Y_{1}}\right\|_{2}+4(1-p) \mu^{2} \varepsilon^{2} \\
& \quad-\left(1+\delta_{t k}\right)\left(\frac{u+p}{2}-1\right) \mu^{2}\left\|\boldsymbol{h}_{T_{d k}^{h}} \cup Y_{1}\right\|_{2}^{2}+g_{1}\left(\left\|\boldsymbol{h}_{Y_{2}}\right\|_{2}^{2}\right) \mu^{2} \geq 0 .
\end{aligned}
$$

From (4.40), $g_{1}\left(\left\|h_{Y_{2}}\right\|_{2}^{2}\right) \leq g_{1 \max }\left(v_{0}\right),(4.38)$ and

$$
\mu=\frac{2-p}{u+p^{\prime}}
$$

the above inequality reduces to

$$
\begin{aligned}
& \frac{u+p}{2}\left(-1+\delta_{t k}(u+p-1)\right)\left\|\boldsymbol{h}_{T_{d k}^{h} \cup Y_{1}}\right\|_{2}^{2}+2(u+2 p-2) \sqrt{1+\delta_{t k}} \varepsilon\left\|\boldsymbol{h}_{T_{d k}^{h} \cup Y_{1}}\right\|_{2} \\
& +4(1-p) \varepsilon^{2}-\left(1+\delta_{t k}\right)\left(\frac{u+p}{2}-1\right)\left\|\boldsymbol{h}_{T_{d k}^{h} \cup Y_{1}}\right\|_{2}^{2}+\frac{p}{2}\left(1+\delta_{t k}\right)\left(\frac{(2-p) \chi^{\frac{2}{2-p} \delta_{t k}}}{(t-d)\left(1+\delta_{t k}\right)}\right)^{\frac{2-p}{p}} \\
& \quad \times\left(\left\|\boldsymbol{h}_{T_{d k}^{h} \cup Y_{1}}\right\|_{2}^{p}+\frac{2\left(\omega\left\|\boldsymbol{x}_{T^{c}}\right\|_{p}^{p}+(1-\omega)\left\|\boldsymbol{x}_{T^{c} \cap T^{c}}\right\|_{p}^{p}\right)}{k^{\frac{2-p}{2}} \chi}\right)^{\frac{2}{p}} \geq 0
\end{aligned}
$$

Then, by (4.39),

$$
\begin{align*}
\left\|\boldsymbol{h}_{T_{d k}^{h} \cup Y_{1}}\right\|_{2} \leq & \frac{C_{1}}{(u+p)\left(1-\delta_{t k}(u+p-1)\right)} \varepsilon \\
& +C_{2}\left(\omega\left\|x_{T^{c}}\right\|_{p}^{p}+(1-\omega)\left\|x_{\widetilde{T}^{c} \cap T^{c}}\right\|_{p}^{p}\right)^{\frac{1}{p}} \tag{4.41}
\end{align*}
$$

where the constants C_{1} and C_{2} are defined in (3.15) and (3.16), respectively. Furthermore,

$$
\begin{align*}
\|\boldsymbol{h}\|_{2}^{2} & =\left\|\boldsymbol{h}_{\max (d k)}\right\|_{2}^{2}+\left\|\boldsymbol{h}_{-\max (d k)}\right\|_{2}^{2} \tag{4.42}\\
& \leq\left\|\boldsymbol{h}_{T_{d k}^{h} \cup Y_{1}}\right\|_{2}^{2}+\left(\left\|\boldsymbol{h}_{T_{d k}^{h} \cup Y_{1}}\right\|_{2}^{p}+\frac{2\left(\omega\left\|\boldsymbol{x}_{T^{c}}\right\|_{p}^{p}+(1-\omega)\left\|x_{\widetilde{T^{c} \cap T^{c}}}\right\|_{p}^{p}\right)}{(d k)^{\frac{2 p}{2}}}\right)^{\frac{2}{p}} \\
& \leq\left\|\boldsymbol{h}_{T_{d k}^{h} \cup Y_{1}}\right\|_{2}^{2}+2^{\frac{2-2 p}{p}}\left(\left\|\boldsymbol{h}_{T_{d k}^{h} \cup Y_{1}}\right\|_{2}+\left(\frac{2}{(d k)^{\frac{2-p}{2}}}\right)^{\frac{1}{p}}\left(\omega\left\|\boldsymbol{x}_{T^{c}}\right\|_{p}^{p}+(1-\omega)\left\|x_{\widetilde{T_{c}^{c} \cap T^{c}}}\right\|_{p}^{p}\right)^{\frac{1}{p}}\right)^{2},
\end{align*}
$$

where we use (4.6) and $T_{d k}^{h}=\operatorname{supp}\left(\boldsymbol{h}_{\max (d k)}\right)$ in the first inequality, and Jensen inequality in the other inequalities. By (4.41) and (4.42), we have that

$$
\begin{aligned}
\|\boldsymbol{h}\|_{2}^{2} \leq & \left(\frac{C_{1}}{(u+p)\left(1-\delta_{t k}(u+p-1)\right)} \varepsilon+C_{2}\left(\omega\left\|x_{T^{c}}\right\|_{p}^{p}+(1-\omega)\left\|x_{\tilde{T} c \cap T}\right\|_{p}^{p}\right)^{\frac{1}{p}}\right)^{2} \\
& +2^{\frac{2-2 p}{p}}\left(\frac{C_{1}}{(u+p)\left(1-\delta_{t k}(u+p-1)\right)} \varepsilon+C_{2}\left(\omega\left\|x_{T^{c}}\right\|_{p}^{p}+(1-\omega)\left\|x_{\widetilde{T}^{c} \cap T^{c}}\right\|_{p}^{p}\right)^{\frac{1}{p}}\right. \\
& \left.+\left(\frac{2}{(d k)^{\frac{2-p}{2}}}\right)^{\frac{1}{p}}\left(\omega\left\|x_{T^{c}}\right\|_{p}^{p}+(1-\omega)\left\|x_{\widetilde{T^{c} \cap T_{c}}}\right\|_{p}^{p}\right)^{\frac{1}{p}}\right)^{2}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\|\boldsymbol{h}\|_{2} \leq & \frac{\sqrt{1+2^{\frac{2-2 p}{p}}} C_{1}}{(u+p)\left(1-\delta_{t k}(u+p-1)\right)} \varepsilon+\sqrt{C_{2}^{2}+2^{\frac{2-2 p}{p}}\left(C_{2}+\left(2(d k)^{-\frac{2-p}{2}}\right)^{\frac{1}{p}}\right)^{2}} \\
& \times\left(\omega\left\|x_{T^{c}}\right\|_{p}^{p}+(1-\omega)\left\|x_{\tilde{T} c} \cap T_{c}\right\|_{p}^{p}\right)^{\frac{1}{p}} .
\end{aligned}
$$

When $t k$ is not an integer, we define $t^{\prime}=\lceil t k\rceil / k$. Then $t^{\prime}>t, t^{\prime} k$ is an integer and

$$
\delta_{t^{\prime} k}=\delta_{t k}<\frac{1}{u-(1-p)} .
$$

We obtain the desired result by working on $\delta_{t^{\prime} k}$.

4.5 Proof of Theorem 3.4

Proof. By Lemma 2.2,

$$
\frac{p}{2} z^{\frac{2}{p}}+z-\frac{2-p}{2(t-d)} x^{\frac{2}{2-p}}=0
$$

with

$$
\frac{2-p}{2+p} \chi^{\frac{p}{2-p}}+d \leq t \leq 2 d
$$

has a unique solution in $\left((1-p) \chi^{2 /(2-p)} /(t-d), 1\right)$. If z_{0} is the only positive solution of the equation

$$
\frac{p}{2} z^{\frac{2}{p}}+z-\frac{2-p}{2(t-d)} x^{\frac{2}{2-p}}=0,
$$

it is easy to see

$$
z_{0} \in\left(\frac{1-p}{t-d} \chi^{\frac{2}{2-p}}, \min \left\{1, \frac{2-p}{2(t-d)} \chi^{\frac{2}{2-p}}\right\}\right) .
$$

First we assume $t k$ is an integer. When

$$
d+\frac{2-p}{2+p} \chi^{\frac{2}{2-p}}<t \leq 2 d
$$

the inequalities (4.32)-(4.38) still hold as in the proof of Theorem 3.3 in Section 4.4. By the condition $\delta_{t k}<(t-d) z_{0} /\left((2-p) \chi^{2 /(2-p)}-(t-d) z_{0}\right)$ in (3.17), we derive that

$$
\begin{equation*}
\frac{(2-p) \delta_{t k} \chi^{\frac{2}{2-p}}}{\left(1+\delta_{t k}\right)(t-d)}<z_{0} \tag{4.43}
\end{equation*}
$$

Then (4.37) and (4.38) respectively change to

$$
\begin{align*}
v_{0} & <z_{0}^{\frac{2-p}{p}}\left(\left\|h_{T_{d k}^{h} \cup Y_{1}}\right\|_{2}^{p}+\frac{2\left(\omega\left\|x_{T^{c}}\right\|_{p}^{p}+(1-\omega)\left\|x_{\widetilde{T^{c} \cap T_{c}}}\right\|_{p}^{p}\right)}{k^{\frac{2-p}{2}} \chi}\right)^{\frac{2}{p}} \\
& <\left(\frac{2-p}{2}\right)^{\frac{2-p}{p}} \frac{\chi^{\frac{2}{p}}}{(t-d)^{\frac{2-p}{p}}}\left(\left\|h_{T_{d k}^{h} \cup Y_{1}}\right\|_{2}^{p}+\frac{2\left(\omega\left\|x_{T^{c}}\right\|_{p}^{p}+(1-\omega)\left\|x_{\widetilde{T^{c} \cap T^{c}}}\right\|_{p}^{p}\right)}{k^{\frac{2-p}{2}} \chi}\right)^{\frac{2}{p}}, \tag{4.44}
\end{align*}
$$

and

$$
\begin{equation*}
g_{1 \max }\left(v_{0}\right)<\frac{p}{2}\left(1+\delta_{t k}\right) z_{0}^{\frac{2-p}{p}}\left(\left\|\boldsymbol{h}_{T_{d k}^{h} \cup Y_{1}}\right\|_{2}^{p}+\frac{2\left(\omega\left\|\boldsymbol{x}_{T^{c}}\right\|_{p}^{p}+(1-\omega)\left\|\boldsymbol{x}_{\widetilde{T}^{c} \cap T^{c}}\right\|_{p}^{p}\right)}{k^{\frac{2-p}{2}} \chi}\right)^{\frac{2}{p}} \tag{4.45}
\end{equation*}
$$

where we used the facts that $z_{0}<(2-p) \chi^{2 /(2-p)} /(2(t-d))$ and $0<p \leq 1$ in the second inequality of (4.44).

In addition, from (4.35) and the function $g_{1}(v)$ defined in (4.36), it is clear that

$$
\begin{align*}
& \left(\left(1+\delta_{t k}\right)\left(1-\frac{p}{2}-\mu\right)^{2}-\left(1-\delta_{t k}\right)\left(1-\frac{p}{2}\right)^{2}+\frac{p}{2}\left(1+\delta_{t k}\right) z_{0}^{\frac{2-p}{p}} \mu^{2}\right)\left\|\boldsymbol{h}_{T_{d k}^{h}} \cup Y_{1}\right\|_{2}^{2} \\
& \quad+2(2-p) \mu(1-\mu) \sqrt{1+\delta_{t k}} \varepsilon\left\|\boldsymbol{h}_{T_{d k}^{h} \cup Y_{1}}\right\|_{2} \\
& \quad+4(1-p) \mu^{2} \varepsilon^{2}-\frac{p}{2}\left(1+\delta_{t k}\right) z_{0}^{\frac{2 p}{p}} \mu^{2}\left\|\boldsymbol{h}_{T_{d k}^{h} \cup Y_{1}}\right\|_{2}^{2}+g_{1}\left(\left\|\boldsymbol{h}_{Y_{2}}\right\|_{2}^{2}\right) \mu^{2} \geq 0 \tag{4.46}
\end{align*}
$$

Combining the fact that $g_{1}\left(\left\|\boldsymbol{h}_{\mathrm{Y}_{2}}\right\|_{2}^{2}\right) \leq g_{1 \max }\left(v_{0}\right)$ with (4.7) and (4.38), we derive that

$$
\begin{aligned}
& {\left[\left(1+\delta_{t k}\right)\left(1-\frac{p}{2}-\mu\right)^{2}-\left(1-\delta_{t k}\right)\left(1-\frac{p}{2}\right)^{2}+\frac{p}{2}\left(1+\delta_{t k}\right) z_{0}^{\frac{2-p}{p}} \mu^{2}\right]\left\|\boldsymbol{h}_{T_{d k}^{h}} \cup Y_{1}\right\|_{2}^{2}} \\
& \quad+2(2-p) \mu(1-\mu) \sqrt{1+\delta_{t k}}\left\|\boldsymbol{h}_{T_{d k}^{h} \cup Y_{1}}\right\|_{2}+4(1-p) \mu^{2} \varepsilon^{2} \\
& \quad-\frac{p}{2}\left(1+\delta_{t k}\right) z_{0}^{\frac{2-p}{p}} \mu^{2}\left\|\boldsymbol{h}_{T_{d k}^{h} \cup Y_{1}}\right\|_{2}^{2}+\frac{p}{2}\left(1+\delta_{t k}\right)\left(\frac{(2-p) \chi^{\frac{2}{2-p}} \delta_{t k}}{\left(1+\delta_{t k}\right)(t-d)}\right)^{\frac{2-p}{p}} \\
& \quad \times\left(\left\|\boldsymbol{h}_{T_{d k}^{h} \cup Y_{1}}\right\|_{2}^{p}+\frac{2\left(\omega\left\|x_{T^{c}}\right\|_{p}^{p}+(1-\omega)\left\|\boldsymbol{x}_{\widetilde{T} c \cap T^{c}}\right\|_{p}^{p}\right)}{k^{\frac{2-p}{2}} \chi}\right)^{\frac{2}{p}} \mu^{2} \geq 0 .
\end{aligned}
$$

Let $\mu=z_{0}(t-d) / \chi^{2 /(2-p)}$. Then

$$
\begin{aligned}
& \left(1+\delta_{t k}\right)\left(1-\frac{p}{2}-\mu\right)^{2}-\left(1-\delta_{t k}\right)\left(1-\frac{p}{2}\right)^{2}+\frac{p}{2}\left(1+\delta_{t k}\right) z_{0}^{\frac{2-p}{p}} \mu^{2} \\
= & \left(\mu^{2}-(2-p) \mu\right)+\delta_{t k}\left(\left(1-\frac{p}{2}-\mu\right)^{2}+\left(1-\frac{p}{2}\right)^{2}\right)+\frac{p}{2}\left(1+\delta_{t k}\right) z_{0}^{\frac{2-p}{p}} \mu^{2} \\
= & \left(\mu^{2}-(2-p) \mu\right)+\delta_{t k}\left(\left(1-\frac{p}{2}-\mu\right)^{2}+\left(1-\frac{p}{2}\right)^{2}\right)+\left(1+\delta_{t k}\right)\left(\frac{2-p}{2} \mu-\mu^{2}\right) \\
= & \frac{2-p}{2}\left(-\mu+\delta_{t k}(2-p-\mu)\right) \\
< & \frac{2-p}{2}\left(-\mu+\frac{(t-d) z_{0}}{(2-p) \chi^{\frac{2}{2-p}}-(t-d) z_{0}}(2-p-\mu)\right)=0,
\end{aligned}
$$

where we used the fact that

$$
\frac{p}{2} z_{0}^{\frac{2}{p}}+z_{0}-\frac{(2-p) \chi^{\frac{2}{2-p}}}{2(t-d)}=0
$$

in the second equality, and the inequality follows from

$$
\delta_{t k}<\frac{(t-d) z_{0}}{(2-p) \chi^{\frac{2}{2-p}}-(t-d) z_{0}}
$$

in (3.17) and

$$
z_{0}<\frac{(2-p) \chi^{\frac{2}{2-p}}}{2(t-d)}
$$

From the above two inequalities, together with $\mu=z_{0}(t-d) / \chi^{2 /(2-p)}$ and (4.46), it follows that

$$
\frac{2-p}{2}\left(\mu-\delta_{t k}(2-p-\mu)\right)\left\|\boldsymbol{h}_{T_{d k}^{h} \cup Y_{1}}\right\|_{2}^{2}-2(2-p) \mu(1-\mu) \sqrt{1+\delta_{t k}} \varepsilon\left\|\boldsymbol{h}_{T_{d k}^{h} \cup Y_{1}}\right\|_{2}
$$

$$
\begin{aligned}
& -4(1-p) \mu^{2} \varepsilon^{2}+\frac{p}{2}\left(1+\delta_{t k}\right) z_{0}^{\frac{2-p}{p}} \mu^{2}\left\|\boldsymbol{h}_{T_{d k}^{h} \cup Y_{1}}\right\|_{2}^{2}-\frac{p}{2}\left(1+\delta_{t k}\right)\left(\frac{(2-p) \chi^{\frac{2}{2-p}} \delta_{t k}}{\left(1+\delta_{t k}\right)(t-d)}\right)^{\frac{2-p}{p}} \\
& \times v^{2}\left(\left\|\boldsymbol{h}_{T_{d k}^{h} \cup Y_{1}}\right\|_{2}^{p}+\frac{2\left(\omega\left\|x_{T^{c}}\right\|_{p}^{p}+(1-\omega)\left\|x_{\widetilde{T} c \cap T^{c}}\right\|_{p}^{p}\right)}{k^{\frac{2-p}{2}} \chi}\right)^{\frac{2}{p}} \leq 0,
\end{aligned}
$$

i.e.

$$
\begin{aligned}
& \frac{2-p}{2}\left(1-\frac{(2-p) \chi^{\frac{2}{2-p}}-z_{0}(t-d)}{z_{0}(t-d)} \delta_{t k}\right)\left\|h_{T_{d k}^{h} \cup Y_{1}}\right\|_{2}^{2}-2(2-p)(1-\mu) \sqrt{1+\delta_{t k}} \varepsilon\left\|_{T_{d k}^{h}} \cup Y_{1}\right\|_{2} \\
& -4(1-p) \mu \varepsilon^{2}+\frac{p}{2}\left(1+\delta_{t k}\right) z_{0}^{\frac{2-p}{p}} \mu\left\|h_{T_{d k}^{h} \cup Y_{1}}\right\|_{2}^{2}-\frac{p}{2}\left(1+\delta_{t k}\right)\left(\frac{(2-p) \chi^{\frac{2}{2-p}} \delta_{t k}}{\left(1+\delta_{t k}\right)(t-d)}\right)^{\frac{2-p}{p}} \mu \\
& \quad \times\left(\left\|h_{T_{d k}^{h} \cup Y_{1}}\right\|_{2}^{p}+\frac{2\left(\omega\left\|x_{T^{c}}\right\|_{p}^{p}+(1-\omega)\left\|x_{\widetilde{T}^{c} \cap T^{c}}\right\|_{p}^{p}\right)}{k^{\frac{2-p}{2}} \chi}\right)^{\frac{2}{p}} \leq 0 .
\end{aligned}
$$

Then, by (4.43), one has that

$$
\begin{align*}
\left\|\boldsymbol{h}_{T_{d k}^{h} \cup Y_{1}}\right\|_{2} \leq & \frac{D_{1}}{1-\left((2-p) \chi^{\frac{2}{2-p}}-z_{0}(t-d)\right) \delta_{t k} /\left(z_{0}(t-d)\right)} \varepsilon \\
& +D_{2}\left(\omega\left\|x_{T_{c}}\right\|_{p}^{p}+(1-\omega)\left\|x_{\tilde{T}_{c} \cap T^{c}}\right\|_{p}^{p}\right)^{\frac{1}{p}}, \tag{4.47}
\end{align*}
$$

where the constants D_{1} and D_{2} are defined in (3.20) and (3.21), respectively. Furthermore, combining (4.42) with (4.47) we deduce

$$
\begin{aligned}
& \|\boldsymbol{h}\|_{2}^{2} \leq\left(\frac{D_{1}}{1-\left((2-p) \chi^{\frac{2}{2-p}}-z_{0}(t-d)\right) \delta_{t k} /\left(z_{0}(t-d)\right)} \varepsilon\right. \\
& \left.\quad+D_{2}\left(\omega\left\|x_{T^{c}}\right\|_{p}^{p}+(1-\omega)\left\|x_{\widetilde{T} c \cap T^{c}}\right\|_{p}^{p}\right)^{\frac{1}{p}}\right)^{2} \\
& +2^{\frac{2-2 p}{p}}\left(\frac{D_{1}}{1-\left((2-p) \chi^{\frac{2}{2-p}}-z_{0}(t-d)\right) \delta_{t k} /\left(z_{0}(t-d)\right)} \varepsilon\right. \\
& \quad+D_{2}\left(\omega\left\|x_{T^{c} c}\right\|_{p}^{p}+(1-\omega)\left\|x_{\widetilde{T_{c}} \cap T_{c}}\right\|_{p}^{p}\right)^{\frac{1}{p}} \\
& \quad+\left(\frac{2}{\left.\left.(d k)^{\frac{2-p}{2}}\right)^{\frac{1}{p}}\left(\omega\left\|x_{T_{c}}\right\|_{p}^{p}+(1-\omega)\left\|x_{\tilde{T} c \cap T_{c}^{c}}\right\|_{p}^{p}\right)^{\frac{1}{p}}\right)^{2} .}\right.
\end{aligned}
$$

As a consequence,

$$
\begin{aligned}
\|\boldsymbol{h}\|_{2} \leq & \frac{\sqrt{1+2^{\frac{2-2 p}{p}}} D_{1}}{1-\left((2-p) \chi^{\frac{2}{2-p}}-z_{0}(t-d)\right) \delta_{t k} /\left(z_{0}(t-d)\right)} \varepsilon \\
& +\sqrt{D_{2}^{2}+2^{\frac{2-2 p}{p}}\left(D_{2}+\left(2(d k)^{-\frac{2-p}{2}}\right)^{\frac{1}{p}}\right)^{2}}\left(\omega\left\|\boldsymbol{x}_{T^{c}}\right\|_{p}^{p}+(1-\omega)\left\|x_{\widetilde{T_{c}} \cap T^{c}}\right\|_{p}^{p}\right)^{\frac{1}{p}} .
\end{aligned}
$$

When $t k$ is not an integer, we define $t^{\prime}=\lceil t k\rceil / k$ as usual. Then $t^{\prime}>t, t^{\prime} k$ is an integer and $z_{0}^{\prime}<z_{0}$, where z_{0} and z_{0}^{\prime} respectively are the unique solution of Eq. (3.18) and

$$
\frac{p}{2} z^{\frac{2}{p}}+z-\frac{2-p}{2\left(t^{\prime}-d\right)} x^{\frac{2}{2-p}}=0 .
$$

Therefore,

$$
\delta_{t^{\prime} k}=\delta_{t k}<\frac{(t-d) z_{0}}{(2-p) \chi^{\frac{2}{2-p}}-(t-d) z_{0}}<\frac{\left(t^{\prime}-d\right) z_{0}^{\prime}}{(2-p) \chi^{\frac{2}{2-p}}-\left(t^{\prime}-d\right) z_{0}^{\prime}} .
$$

We obtain the desired result by working on $\delta_{t^{\prime} k}$. We complete the proof.

4.6 Proof of Theorem 3.5

Proof. Similarly, we first assume $t k$ is an integer. When $t \geq 2 d$, the inequalities (4.32)-(4.34) also hold in the proof of Theorem 3.3 in Section 4.4. And let the parameters c and μ in the identity (4.19) be

$$
\begin{align*}
& c=\frac{1}{2}-\frac{1}{4}\left(\sqrt{s^{2} p^{2}+4(1-p)}-s p\right), \tag{4.48}\\
& \mu=\frac{2-s p+\sqrt{s^{2} p^{2}+4(1-p)}}{2(1+\delta(p, t, d, \chi))} \delta(p, t, d, \chi), \tag{4.49}
\end{align*}
$$

where $s=(3 t-4 d) / t$, and $\delta(p, t, d, \chi)$ is in (3.10). By $t \geq 2 d$ and Lemma 4.2 , the inequality (4.23) reduces to

$$
\begin{align*}
& \frac{1-2 c}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \lambda_{i} \lambda_{j}\left\|\boldsymbol{A}\left(\boldsymbol{v}^{(i)}-\boldsymbol{v}^{(j)}\right)\right\|_{2}^{2} \\
\leq & \left(1+s \delta_{t k}\right) \mu^{2}(1-2 c)\left(\sum_{i=1}^{N} \lambda_{i}\left\|\boldsymbol{u}^{(i)}\right\|_{2}^{2}-\left\|\boldsymbol{h}_{\mathrm{Y}_{2}}\right\|_{2}^{2}\right) . \tag{4.50}
\end{align*}
$$

Substituting the inequalities (4.24), (4.34) and (4.50) into the identity (4.19), we deduce

$$
0 \leq\left(\left(1+\delta_{t k}\right)(1-c-\mu)^{2}-\left(1-\delta_{t k}\right)(1-c)^{2}\right)\left\|\boldsymbol{h}_{T_{d k}^{h} \cup Y_{1}}\right\|_{2}^{2}
$$

$$
\begin{align*}
& +\left(\left(1+\delta_{t k}\right) c^{2} \mu^{2}+\left(1+s \delta_{t k}\right) \mu^{2}(1-2 c)-\left(1-\delta_{t k}\right)(1-c)^{2} \mu^{2}\right) \sum_{i=1}^{N} \lambda_{i}\left\|\boldsymbol{u}^{(i)}\right\|_{2}^{2} \\
& -\left(1+s \delta_{t k}\right)(1-2 c) \mu^{2}\left\|\boldsymbol{h}_{Y_{2}}\right\|_{2}^{2}+4(1-2 c) \mu^{2} \varepsilon^{2}+4(1-c) \mu(1-\mu) \sqrt{1+\delta_{t k}} \varepsilon\left\|\boldsymbol{h}_{T_{d k}^{h} \cup Y_{1}}\right\|_{2} \\
= & \left(\left(1+\delta_{t k}\right)(1-c-\mu)^{2}-\left(1-\delta_{t k}\right)(1-c)^{2}\right)\left\|\boldsymbol{h}_{T_{d k}^{h} \cup Y_{1}}\right\|_{2}^{2} \\
& +4(1-c) \mu(1-\mu) \sqrt{1+\delta_{t k} \varepsilon}\left\|_{\boldsymbol{h}_{T_{d k}^{h}} \cup Y_{1}}\right\|_{2}+4(1-2 c) \mu^{2} \varepsilon^{2} \\
& +\left(2 c^{2}+(1-2 c) \frac{4 t-4 d}{t}\right) \delta_{t k} \mu^{2} \sum_{i=1}^{N} \lambda_{i}\left\|\boldsymbol{u}_{i}\right\|_{2}^{2}-\left(1+s \delta_{t k}\right)(1-2 c) \mu^{2}\left\|\boldsymbol{h}_{Y_{2}}\right\|_{2}^{2} \\
\leq & \left(\left(1+\delta_{t k}\right)(1-c-\mu)^{2}-\left(1-\delta_{t k}\right)(1-c)^{2}\right)\left\|\boldsymbol{h}_{T_{d k}^{h} \cup Y_{1}}\right\|_{2}^{2} \\
& +4(1-c) \mu(1-\mu) \sqrt{1+\delta_{t k} \varepsilon}\left\|_{\boldsymbol{h}_{T_{d k}^{h}} \cup Y_{1}}\right\|_{2}+4(1-2 c) \mu^{2} \varepsilon^{2} \\
& +\frac{\chi^{\frac{2}{2-p}}}{t-d}\left(2 c^{2}+(1-2 c) \frac{4 t-4 d}{t}\right) \delta_{t k} \mu^{2} \\
& \times\left(\left\|\boldsymbol{h}_{T_{d k}^{h} \cup Y_{1}}\right\|_{2}^{p}+\frac{2\left(\omega\left\|\boldsymbol{x}_{T^{c}}\right\|_{p}^{p}+(1-\omega)\left\|\boldsymbol{x}_{\widetilde{T} c \cap T^{c}}\right\|_{p}^{p}\right)}{k^{\frac{2-p}{2}} \chi}\right)^{\frac{2}{2-p}}\left(\left\|\boldsymbol{h}_{Y_{2}}\right\|_{2}^{2}\right)^{\frac{2-2 p}{2-p}} \\
& -\left(1+s \delta_{t k}\right)(1-2 c) \mu^{2}\left\|\boldsymbol{h}_{Y_{2}}\right\|_{2}^{2} \tag{4.51}
\end{align*}
$$

where the inequality is due to (4.33) and $t \geq 2 d$. Similarly, we first consider the last term of (4.51). Define a function

$$
\begin{aligned}
g_{2}(v)= & \frac{\chi^{\frac{2}{2-p}}}{t-d}\left(2 c^{2}+(1-2 c) \frac{4 t-4 d}{t}\right) \delta_{t k} \mu^{2} \\
& \times\left(\left\|\boldsymbol{h}_{T_{d k}^{h} \cup Y_{1}}\right\|_{2}^{p}+\frac{2\left(\omega\left\|x_{T^{c}}\right\|_{p}^{p}+(1-\omega)\left\|x_{T^{c} \cap T^{c}}\right\|_{p}^{p}\right)}{k^{\frac{2-p}{2}} \chi}\right)^{\frac{2}{2-p}} v^{\frac{2-2 p}{2-p}}-\left(1+s \delta_{t k}\right)(1-2 c) \mu^{2} v
\end{aligned}
$$

for

$$
v \in\left[0, \frac{\chi^{\frac{2}{p}}}{(t-d)^{\frac{2-p}{p}}}\left(\left\|h_{T_{d k}^{h}} \cup Y_{1}\right\|_{2}^{p}+\frac{2\left(\omega\left\|x_{T^{c}}\right\|_{p}^{p}+(1-\omega)\left\|x_{\widetilde{T} c \cap T}\right\|_{p}^{p}\right)}{k^{\frac{2-p}{2}} \chi}\right)^{\frac{2}{p}}\right] .
$$

Then the inequality (4.51) can be written as

$$
\begin{align*}
& \left(\left(1+\delta_{t k}\right)(1-c-\mu)^{2}-\left(1-\delta_{t k}\right)(1-c)^{2}\right)\left\|\boldsymbol{h}_{T_{d k}^{h} \cup Y_{1}}\right\|_{2}^{2} \\
& \quad+4(1-c) \mu(1-\mu) \sqrt{1+\delta_{t k} \varepsilon}\left\|\boldsymbol{h}_{T_{d k}^{h} \cup Y_{1}}\right\|_{2} \\
& \quad+4(1-2 c) \mu^{2} \varepsilon^{2}+g_{2}\left(\left\|\boldsymbol{h}_{Y_{2}}\right\|_{2}^{2}\right) \geq 0 . \tag{4.52}
\end{align*}
$$

By some elementary calculation, the function $g_{2}(z)$ attains its supremum at

$$
\begin{aligned}
v_{0}= & \left(\frac{(2-2 p)\left(2 c^{2}+(1-2 c)(4 t-4 d) / t\right) \delta_{t k}}{(2-p)(t-d)\left(1+s \delta_{t k}\right)(1-2 c)}\right)^{\frac{2-p}{p}} \chi^{\frac{2}{p}} \\
& \times\left(\left\|h_{T_{d k}^{h} \cup Y_{1}}\right\|_{2}^{p}+\frac{2\left(\omega\left\|x_{T^{c}}\right\|_{p}^{p}+(1-\omega)\left\|x_{\widetilde{T} c \cap T^{c}}\right\|_{p}^{p}\right)}{k^{\frac{2-p}{2}} \chi}\right)^{\frac{2}{p}} \\
= & \left(\frac{\sqrt{p^{2} s^{2}+4(1-p)}+(2-p) s}{2\left(1+s \delta_{t k}\right)} \delta_{t k}\right)^{\frac{2-p}{p}}(t-d)^{-\frac{2-p}{p}} \chi^{\frac{2}{p}} \\
& \times\left(\left\|h_{T_{d k}^{h} \cup Y_{1}}\right\|_{2}^{p}+\frac{2\left(\omega\left\|x_{T^{c}}\right\|_{p}^{p}+(1-\omega)\left\|x_{\widetilde{T} c \cap T_{c}^{c}}\right\|_{p}^{p}\right)}{k^{\frac{2-p}{2}} \chi}\right)^{\frac{2}{p}},
\end{aligned}
$$

where we used the definition of c in (4.48). That is

$$
\begin{aligned}
& g_{1}(v) \leq g_{1}\left(v_{0}\right) \\
= & \left(\frac{1}{t-d}\left(2 c^{2}+(1-2 c) \frac{4 t-4 d}{t}\right) \delta_{t k}\left(\frac{\sqrt{p^{2} s^{2}+4(1-p)}+(2-p) s}{2\left(1+s \delta_{t k}\right)} \delta_{t k}\right)^{\frac{2-2 p}{p}}\right. \\
& \left.-\left(1+s \delta_{t k}\right)(1-2 c)\left(\frac{\sqrt{p^{2} s^{2}+4(1-p)}+(2-p) s}{2\left(1+s \delta_{t k}\right)} \delta_{t k}\right)^{\frac{2-p}{p}}\right) \\
& \times \mu^{2} \chi^{\frac{2}{p}}\left(\left\|\boldsymbol{h}_{T_{d k}^{h} \cup Y_{1}}\right\|_{2}^{p}+\frac{2\left(\omega\left\|x_{T^{c}}\right\|_{p}^{p}+(1-\omega)\left\|x_{\widetilde{T} c \cap T_{c}}\right\|_{p}^{p}\right)}{k^{\frac{2-p}{2}} \chi}\right)^{\frac{2}{p}} \\
& \times \frac{(t-d)^{-\frac{2-p}{p}} \chi^{\frac{2}{p}} p\left(s \sqrt{p^{2} s^{2}+4(1-p)}+2-s^{2} p\right) \delta_{t k}}{4} \\
& \times\left(\frac{\sqrt{p^{2} s^{2}+4(1-p)}+(2-p) s}{2\left(1+s \delta_{t k}\right)} \delta_{t k}\right)^{\frac{2-2 p}{p}} \\
& \times \chi^{\frac{2}{p}}\left(\left\|\boldsymbol{h}_{T_{d k}^{h} \cup Y_{1}}\right\|_{2}^{p}+\frac{2\left(\omega\left\|x_{T_{c}}\right\|_{p}^{p}+(1-\omega)\left\|x_{\widetilde{T} c \cap T^{c}}\right\|_{p}^{p}\right)}{k^{\frac{2-p}{2}} \chi}\right)^{\frac{2}{p}} \mu^{2} \\
= & \frac{\delta_{t k}}{2}\left(\frac{1-h\left(\delta_{t k}\right)}{\delta_{t k}^{2}}-1\right)\left(\left\|\boldsymbol{h}_{T_{d k}^{h} \cup Y_{1}}\right\|_{2}^{p}+\frac{2\left(\omega\left\|x_{T^{c}}\right\|_{p}^{p}+(1-\omega)\left\|x_{\widetilde{T} c \cap T^{c}}\right\|_{p}^{p}\right)}{k^{\frac{2-p}{2}} \chi}\right)^{\frac{2}{p}} \mu^{2},
\end{aligned}
$$

where the last two equalities follow from the definition of c in (4.48), and the function $h(z)$ in (4.30), respectively. Then, applying (4.52) and $g_{2}\left(\left\|\boldsymbol{h}_{\gamma_{2}}\right\|_{2}^{2}\right) \leq g_{2}\left(v_{0}\right)$, we derive that

$$
\begin{align*}
& \left(\left(1+\delta_{t k}\right)(1-c-\mu)^{2}-\left(1-\delta_{t k}\right)(1-c)^{2}\right)\left\|h_{T_{d k}^{h} \cup Y_{1}}\right\|_{2}^{2} \\
& \quad+4(1-c) \mu(1-\mu) \sqrt{1+\delta_{t k} \varepsilon}\left\|h_{T_{d k}^{h} \cup Y_{1}}\right\|_{2}+4(1-2 c) \mu^{2} \varepsilon^{2}+\frac{\delta_{t k}}{2}\left(\frac{1-h\left(\delta_{t k}\right)}{\delta_{t k}^{2}}-1\right) \\
& \quad \times\left(\left\|\boldsymbol{h}_{T_{d k}^{h} \cup Y_{1}}\right\|_{2}^{p}+\frac{2\left(\omega\left\|x_{T_{c}^{c}}\right\|_{p}^{p}+(1-\omega)\left\|x_{\widetilde{T} c \cap T^{c}}\right\|_{p}^{p}\right)}{k^{\frac{2-p}{2}} \chi}\right)^{\frac{2}{p}} \mu^{2} \geq 0 . \tag{4.53}
\end{align*}
$$

On the other hand, based on the parameters c in (4.48) and μ in (4.49), one has

$$
\begin{align*}
& \left(1+\delta_{t k}\right)(1-c-\mu)^{2}-\left(1-\delta_{t k}\right)(1-c)^{2}=\left(-\frac{1}{\delta(p, t, d, \chi)}+\left(\frac{1+\delta^{2}(p, t, d, \chi)}{2 \delta^{2}(p, t, d, \chi)}\right) \delta_{t k}\right) \mu^{2} \\
& 4(1-c) \mu(1-\mu)=2\left(\frac{1}{\delta(p, t, d, \chi)}-\frac{1}{2}\left(\sqrt{(s p)^{2}+4(1-p)}-s p\right)\right) \mu^{2} \\
& 4(1-2 c) \mu^{2}=2\left(\sqrt{(s p)^{2}+4(1-p)}-s p\right) \mu^{2} \tag{4.54}
\end{align*}
$$

Furthermore, since $h(z)$ is monotonically decreasing with $z, h(\delta(p, t, d, \chi))=0$, and $\delta_{t k}<$ $\delta(p, t, d, \chi)$, then

$$
\begin{aligned}
& \left(-\frac{1}{\delta(p, t, d, \chi)}+\left(\frac{1+\delta^{2}(p, t, d, \chi)}{2 \delta^{2}(p, t, d, \chi)}\right) \delta_{t k}\right)-\frac{\delta_{t k}}{2}\left(\frac{1-h\left(\delta_{t k}\right)}{\delta_{t k}^{2}}-1\right) \\
\leq & \left(-\frac{1}{\delta(p, t, d, \chi)}+\left(\frac{1+\delta^{2}(p, t, d, \chi)}{2 \delta^{2}(p, t, d, \chi)}\right) \delta_{t k}\right)+\frac{1-\delta^{2}(p, t, d, \chi)}{2 \delta^{2}(p, t, d, \chi)} \delta_{t k} \\
= & -\frac{\delta(p, t, d, \chi)-\delta_{t k}}{\delta^{2}(p, t, d, \chi)}<0 .
\end{aligned}
$$

Then, using the equalities in (4.54) and the above inequality, (4.53) reduces to

$$
\begin{aligned}
- & \frac{\delta(p, t, d, \chi)-\delta_{t k}}{\delta^{2}(p, t, d, \chi)}\left\|\boldsymbol{h}_{T_{d k}^{h} \cup Y_{1}}\right\|_{2}^{2} \\
& +2\left(\frac{1}{\delta(p, t, d, \chi)}-\frac{1}{2}\left(\sqrt{(s p)^{2}+4(1-p)}-s p\right)\right) \sqrt{1+\delta_{t k} \varepsilon}\left\|\boldsymbol{h}_{T_{d k}^{h} \cup Y_{1}}\right\|_{2} \\
& +2\left(\sqrt{(s p)^{2}+4(1-p)}-s p\right) \varepsilon^{2}-\frac{1-\delta^{2}(p, t, d, \chi)}{2 \delta^{2}(p, t, d, \chi)} \delta_{t k}\left\|\boldsymbol{h}_{T_{d k}^{d} \cup Y_{1}}\right\|_{2}^{2} \\
& +\frac{\delta_{t k}}{2}\left(\frac{1-h\left(\delta_{t k}\right)}{\delta_{t k}^{2}}-1\right)\left(\left\|\boldsymbol{h}_{T_{d k}^{h} \cup Y_{1}}\right\|_{2}^{p}+\frac{2\left(\omega\left\|x_{T_{c} c}\right\|_{p}^{p}+(1-\omega)\left\|x_{\widetilde{T}^{c} \cap T c}\right\|_{p}^{p}\right)}{k^{\frac{2-p}{2}} \chi}\right)^{\frac{2}{p}} \mu^{2} \geq 0 .
\end{aligned}
$$

As a result, one has

$$
\left\|h_{T_{d k}^{h} \cup Y_{1}}\right\|_{2} \leq \frac{E_{1} \delta^{2}(p, t, d, \chi)}{\delta(p, t, d, \chi)-\delta_{t k}} \varepsilon+E_{2}\left(\omega\left\|x_{T^{c}}\right\|_{p}^{p}+(1-\omega)\left\|x_{\widetilde{T} c \cap T^{c}}\right\|_{p}^{p}\right)^{\frac{1}{p}},
$$

where the constants E_{1} and E_{2} are defined in (3.23) and (3.24), respectively. Similarly, using (4.42) and the above inequality, we obtain

$$
\left.\left.\begin{array}{rl}
\|\boldsymbol{h}\|_{2}^{2} \leq\left(\frac{E_{1} \delta^{2}(p, t, d, \chi)}{\delta(p, t, d, \chi)-\delta_{t k}} \varepsilon+E_{2}\left(\omega\left\|x_{T^{c}}\right\|_{p}^{p}+(1-\omega) \| x_{\tilde{T} c} \cap T^{c}\right.\right.
\end{array} \|_{p}^{p}\right)^{\frac{1}{p}}\right)^{2} .
$$

And thus,

$$
\begin{aligned}
\|\boldsymbol{h}\|_{2} \leq & \frac{\sqrt{1+2^{\frac{2-2 p}{p}}} E_{1} \delta^{2}(p, t, d, \chi)}{\delta(p, t, d, \chi)-\delta_{t k}} \varepsilon+\sqrt{E_{2}^{2}+\left(E_{2}+\left(2(d k)^{-\frac{2-p}{2}}\right)^{\frac{1}{p}}\right)^{2}} \\
& \times\left(\omega\left\|x_{T_{c} c}\right\|_{p}^{p}+(1-\omega)\left\|x_{\widetilde{T}_{c} \cap T^{c}}\right\|_{p}^{p}\right)^{\frac{1}{p}} .
\end{aligned}
$$

When $t k$ is not an integer, again we define $t^{\prime}=\lceil t k\rceil / k$. And $\delta(p, d, t, \chi) \leq \delta\left(p, d, t^{\prime}, \chi\right)$ since $\partial z / \partial t>0$ in (4.31) for $t \geq 2 d$. Therefore,

$$
\delta_{t^{\prime} k}=\delta_{t k}<\delta(p, d, t, \chi) \leq \delta\left(p, d, t^{\prime}, \chi\right) .
$$

We obtain the desired result by working on $\delta_{t^{\prime} k}$. We complete the proof.

5 Conclusion

In this paper, we provide a uniform RIP bound for the exact recovery of sparse signals via the weighted ℓ_{p}-minimization with $0<p \leq 1$ in the noiseless case. In the ℓ_{2} bounded noise case, we present the error bound for the stable signal recovery via the weighted ℓ_{p} minimization with $0<p \leq 1$, when signals are not limited to sparse signals. The proposed sufficient conditions extend the state-of-the-art results for weighted ℓ_{p}-minimization in the literature to a complete regime, which fills the gap on $\delta_{t k}$ based signal recovery condition for $t>2 d$ and include the existing optimal conditions for the ℓ_{p}-minimization and the weighted ℓ_{1}-minimization as special cases.

Acknowledgments

This work was supported by the NSF of China (Grant Nos. 12371094, 12271050, 11871109), by the Beijing Natural Science Foundation (Grant No. 1232020), by the CAEP Foundation (Grant No. CX20200027), by the Foundation of National Key Laboratory of Computational Physics (Grant No. 6142A05230503) and by the HKRGC GRF (Grant Nos. 17201020, 17300021), HKRGC CRF C1013-21GF and C7004-21GF, and Joint NSFC and RGC N-HKU769/21.

References

[1] R. Baraniuk, M. Davenport, R. DeVore, and M. Wakin, A simple proof of the restricted isometry property for random matrices, Constr. Approx., 28:253-263, 2008.
[2] R. V. Borries, C. Miosso, and C. Potes, Compressed sensing using prior information, in: 2nd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 121-124, 2007.
[3] T. T. Cai and A. Zhang, Sharp RIP bound for sparse signal recovery and low-rank matrix recovery, Appl. Comput. Harmon. Anal., 35:74-93, 2013.
[4] T. T. Cai and A. Zhang, Sparse representation of a polytope and recovery of sparse signals and low-rank matrices, IEEE Trans. Inf. Theory, 60:122-132, 2014.
[5] E. J. Candès, J. Romberg, and T. Tao, Stable signal recovery from incomplete and inaccurate measurements, Comm. Pure Appl. Math., 59:1207-1223, 2006.
[6] B. Chen and A. Wan, General RIP bounds of $\delta_{t k}$ for sparse signal recovery by ℓ_{p} minimization, Neurocomputing, 363:306-312, 2019.
[7] W. Chen and Y. Li, Recovery of signals under the condition on RIC and ROC via prior support information, Appl. Comput. Harmon. Anal., 46:417-430, 2019.
[8] W. Chen, Y. Li, and G. Wu, Recovery of signals under the high order RIP condition via prior support information, Signal Process., 153:83-94, 2018.
[9] M. P. Friedlander, H. Mansour, R. Saab, and O. Yilmaz, Recoverying compressively sampled signals using partial support information, IEEE Trans. Inf. Theory, 58(2):1122-1134, 2012.
[10] H. Ge, W. Chen, and M. K. Ng, New RIP bounds for recovery of sparse signals with partial support information via weighted ℓ_{p}-minimization, IEEE Trans. Inf. Theory, 66:3914-3928, 2020.
[11] N. Ghadermarzy, H. Mansour, and O. Yilmaz, Non-convex compressed sensing using partial support information, Sampl. Theory Signal Image Process., 13:251-272, 2014.
[12] S. He, Y. Wang, J. Wang, and Z. Xu, Block-sparse compressed sensing with partially known signal support via non-convex minimisation, IET Signal Process., 10:717-723, 2016.
[13] T. Ince, A. Nacaroglu, and N. Watsuji, Nonconvex compressed sensing with partially known signal support, Signal Process., 93(1):338-344, 2013.
[14] L. Jacques, A short note compressed sensing with partially known signal support, Signal Process., 90:3308-3312, 2010.
[15] M. A. Khajehnejad, W. Xu, A. S. Avestimehr, and B. Hassibi, Weighted ℓ_{1}-minimization for sparse recovery with prior information, in: IEEE International Symposium on Information Theory, 483-487, 2009.
[16] W. Lu and N. Vaswani, Exact reconstruction conditions and error bounds for regularized modified basis pursuit, in: Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers, 763-767, 2010.
[17] D. Needell, R. Saab, and T. Woolf, Weighted ℓ_{1}-minimization for sparse recovery under arbitrary prior information, Information and Inference: A Journal of the IMA, 6(3):284-309, 2017.
[18] A. A. Saleh, F. Alajaji, and W. Y. Chan, Compressed sensing with non-Gaussian noise and partial support information, IEEE Signal Process. Lett., 20:1703-1707, 2015.
[19] N. Vaswani and W. Lu, Modified-CS: Modifying compressive sensing for problems with partially known support, in: IEEE International Symposium on Information Theory, 488-492, 2009.
[20] N. Vaswani and W. Lu, Modified-CS: Modifying compressive sensing for problems with partially known support, IEEE Trans. Signal Process., 58:4595-4607, 2010.
[21] A. Wan, Uniform RIP conditions for recovery of sparse signals by $\ell_{p}(0<p \leq 1)$ minimization, IEEE Trans. Signal Process., 68:5379-5394, 2020.
[22] G. Xu and $\mathrm{Z} . \mathrm{Xu}$, On the ℓ_{1}-norm invariant convex k-sparse decomposition of signals, J. Oper. Res. Soc. China, 1:537-541, 2013.
[23] R. Zhang and S. Li, Optimal RIP bounds for Sparse signals recovery via ℓ_{p}-minimization, Appl. Comput. Harmon. Anal., 47:566-584, 2019.

[^0]: *Corresponding author. Email addresses: gehuanmin@bsu.edu.cn (H. Ge), chenwg@iapcm.ac.cn (W. Chen), michael-ng@hkbu.edu.hk (M.Ng)

